
Biological Sequence Analysis (Spring 2015)

Exercise 2 (Thu 22.1, 10-12, B222, Veli Mäkinen)

Do any 5 assignments from below. If you are not very familiar with alignments from
your earlier studies, focus on the first 5; otherwise, last 5 should be challenging enough.

1. Global alignment simulation.

Compute the global alignment scores sij and especially smn = S(A,B) for
A =ACCGATG and B =ACGGCTA using indel penalty −d, where d = 1, and the
substitution matrix:

s(a, b) ’A’ ’C’ ’G’ ’T’
’A’ 1 −1 −0.5 −1
’C’ −1 1 −1 −0.5
’G’ −0.5 −1 1 −1
’T’ −1 −0.5 −1 1

Trace an optimal alignment.

Rather than simulating on paper, you can also opt to implement. You may
use the edit distance code at http://www.cs.helsinki.fi/group/gsa/book/
implementations/dp2tikz.py as a basis. The resulting tikz-code can be included
in a LaTeX document to visualize the result:

\documentclass{article}
\usepackage{tikz}

\begin{document}

\begin{tikzpicture}[scale=6.0]
\input{dp.tikz}
\end{tikzpicture}

\end{document}

2. Local alignment simulation.

Compute the local alignment scores lij for the same example as above. Trace an
optimal local alignment.

3. Space improvement I.

Give pseudocode (or e.g. python code) for global alignment algorithm using only
space O(m) to compute S(A,B).

4. Space improvement II.

Give pseudocode (or e.g. python code) for tracing an optimal path for maximum
scoring local alignment, using space quadratic in the alignment length.



5. Shortest detour.

The shortest detour algorithm assumes you can fill only the diagonal zone of the
dynamic programming matrix. How can you do this without allocating memory
for the whole matrix (dij)? Hint. Coordinate change helps; allocate a matrix only
containing the diagonal zone. Find a bijective map between cells in dij and cells
in your new matrix.

6. Sparse dynamic programming I.

Next week we will study sparse dynamic programming and we exploit a range
minimum query data structure (outside the lecture script material):

Lemma 3.1. The following two operations can be supported with a balanced
binary search tree T in time O(log n), where n is the number of leaves in the tree.

update(k, val): For the leaf w with key(w) = k, update value(w) = val.

RMQ(l, r): Return minw : l≤key(w)≤r val(w) (Range Minimum Query).

Moreover, the balanced binary search tree can be built in O(n) time, given the n
pairs (key, value) sorted by component key.

Prove the lemma formally or give an example how the proposed structure
works e.g. on 8 (value,key) pairs stored in its leaves and by visualizing the
computation of some range minimum query for some non-empty interval.

7. Sparse dynamic programming II.

A van Emde Boas tree (vEB tree) supports in O(log log n) time insertions, dele-
tions, and predecessor/successor queries for values in interval [1, n]. Predecessor
query returns the largest element i′ stored in the vEB tree smaller than query
element i. Successor query returns the smallest element i′ stored in the vEB tree
greater than query element i. Show how the structure can be used instead of a bal-
anced search tree of Lemma 3.1 to solve range minimum queries for semi-infinite
intervals (−∞, i] (i.e. for the type of queries we use e.g. in the LCS algorithm to
be studied next week).

8. Space improvement III.

Develop an algorithm for tracing an optimal path for maximum scoring local
alignment, using space linear in the alignment length. Hint. Let [i′, i] × [j′, j]
define the rectangle containing a local alignment. Assume you know jmid for row
(i− i′)/2 where the optimal alignment goes through. Then you can independently
recursively consider rectangles defined by [i′, (i−i′)/2]× [j′, jmid] and [(i−i′)/2]×
[jmid, j]. How to compute jmid?


