
V E L I M Ä K I N E N

H T T P : / / W W W . C S . H E L S I N K I . F I / E N / C O U R S E S /
5 8 2 6 7 0 / 2 0 1 1 / S / K / 1

Algorithms for Bioinformatics
Autumn 2011

P A R T I : D I S T A N C E - B A S E D C L U S T E R I N G ,
U P G M A

P A R T I I : N E I G H B O R J O I N I N G

Lecture 6

2 Part of the slides are from http://bix.ucsd.edu/bioalgorithms/slides.php

D I S T A N C E - B A S E D C L U S T E R I N G , U P G M A

3

Part I

Phylogeny by distance method pipeline

For all pairs of
species, find the

homologous
genes

genome sequences

of the species

Compute the
rearrangement
distance for all
pairs of species

permutations

representing

the homologs

Build the
phylogenetic
tree from the

distances

D(A,B) for all species A and B

4

?

Clustering

 Hierarchical clustering
 Iteratively join two closest clusters until forming a tree

hierarchy (agglomerative… also divisive version exists)

 Distance between clusters can be e.g. max pair-wise distance
(complete linkage), min (single-linkage), UPGMA (average
linkage), neigbor joining

 Partitional clustering
 k-means, etc.

5

6

Distances in a phylogenetic tree

 Distance matrix D = (dij)
gives pairwise distances for
leaves of the phylogenetic
tree

 In addition, the phylogenetic
tree will now specify
distances between leaves and
internal nodes

 Denote these with dij as well

2 3 4 5 1

6

7

8

Distance dij states how

far apart species i and j

are evolutionary

7

Distances in evolutionary context

 Distances dij in evolutionary context satisfy the
following conditions
 Positivity: dij ≥0

 Identity: dij = 0 if and only if i = j

 Symmetry: dij = dji for each i, j

 Triangle inequality: dij ≤ dik + dkj for each i, j, k

 Distances satisfying these conditions are called

metric

 In addition, evolutionary mechanisms may impose

additional constraints on the distances

 ⊳ additive and ultrametric distances

8

Additive trees

 A tree is called additive, if the distance between any
pair of leaves (i, j) is the sum of the distances
between the leaves and a node k on the shortest path
from i to j in the tree

 dij = dik + djk

9

Additive trees: example

A B C D

A 0 2 4 4

B 2 0 4 4

C 4 4 0 2

D 4 4 2 0

A

B

C

D

1

1

2
1

1

10

Ultrametric trees

 A rooted additive tree is called an ultrametric tree, if the
distances between any two leaves i and j, and their common
ancestor k are equal

 dik = djk

 Edge length dij corresponds to the time elapsed since
divergence of i and j from the common parent

 In other words, edge lengths are measured by a molecular
clock with a constant rate

11

Identifying ultrametric data

 We can identify distances to be ultrametric by the
three-point condition:

 D corresponds to an ultrametric tree if and only if for
any three species i, j and k, the distances satisfy
dij ≤ max(dik, dkj)

 If we find out that the data is ultrametric, we can

utilise a simple algorithm to find the corresponding

tree

12

Ultrametric trees

9

8

7

5 4 3 2 1

6

Observation time

T
im

e

13

Ultrametric trees

9

8

7

5 4 3 2 1

6

Observation time

T
im

e

Only vertical segments of the

tree have correspondence to

some distance dij:

Horizontal segments act as

connectors.

d8,9

14

Ultrametric trees

9

8

7

5 4 3 2 1

6

Observation time

T
im

e

dik = djk for any two leaves

i, j and any ancestor k of

i and j

15

Ultrametric trees

9

8

7

5 4 3 2 1

6

Observation time

T
im

e

Three-point condition: there are

no leafs i, j for which dij > max(dik, djk)

for any leaf k.

16

UPGMA algorithm

 UPGMA (unweighted pair group method using
arithmetic averages) constructs a phylogenetic tree
via clustering

 The algorithm works by at the same time
 Merging two clusters

 Creating a new node on the tree

 The tree is built from leaves towards the root

 UPGMA produces a ultrametric tree

17

Cluster distances

 Let distance dij between clusters Ci and Cj be

 that is, the average distance between points (species)
in the cluster.

,
||||

1

,






ji CqCp

pq

ji

ij
d

CC
d

18

UPGMA algorithm

 Initialisation

 Assign each point i to its own cluster Ci

 Define one leaf for each sequence, and place it at height zero

 Iteration

 Find clusters i and j for which dij is minimal

 Define new cluster k by Ck = Ci ∪ Cj, and define dkl for all l

 Define a node k with children i and j. Place k at height dij/2

 Remove clusters i and j

 Termination:
 When only two clusters i and j remain, place root at height dij/2

19

1 2

3

4

5

20

1 2

3

4

5
1 2

6
2,1

2

1
d

21

1 2

3

4

5
1 2 4 5

6 7
5,4

2

1
d

22

1 2

3

4

5
1 2 4 5

6 7

8

3

7,3

2

1
d

23

1 2

3

4

5
1 2 4 5

6 7

8

3

9

8,6

2

1
d

24

UPGMA implementation

 In naive implementation, each iteration takes O(n2)
time with n sequences => algorithm takes O(n3) time

 The algorithm can be implemented to take only
O(n2) time (see Gronau & Moran, 2006, for a survey)

25

Problem solved?

 We now have a simple algorithm which finds a ultrametric
tree

 If the data is ultrametric, then there is exactly one ultrametric tree
corresponding to the data (proof left as an exercise)

 The tree found is then the ”correct” solution to the phylogeny
problem, if the assumptions hold

 Unfortunately, the data is not ultrametric in practice

 Measurement errors distort distances

 Basic assumption of a molecular clock does not hold usually very
well

26

Incorrect reconstruction of non-ultrametric data by
UPGMA

1

2
3

4

1 2 3 4

Tree which corresponds

to non-ultrametric

distances

Incorrect ultrametric reconstruction

by UPGMA algorithm

N E I G H B O R J O I N I N G

Part II

28

Checking for additivity

 How can we check if our data is additive?

