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Part I 
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Beginning of Graph Theory in Biology 

Benzer’s work 

 Developed deletion 
mapping 

 “Proved” linearity of 
the gene 

 Demonstrated 
internal structure of 
the gene 

Seymour Benzer, 1950s 
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Viruses Attack Bacteria 

 Normally bacteriophage T4 kills bacteria  

 However if T4 is mutated (e.g., an important gene is 
deleted) it gets disabled and looses an ability to kill 
bacteria  

 Suppose the bacteria is infected with two different  
mutants each of which is disabled – would the bacteria 
still survive? 

 Amazingly, a pair of disable viruses can kill a bacteria 
even if each of them is disabled.  

 How can it be explained?  
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Benzer’s Experiment 

 Idea: infect bacteria with pairs of mutant T4 
bacteriophage (virus) 

 Each T4 mutant has an unknown interval deleted 
from its genome 

 If the two intervals overlap:  T4 pair is missing part 
of its genome and is disabled – bacteria survive 

 If the two intervals do not overlap:  T4 pair has its 
entire genome and is enabled – bacteria die 
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Complementation between pairs of 

mutant T4 bacteriophages 
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Benzer’s Experiment and Graphs 

 Construct an interval graph:  each T4 mutant is a 
vertex, place an edge between mutant pairs where 
bacteria survived (i.e., the deleted intervals in the 
pair of mutants overlap) 

 Interval graph structure reveals whether DNA is 
linear or branched DNA 
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Interval Graph: Linear Genes 
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Interval Graph: Branched Genes 
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Interval Graph: Comparison 

Linear genome Branched genome 
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Interval graph recognition in linear time 

 Michel Habib, Ross McConnell, Christophe Paul, and 
Laurent Viennot. Lex-BFS and partition refinement, 
with applications to transitive orientation, interval 
graph recognition and consecutive ones testing. 
Theoretical Computer Science, Volume 234, Issues 
1-2, 6 March 2000, Pages 59-84. 
 Simple linear time algorithm.  

 No complicated data structures required, easy to implement. 

 Requires some graph theory to understand why and how it works 
(details out of the scope of this course). 
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Interval graph recognition in linear time (outline) 

 Number the vertices in the lexicographic breadth-
first order. 

 Construct a tree of maximal cliques (in a suitable 
evaluation order). 

 Find a chain of cliques by a recursive clique 
partitioning refinement with pivots algorithm 
(generalization of quicksort to graphs).  

 If each vertex appears only in consecutive cliques in 
the chain, then the graph is interval graph, otherwise 
not. 
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Simulation: yes 

3 

1 

2 
4 

6 

5 

564 

346 
13 

23 

Tree of max cliques 

{564, 346, 23}, {13} 
3 

{564}, {346, 23}, {13} 
4 

{564}, {346}, {23}, {13} 

1 2 

3 

4 
6 

5 

14 



Simulation: no 
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Not an interval graph 
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S H O R T E S T  S U P E R S T R I N G  

Part II 
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DNA Sequencing: History 

Sanger method 
(1977): labeled 
ddNTPs terminate 
DNA copying at 
random points. 

Both methods generate  

labeled fragments of 

varying lengths that are 

further electrophoresed. 

 

 Gilbert method (1977): 

   chemical method to 

cleave DNA at specific 

points (G, G+A, T+C, C). 
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Sanger Method: Generating Read 

1. Start at primer  

(restriction site) 

2. Grow DNA chain 

3. Include ddNTPs  

4. Stops reaction at all 

possible points 

5. Separate products by 

length, using gel 

electrophoresis 
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DNA Sequencing 

 Shear DNA into 

millions of small 

fragments 

 Read 500 – 700 

nucleotides at a time 

from the small 

fragments (Sanger 

method) 
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Fragment Assembly 

 Computational Challenge: assemble individual 
short fragments (reads) into a single genomic 
sequence (“superstring”)  

 Until late 1990s the shotgun fragment assembly of 
human genome was viewed as intractable problem 
 Now there exists “complete” sequences of human genomes of 

several individuals  

 For small and “easy” genomes, such as bacterial 
genomes, fragment assembly is tractable with many 
software tools 

 Remains to be difficult problem for more complex 
genomes 
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Shortest Superstring Problem 

 Problem: Given a set of strings, find a shortest string 
that contains all of them 

 Input:  Strings S={s1, s2,…., sn} 
 Output:  A string s that contains all strings  
   s1, s2,…., sn as substrings, such that the length of s is 

minimized 
 

 Complexity:  NP-hard  
 Recall: 
 Greedy approximation algorithm at the study group 
 Extension to approximate case in the exercises 
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Reducing SSP to TSP 

 Define overlap( si, sj ) as the longest prefix of sj that matches a suffix 
of si, e.g.:  

     aaaggcatcaaatctaaaggcatcaaa                                               

                                  aaaggcatcaaatctaaaggcatcaaa 

 Define prefix( si, sj ) as the part of si after its longest overlap with sj is 
removed. 

