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Part I 



Phylogeny by distance method pipeline 

For all pairs of 
species, find the 

homologous 
genes 

genome sequences 

of the species 

Compute the 
rearrangement 
distance for all 
pairs of species 

permutations  

representing 

the homologs  

Build the 
phylogenetic 
tree from the 

distances 

D(A,B) for all species A and B 
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Clustering 

 Hierarchical clustering 
 Iteratively join two closest clusters until forming a tree 

hierarchy (agglomerative… also divisive version exists) 

 Distance between clusters can be e.g. max pair-wise distance 
(complete linkage), min (single-linkage), UPGMA (average 
linkage), neigbor joining 

 Partitional clustering 
 k-means, etc. 
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Distances in a phylogenetic tree 

 Distance matrix D = (dij) 
gives pairwise distances for 
leaves of the phylogenetic 
tree 

 In addition, the phylogenetic 
tree will now specify 
distances between leaves and 
internal nodes 

 Denote these with dij as well 

2 3 4 5 1 

6 

7 

8 

Distance dij states how 

far apart species i and j 

are evolutionary 
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Distances in evolutionary context 

 Distances dij in evolutionary context satisfy the 
following conditions 
 Positivity: dij ≥0 

 Identity: dij = 0 if and only if i = j 

 Symmetry: dij = dji for each i, j 

 Triangle inequality: dij ≤ dik + dkj for each i, j, k 

 Distances satisfying these conditions are called 

metric 

 In addition, evolutionary mechanisms may impose 

additional constraints on the distances 

    ⊳ additive and ultrametric distances 
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Additive trees 

 A tree is called additive, if the distance between any 
pair of leaves (i, j) is the sum of the distances 
between the leaves and a node k on the shortest path 
from i to j in the tree 

                    dij = dik + djk 
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Additive trees: example 

A B C D 

A 0 2 4 4 

B 2 0 4 4 

C 4 4 0 2 

D 4 4 2 0 

A 

B 

C 

D 

1 

1 

2 
1 

1 
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Ultrametric trees 

 A rooted additive tree is called an ultrametric tree, if the 
distances between any two leaves i and j, and their common 
ancestor k are equal 

                             dik = djk 

 

 Edge length dij corresponds to the time elapsed since 
divergence of i and j from the common parent 

 In other words, edge lengths are measured by a molecular 
clock with a constant rate 
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Identifying ultrametric data 

 We can identify distances to be ultrametric by the 
three-point condition: 

   D corresponds to an ultrametric tree if and only if for 
any three species i, j and k, the distances satisfy       
dij ≤ max(dik, dkj) 

 

 If we find out that the data is ultrametric, we can 

utilise a simple algorithm to find the corresponding 

tree 
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Ultrametric trees 

9 

8 

7 

5 4 3 2 1 

6 

Observation time 

T
im

e
 



13 

Ultrametric trees 

9 

8 
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5 4 3 2 1 

6 

Observation time 
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Only vertical segments of the 

tree have correspondence to 

some distance dij: 

Horizontal segments act as 

connectors. 

d8,9 
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Ultrametric trees 
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dik = djk for any two leaves 

i, j and any ancestor k of 

i and j 
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Ultrametric trees 
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Three-point condition: there are 

no leafs i, j for which dij > max(dik, djk) 

for any leaf k. 
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UPGMA algorithm 

 UPGMA (unweighted pair group method using 
arithmetic averages) constructs a phylogenetic tree 
via clustering 

 The algorithm works by at the same time 
 Merging two clusters 

 Creating a new node on the tree 

 The tree is built from leaves towards the root 

 UPGMA produces a ultrametric tree 
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Cluster distances 

 Let distance dij between clusters Ci and Cj be 

    

 

   that is, the average distance between points (species) 
in the cluster. 
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UPGMA algorithm 

 Initialisation 

 Assign each point i to its own cluster Ci 

 Define one leaf for each sequence, and place it at height zero 

 Iteration 

 Find clusters i and j for which dij is minimal 

 Define new cluster k by Ck = Ci ∪ Cj, and define dkl for all l 

 Define a node k with children i and j. Place k at height dij/2 

 Remove clusters i and j 

 Termination:  
 When only two clusters i and j remain, place root at height dij/2 
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UPGMA implementation 

 In naive implementation, each iteration takes O(n2) 
time with n sequences => algorithm takes O(n3) time 

 

 The algorithm can be implemented to take only 
O(n2) time (see Gronau & Moran, 2006, for a survey) 



25 

Problem solved? 

 We now have a simple algorithm which finds a ultrametric 
tree 

 If the data is ultrametric, then there is exactly one ultrametric tree 
corresponding to the data (proof left as an exercise) 

 The tree found is then the ”correct” solution to the phylogeny 
problem, if the assumptions hold 

 Unfortunately, the data is not ultrametric in practice 

 Measurement errors distort distances 

 Basic assumption of a molecular clock does not hold usually very 
well 
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Incorrect reconstruction of non-ultrametric data by 
UPGMA 

1 

2 
3 

4 

1 2 3 4 

Tree which corresponds 

to non-ultrametric 

distances 

Incorrect ultrametric reconstruction 

by UPGMA algorithm 



N E I G H B O R  J O I N I N G  

 

 

 

 

Part II 
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Checking for additivity 

 How can we check if our data is additive? 

