Algorithms for Bioinformatics Autumn 2011

VELI MÄKINEN

HTTP://WWW.CS.HELSINKI.FI/EN/COURSES/ 582670/2011/S/K/1

Lecture 6

PART I: DISTANCE-BASED CLUSTERING, UPGMA

PART II: NEIGHBOR JOINING

Part I

DISTANCE-BASED CLUSTERING, UPGMA

Phylogeny by distance method pipeline

Clustering

Hierarchical clustering

 Iteratively join two closest clusters until forming a tree hierarchy (agglomerative... also divisive version exists)

o Distance between clusters can be e.g. max pair-wise distance (complete linkage), min (single-linkage), UPGMA (average

linkage), neigbor joining

Partitional clustering

o k-means, etc.

Distances in a phylogenetic tree

- Distance matrix D = (d_{ij})
 gives pairwise distances for
 leaves of the phylogenetic
 tree
- In addition, the phylogenetic tree will now specify distances between leaves and internal nodes
 - Denote these with d_{ij} as well

Distance d_{ij} states how far apart species i and j are evolutionary

Distances in evolutionary context

- Distances d_{ij} in evolutionary context satisfy the following conditions
 - o Positivity: d_{ii} ≥0
 - o Identity: $d_{ii} = 0$ if and only if i = j
 - \circ Symmetry: $d_{ij} = d_{ij}$ for each i, j
 - Triangle inequality: d_{ii} ≤ d_{ik} + d_{ki} for each i, j, k
- Distances satisfying these conditions are called metric
- In addition, evolutionary mechanisms may impose additional constraints on the distances
 - □ additive and ultrametric distances

Additive trees

• A tree is called *additive*, if the distance between any pair of leaves (i, j) is the sum of the distances between the leaves and a node k on the shortest path from i to j in the tree

$$\mathbf{d}_{ij} = \mathbf{d}_{ik} + \mathbf{d}_{jk}$$

Additive trees: example

	Α	В	С	D
A	0	2	4	4
В	2	0	4	4
С	4	4	0	2
D	4	B 2 0 4 4	2	0

• A rooted additive tree is called an *ultrametric tree*, if the distances between any two leaves **i** and **j**, and their common ancestor **k** are equal

$$d_{ik} = d_{jk}$$

- Edge length d_{ij} corresponds to the time elapsed since divergence of i and j from the common parent
- In other words, edge lengths are measured by a *molecular clock* with a constant rate

Identifying ultrametric data

- We can identify distances to be ultrametric by the three-point condition:
 - D corresponds to an ultrametric tree if and only if for any three **species** i, j and k, the distances satisfy $d_{ij} \le \max(d_{ik}, d_{kj})$
- If we find out that the data is ultrametric, we can utilise a simple algorithm to find the corresponding tree

UPGMA algorithm

- UPGMA (unweighted pair group method using arithmetic averages) constructs a phylogenetic tree via clustering
- The algorithm works by at the same time
 - Merging two clusters
 - o Creating a new node on the tree
- The tree is built from leaves towards the root
- UPGMA produces a ultrametric tree

Cluster distances

• Let distance d_{ij} between clusters C_i and C_j be

$$d_{ij} = \frac{1}{|C_i||C_j|} \sum_{p \in C_i, q \in C_j} d_{pq},$$

that is, the average distance between points (species) in the cluster.

UPGMA algorithm

Initialisation

- Assign each point i to its own cluster C_i
- o Define one leaf for each sequence, and place it at height zero

Iteration

- Find clusters i and j for which dij is minimal
- o Define new cluster k by $C_k = C_i \cup C_i$, and define d_{kl} for all l
- O Define a node k with children i and j. Place k at height dij/2
- Remove clusters i and j

• Termination:

 \circ When only two clusters i and j remain, place root at height $d_{ii}/2$

1 2 • • • 3 • • 5

UPGMA implementation

- In naive implementation, each iteration takes $O(n^2)$ time with n sequences => algorithm takes $O(n^3)$ time
- The algorithm can be implemented to take only
 O(n²) time (see Gronau & Moran, 2006, for a survey)

Problem solved?

- We now have a simple algorithm which finds a ultrametric tree
 - o If the data is ultrametric, then there is exactly one ultrametric tree corresponding to the data (proof left as an exercise)
 - The tree found is then the "correct" solution to the phylogeny problem, if the assumptions hold
- Unfortunately, the data is not ultrametric in practice
 - Measurement errors distort distances
 - Basic assumption of a molecular clock does not hold usually very well

Incorrect reconstruction of non-ultrametric data by UPGMA

Incorrect ultrametric reconstruction by UPGMA algorithm

Part II

Checking for additivity

- How can we check if our data is additive?
- Let i, j, k and l be four *distinct* species
- Compute 3 sums: $d_{ij} + d_{kl}$, $d_{ik} + d_{jl}$, $d_{il} + d_{jk}$

Four-point condition

- The sums are represented by the three figures
 - Left and middle sum cover all edges, right sum does not
- *Four-point condition*: i, j, k and l satisfy the four-point condition if two of the sums $d_{ij} + d_{kl}$, $d_{ik} + d_{jl}$, $d_{il} + d_{jk}$ are the same, and the third one is smaller than these two

Checking for additivity

- An n x n matrix D is additive if and only if the four point condition holds for every 4 distinct elements 1 ≤ i, j, k, l ≤ n
- See exercises for grounding of three-point (ultrametric) and four-point (additive) conditions.