 Let i, j, k and l be four distinct species

 Compute 3 sums: dij + dkl, dik + djl, dil + djk

29

Four-point condition

i

j l

k i

j l

k i

j l

k dik

djl

dil

djk

dij dkl

 The sums are represented by the three figures

 Left and middle sum cover all edges, right sum does not

 Four-point condition: i, j, k and l satisfy the four-point
condition if two of the sums dij + dkl, dik + djl, dil + djk are
the same, and the third one is smaller than these two

30

Checking for additivity

 An n x n matrix D is additive if and only if the four
point condition holds for every 4 distinct elements 1
≤ i, j, k, l ≤ n

 See exercises for grounding of three-point
(ultrametric) and four-point (additive) conditions.

31

Finding an additive phylogenetic tree

 Additive trees can be found with, for example, the neighbor
joining method (Saitou & Nei, 1987)

 The neighbor joining method produces unrooted trees,
which have to be rooted by other means
 A common way to root the tree is to use an outgroup

 Outgroup is a species that is known to be more distantly related to
every other species than they are to each other

 Root node candidate: position where the outgroup would join the
phylogenetic tree

 However, in real-world data, even additivity usually does
not hold very well

32

Neighbor joining algorithm

 Neighbor joining works in a similar fashion to
UPGMA
 Find clusters C1 and C2 that minimise a function f(C1, C2)

 Join the two clusters C1 and C2 into a new cluster C

 Add a node to the tree corresponding to C

 Assign distances to the new branches

 Differences in
 The choice of function f(C1, C2)

 How to assign the distances

33

Neighbor joining algorithm

 Recall that the distance dij for clusters Ci and Cj was

 Let u(Ci) be the separation of cluster Ci from other clusters
defined by

 where n is the number of clusters.






ji CqCp

pq

ji

ij
d

CC
d

,||||

1





jC iji
d

n
Cu

2

1
)(

34

Neighbor joining algorithm

 Instead of trying to choose the clusters Ci and Cj
closest to each other, neighbor joining at the same
time
 Minimises the distance between clusters Ci and Cj and

 Maximises the separation of both Ci and Cj from other clusters

35

Neighbor joining algorithm

 Initialisation as in UPGMA

 Iteration

 Find clusters i and j for which dij – u(Ci) – u(Cj) is minimal

 Define new cluster k by Ck = Ci ∪ Cj, and define dkl for all l

 Define a node k with edges to i and j. Remove clusters i and j

 Assign length ½ dij + ½ (u(Ci) – u(Cj)) to the edge i -> k

 Assign length ½ dij + ½ (u(Cj) – u(Ci)) to the edge j -> k

 Termination:
 When only one cluster remains

36

Neighbor joining algorithm: example

 a b c d

a 0 6 7 5

b 0 11 9

c 0 6

d 0

i u(i)

a (6+7+5)/2 = 9

b (6+11+9)/2 = 13

c (7+11+6)/2 = 12

d (5+9+6)/2 = 10

i,j dij – u(Ci) – u(Cj)

a,b 6 - 9 - 13 = -16

a,c 7 - 9 - 12 = -14

a,d 5 - 9 - 10 = -14

b,c 11 - 13 - 12 = -14

b,d 9 - 13 - 10 = -14

c,d 6 - 12 - 10 = -16

Choose either pair

to join

37

Neighbor joining algorithm: example

 a b c d

a 0 6 7 5

b 0 11 9

c 0 6

d 0

i u(i)

a (6+7+5)/2 = 9

b (6+11+9)/2 = 13

c (7+11+6)/2 = 12

d (5+9+6)/2 = 10

i,j dij – u(Ci) – u(Cj)

a,b 6 - 9 - 13 = -16

a,c 7 - 9 - 12 = -14

a,d 5 - 9 - 10 = -14

b,c 11 - 13 - 12 = -14

b,d 9 - 13 - 10 = -14

c,d 6 - 12 - 10 = -16

a b c d

e

dae = ½ 6 + ½ (9 – 13) = 1

dbe = ½ 6 + ½ (13 – 9) = 5

dbe dae

This is the first step only…

Neighbor joining algorithm: correctness

 Theorem: If D is an additive matrix, neighbor
joining algorithm correctly constructs the
corresponding additive tree.
Proof (sketch). By contradiction. Assume i and j

with minimum Dij=dij – u(Ci) – u(Cj) are not

neighbors in the additive tree. Show that there are
then two neighbors m and n with Dmn< Dij (see
Durbin et al. Biological Sequence Analysis, pp. 190-
191 for details). Then the theorem follows by
induction.

38

W E D N E S D A Y 1 2 . 1 0 . 1 0 - 1 2 B 2 2 2

C H E C K T H E F O L L O W I N G A S S I G N M E N T S B E F O R E
T H E S T U D Y G R O U P A N D D E C I D E W H I C H O N E S Y O U

W O U L D L I K E T O S T U D Y T H E R E :
W W W . C S . H E L S I N K I . F I / U / V M A K I N E N / A L G B I O 1 1 / A L

G B I O 1 1 _ S T U D Y G R O U P 5 . P D F

39

Study group assignments

http://www.cs.helsinki.fi/u/vmakinen/algbio11/algbio11_studygroup5.pdf
http://www.cs.helsinki.fi/u/vmakinen/algbio11/algbio11_studygroup5.pdf

