
Biological Sequence Analysis (Spring 2015)

Exercise 3 (Thu 29.1, 10-12, B222, Veli Mäkinen)

Do any 5 assignments from below.

1. Database search I.

BLAST is a heuristic aligner that makes local alignment feasible in large sequence
databases. The following describes the main principles of BLAST with some sim-
plifications. The database is indexed using a k-mer index, where each substring
W of length k is associated with a list of pointers to the occurrence of W in
the database. The lists of pointers of k-mers that are within Hamming distance
1 from some substring of a query sequence give the candidate occurrences. Dy-
namic programming is applied to extend candidate occurrences and to join nearby
candidates, to form the final alignment results.

Show that BLAST is a lossy filter, meaning that it might miss some optimal local
alignments.

2. Database search II.

Implement the k-mer index, e.g. by modifying first week’s code for k-th order
Markov chain. Basic version is enough without considering how to compress the
lists of occurrences.

3. Database search III.

Implement BLAST-like search on top of the k-mer index of the previous assignment
to report candidate occurrences. You can ignore the dynamic programming part.

4. Database search IV.

While there are many alternatives to BLAST, that obtain better filtering accuracy,
speed, and space, the popularity of BLAST is mostly explained by its handling of
statistical significance of the found alignments. Rather than ranking alignments
directly by maximum score, it takes into account the probability of finding equally
good alignments by chance. Get familiar with this process by reading this tutorial
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/. Be ready to explain the main
concepts.

5. Sparse dynamic programming I.

Show that set M =M(A,B) = {(i, j) : ai = bj} needed for sparse dynamic pro-
gramming LCS computation, sorted in reverse column-order, can be constructed in
time O(σ+|A|+|B|+|M |) time on constant alphabet and in O((|B|+|M |) log |A|)
time on ordered alphabet. Observe also that this construction can be run in par-
allel with the main algorithm to improve the space requirement to O(m).

6. Sparse dynamic programming II.

The sparse dynamic algorithm for distance Did(A,B) can be simplified signifi-
cantly if derived directly for computing |LCS(A,B)|. Derive this algorithm. Hint.

The search tree can be modified to answer range maximum queries instead of
minimum.

7. Affine gap scores I.

The lecture material defines gaps as runs of indels. Consider the alternative defini-
tion of gaps as runs of insertions or runs of deletions. Modify the basic recurrence
for alignment under affine gap scores accordingly. What running time you obtain?

8. Affine gap scores II.

Consider the setting above. Modify the Gotoh algorithm to handle the runs of
insertions and runs of deletions separately. Hint. You will need three tables.

9. Affine gap scores III.

Consider the setting above. Modify the invariant-based algorithm to handle runs
of insertions and runs of deletions separately.