Finding an additive phylogenetic tree

- Additive trees can be found with, for example, the neighbor joining method (Saitou & Nei, 1987)
- The neighbor joining method produces unrooted trees, which have to be rooted by other means
 - A common way to root the tree is to use an outgroup
 - Outgroup is a species that is known to be more distantly related to every other species than they are to each other
 - Root node candidate: position where the outgroup would join the phylogenetic tree
- However, in real-world data, even additivity usually does not hold very well

- Neighbor joining works in a similar fashion to UPGMA
 - \circ Find clusters C_1 and C_2 that minimise a function $f(C_1, C_2)$
 - o Join the two clusters C₁ and C₂ into a new cluster C
 - Add a node to the tree corresponding to C
 - Assign distances to the new branches
- Differences in
 - The choice of function $f(C_1, C_2)$
 - How to assign the distances

Recall that the distance d_{ij} for clusters C_i and C_j was

$$d_{ij} = \frac{1}{\mid C_i \parallel C_j \mid} \sum_{p \in C_i, q \in C_j} d_{pq}$$

 Let u(C_i) be the separation of cluster C_i from other clusters defined by

$$u(C_i) = \frac{1}{n-2} \sum_{C_j} d_{ij}$$

where n is the number of clusters.

- Instead of trying to choose the clusters C_i and C_j closest to each other, neighbor joining at the same time
 - o Minimises the distance between clusters C_i and C_j and
 - Maximises the separation of both C_i and C_j from other clusters

- Initialisation as in UPGMA
- Iteration
 - o Find clusters i and j for which $d_{ij} u(C_i) u(C_j)$ is minimal
 - o Define new cluster k by $C_k = C_i \cup C_j$, and define d_{kl} for all l
 - o Define a node k with edges to i and j. Remove clusters i and j
 - o Assign length $\frac{1}{2} d_{ij} + \frac{1}{2} (u(C_i) u(C_j))$ to the edge $i \rightarrow k$
 - o Assign length $\frac{1}{2} d_{ij} + \frac{1}{2} (u(C_i) u(C_i))$ to the edge $j \rightarrow k$
- Termination:
 - When only one cluster remains

Neighbor joining algorithm: example

	а	b	С	<u>d</u>	<u>i</u>	u(i)
a	0	6	7	5	a	(6+7+5)/2 = 9
b		0	11	9	b	(6+11+9)/2 = 13
С			0	6	С	(7+11+6)/2 = 12
d				0	d	(5+9+6)/2 = 10

$$i,j$$
 d_{ij} - $u(C_i)$ - $u(C_j)$

a,b 6 - 9 - 13 = -16

a,c 7 - 9 - 12 = -14

a,d 5 - 9 - 10 = -14

b,c 11 - 13 - 12 = -14

b,d 9 - 13 - 10 = -14

c,d 6 - 12 - 10 = -16

Choose either pair to join

Neighbor joining algorithm: example

	a	b	С	<u>d</u> _	i	u(i)
a	0	6	7	5	a	(6+7+5)/2 = 9
b		0	11	9	b	(6+11+9)/2 = 13
С			0	6	С	(7+11+6)/2 = 12
d				0	d	(5+9+6)/2 = 10

i,j	d _{ij}	_	u (C _i)	– u	(C _j)		****
a,b	6	_	9	_	13	=	- 16
a,c	7	_	9	_	12	=	-14
a,d	5	_	9	_	10	=	-14
b,c	11	_	13	_	12	=	-14
b,d	9	_	13	_	10	=	-14
c,d	6	_	12	_	10	=	-16

$$d_{ae} \wedge d_{be}$$
a b c d

$$d_{ae} = \frac{1}{2} 6 + \frac{1}{2} (9 - 13) = 1$$

 $d_{be} = \frac{1}{2} 6 + \frac{1}{2} (13 - 9) = 5$

This is the first step only...

Neighbor joining algorithm: correctness

• **Theorem**: If **D** is an additive matrix, neighbor joining algorithm correctly constructs the corresponding additive tree. Proof (sketch). By contradiction. Assume i and j with minimum $D_{ij} = d_{ij} - u(C_i) - u(C_j)$ are not neighbors in the additive tree. Show that there are then two neighbors m and n with $D_{mn} < D_{ii}$ (see Durbin et al. Biological Sequence Analysis, pp. 190-191 for details). Then the theorem follows by induction.

Study group assignments

WEDNESDAY 12.10. 10-12 B222

CHECK THE FOLLOWING ASSIGNMENTS BEFORE THE STUDY GROUP AND DECIDE WHICH ONES YOU WOULD LIKE TO STUDY THERE:

WWW.CS.HELSINKI.FI/U/VMAKINEN/ALGBIO11/AL GBIO11 STUDYGROUP5.PDF