 Construct a prefix graph with  
 n vertices representing the n strings s1, s2,…., sn; and 

 edges of length |prefix( si, sj )| between vertices si and sj. 

 Add a dummy vertex d to prefix graph with edges of length |si | 
between each si and d.  

 Find the shortest path which visits every vertex exactly once.  

 This is the Asymmetric Traveling Salesman Problem (ATSP), which 
is also NP-complete. 
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SSP to TSP: An Example 

 

S = { ATC, CCA, CAG, TCC, AGT } 

 

 SSP 

                 AGT 

             CCA 

         ATC 

            ATCCAGT       

           TCC   

               CAG                                                                   

  ATCCAGT 

TSP ATC 

CCA 

TCC 

AGT 

CAG 

1 

1 1 1 

2 

2 

2 
3 

2 

2 

(note: only subset of edges shown) 

3 

dummy 
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Shortest superstring: 4-approximation 

 There are logarithm-factor approximation 
algorithms for ATSP, but the prefix graph instances 
admit constant factor approximation algorithms: 
 Resulting superstring is at most c times longer than the 

optimal OPT, for some constant c. 

 4-approximation algorithm: 
1. Construct the prefix graph corresponding to strings in S. 

2. Find a minimum weight cycle cover on the prefix graph, 
C={c1,...,ck}. 

3. Read the superstring defined by the cycle cover. 
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Cycle cover 

 A cycle cover is a set of disjoint cycles covering all 
vertices. 

 ATSP tour is a special case: cycle cover with one 
cycle. 
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Minimum weight cycle cover 

 Minimum weight cycle cover is polynomial time 
solvable! 

 Reduction to minimum weight perfect matching on 
bipartite graph: 
 Create two vertices ui and vi from  

each si to a graph H. 

 Add edge (ui,vj) with weight   
|prefix(si,sj)|, for i≠j. 

 Each cycle cover in prefix graph  
corresponds to a minimum weight  
perfect matching on H and vice versa. 

26 

ATC 

 

CCA  

 

CAG 

 

TCC 

 

AGT  

ATC 

 

CCA  

 

CAG 

 

TCC 

 

AGT  

2 

1 

... 

... 



Minimum weight perfect matching 
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 Classical non-trivial graph problem with polynomial 
time solutions. 
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 For each cycle:  
 concatenate prefixes corresponding to weights starting from 

any vertex 

 append the overlap of last and start vertex 

 Concatenate the strings 
read from each cycle 

Reading superstring from cycle cover 
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Analysis 

 The length of the superstring read from the cycle 
cover is wt(C)+∑c∈C|overlap(e(c),b(c))|, where 
 wt(C) is the length/weight of the cycle cover, and 

 b(c) and e(c) are the strings corresponding to the first and last 
vertices of cycle c. 

 Observation: wt(C) is smaller or equal to OPT. 

 In the worst case, 
|overlap(e(c),b(c))|=min(|e(c)|,|b(c)|). 
 For pessimistic estimate, it is enough to assume that the 

overlap is as long as the length of any representative string r 
corresponding to a vertex in c. 
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Analysis... 

 Lemma: Let c and c’ be two cycles in C, and let r, r’ 
be representative strings from these cycles. Then 
|overlap(r,r’)|<wt(c)+wt(c’). 
 Proof. Study group work, see Vazirani, Approximation 

algorithms, page 63. 

 Let r1,r2,...,rk be the representatives of cycles in the 
optimal cycle cover C, numbered in order of their 
leftmost occurrence in the shortest superstring: 
   OPT≥ ∑i|ri|-∑i|overlap(ri, ri+1)|> ∑i|ri|-2wt(C) 

 Hence,  
 wt(C)+∑c∈C|overlap(e(c),b(c))|≤ wt(C)+∑i|ri| ≤ 4OPT 
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S E Q U E N C I N G  B Y  H Y B R I D I Z A T I O N  

Part III 
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Sequencing by Hybridization (SBH): History 

• 1988:  SBH suggested as an 

an alternative sequencing 

method. Nobody believed it 

will ever work 

 

• 1991:  Light directed polymer 

synthesis developed by Steve 

Fodor and colleagues.  