 Let i, j, k and l be four distinct species 

 Compute 3 sums: dij + dkl, dik + djl, dil + djk 
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Four-point condition 

i 

j l 

k i 

j l 

k i 

j l 

k dik 

djl 

dil 

djk 

dij dkl 

 The sums are represented by the three figures 

 Left and middle sum cover all edges, right sum does not 

 Four-point condition: i, j, k and l satisfy the four-point 
condition if two of the sums dij + dkl, dik + djl, dil + djk are 
the same, and the third one is smaller than these two 
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Checking for additivity 

 An n x n matrix D is additive if and only if the four 
point condition holds for every 4 distinct elements 1 
≤ i, j, k, l ≤ n 

 See exercises for grounding of three-point 
(ultrametric) and four-point (additive) conditions. 
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Finding an additive phylogenetic tree 

 Additive trees can be found with, for example, the neighbor 
joining method (Saitou & Nei, 1987) 

 The neighbor joining method produces unrooted trees, 
which have to be rooted by other means 
 A common way to root the tree is to use an outgroup 

 Outgroup is a species that is known to be more distantly related to 
every other species than they are to each other 

 Root node candidate: position where the outgroup would join the 
phylogenetic tree 

 However, in real-world data, even additivity usually does 
not hold very well 



32 

Neighbor joining algorithm 

 Neighbor joining works in a similar fashion to 
UPGMA 
 Find clusters C1 and C2 that minimise a function f(C1, C2) 

 Join the two clusters C1 and C2 into a new cluster C 

 Add a node to the tree corresponding to C 

 Assign distances to the new branches 

 Differences in 
 The choice of function f(C1, C2) 

 How to assign the distances 
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Neighbor joining algorithm 

 Recall that the distance dij for clusters Ci and Cj was 

 

 

 Let u(Ci) be the separation of cluster Ci from other clusters 
defined by  

 

 

     

   where n is the number of clusters. 
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Neighbor joining algorithm 

 Instead of trying to choose the clusters Ci and Cj 
closest to each other, neighbor joining at the same 
time 
 Minimises the distance between clusters Ci and Cj and 

 Maximises the separation of both Ci and Cj from other clusters 
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Neighbor joining algorithm 

 Initialisation as in UPGMA 

 Iteration 

 Find clusters i and j for which dij – u(Ci) – u(Cj) is minimal 

 Define new cluster k by Ck = Ci ∪ Cj, and define dkl for all l 

 Define a node k with edges to i and j. Remove clusters i and j 

 Assign length ½ dij + ½ (u(Ci) – u(Cj)) to the edge i -> k 

 Assign length ½ dij + ½ (u(Cj) – u(Ci)) to the edge j -> k 

 Termination:  
 When only one cluster remains 
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Neighbor joining algorithm: example 

   a  b  c  d 

a  0  6  7  5 

b     0 11  9 

c        0  6 

d           0 

i  u(i) 

a  (6+7+5)/2 = 9 

b  (6+11+9)/2 = 13 

c  (7+11+6)/2 = 12 

d  (5+9+6)/2 = 10 

i,j  dij – u(Ci) – u(Cj) 

a,b   6  -   9   -  13 = -16 

a,c   7  -   9   -  12 = -14 

a,d   5  -   9   -  10 = -14 

b,c  11  -  13   -  12 = -14   

b,d   9  -  13   -  10 = -14 

c,d   6  -  12   -  10 = -16 

Choose either pair 

to join 
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Neighbor joining algorithm: example 

   a  b  c  d 

a  0  6  7  5 

b     0 11  9 

c        0  6 

d           0 

i  u(i) 

a  (6+7+5)/2 = 9 

b  (6+11+9)/2 = 13 

c  (7+11+6)/2 = 12 

d  (5+9+6)/2 = 10 

i,j  dij – u(Ci) – u(Cj) 

a,b   6  -   9   -  13 = -16 

a,c   7  -   9   -  12 = -14 

a,d   5  -   9   -  10 = -14 

b,c  11  -  13   -  12 = -14   

b,d   9  -  13   -  10 = -14 

c,d   6  -  12   -  10 = -16 

a    b    c    d  

e 

dae = ½ 6 + ½ (9 – 13) = 1 

dbe = ½ 6 + ½ (13 – 9) = 5  

dbe dae 

This is the first step only… 



Neighbor joining algorithm: correctness 

 Theorem: If D is an additive matrix, neighbor 
joining algorithm correctly constructs the 
corresponding additive tree. 
Proof  (sketch). By contradiction. Assume i and j 

with minimum Dij=dij – u(Ci) – u(Cj) are not 

neighbors in the additive tree. Show that there are 
then two neighbors m and n with Dmn< Dij (see 
Durbin et al. Biological Sequence Analysis, pp. 190-
191 for details). Then the theorem follows by 
induction. 
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Study group assignments 
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