 

• 1994:  Affymetrix develops 

first 64-kb DNA microarray 

 

First microarray  

prototype (1989) 

First commercial 

DNA microarray 

prototype w/16,000 

features (1994) 

500,000 features 

per chip (2002) 
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How SBH Works 

 Attach all possible DNA probes of length l to a flat surface, each 

probe at a distinct and known location.  This set of probes is 

called the DNA microarray. 

 Apply a solution containing fluorescently labeled DNA fragment 

to the array. 

 The DNA fragment hybridizes with those probes that are 

complementary to substrings of length l of the fragment. 

 Using a spectroscopic detector, determine which probes 

hybridize to the DNA fragment to obtain the l-mer composition 

of the target DNA fragment. 

 Reconstruct the sequence of the target DNA fragment from the l-

mer composition. 
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Hybridization on DNA Array 
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l-mer composition 

 Spectrum ( s, l ) is a multiset of all possible  (n – l + 
1)  l-mers in a string s of length n 

 For s = TATGGTGC, Spectrum ( s, 3 ):    

       {TAT, ATG, TGG, GGT, GTG, TGC} 

 Different sequences may have the same spectrum:  

             Spectrum(GTATCT,2)= 

             Spectrum(GTCTAT,2)= 

             {AT, CT, GT, TA, TC} 
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The SBH Problem 

 Goal: Reconstruct a string from its l-mer 
composition 

 

 Input:  A set S, representing all l-mers from an 
(unknown) string s 

 

 Output:  String s such that Spectrum( s,l ) = S 
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SBH: Hamiltonian Path Approach 

 
S = { ATG  AGG  TGC  TCC  GTC  GGT  GCA  CAG } 
 

   Path visited every VERTEX once 

ATG AGG TGC TCC H GTC GGT GCA CAG 

ATG C A G G T C C 
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Hamiltonian Cycle Problem 

 Find a cycle that visits 
every vertex exactly 
once 

 

 NP-complete  

Game invented by Sir  

William Hamilton in 1857 
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SBH: Eulerian Path Approach 

   S = { ATG, TGC, GTG, GGC, GCA, GCG, CGT  }  

 

   Vertices correspond to (l – 1)-mers :  { AT, TG, GC, GG, GT, CA, CG } 

   Edges correspond to l–mers from S 

AT 

GT CG 

CA GC TG 

GG 
       Path visited every EDGE once 



SBH: Eulerian Path Approach 

S = { AT, TG, GC, GG, GT, CA, CG } corresponds to two different 
paths: 

 

 

 

    ATGGCGTGCA     ATGCGTGGCA 

AT TG GC 
CA 

GG 

GT CG 

AT 

GT CG 

CA 
GC TG 

GG 
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The Bridge Obsession Problem 

Bridges of Königsberg 

Find a tour crossing every bridge just once 

Leonhard Euler, 1735  
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Eulerian Cycle Problem 

 Find a cycle that visits 
every edge exactly once 

 

 Linear time 

More complicated Königsberg  
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Euler Theorems 

 A graph is balanced if for every vertex the number of 

incoming edges equals to the number of outgoing edges:  

                           in(v)=out(v). 

 Theorem:  A connected graph has an Eulerian cycle if and 

only if each of its vertices is balanced. 

 A vertex is semi-balanced if in(v)=out(v)+1 or 

in(v)=out(v)-1 

 Theorem:  A connected graph has an Eulerian path if and 

only if it contains vertex v with in(v)=out(v)-1, vertex w 

with in(w)=out(w)+1, and all other vertices are balanced. 
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Some Difficulties with SBH 

 In practice, l-mer composition can never be 
measured with 100% accuracy.  
 With inaccurate data, the computational problem is again NP-

hard. 
 Find minimum completion (insertion/deletions edges and 

nodes) of the graph so that it becomes Eulerian (see exercises) 
 Jacek Błazewicz and Marta Kasprzak. Complexity of DNA 

sequencing by hybridization. Theoretical Computer Science, 
290(3):1459-1473, 2003 

 Microarray technology has found other uses: 
  Widely used in expression analysis and SNP analysis. 

 Virtual l-mer distributions are used in many 
fragment assembly tools, leading to heuristics 
exploiting Eulerian path approach. 
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