
Biological Sequence Analysis (Spring 2015)

Exercise 5 (Thu 12.2, 10-12, B222, Veli Mäkinen)

Do any 5 assignments from below.

1. Gene prediction in eukaryotes.

The flexibility of choosing the states, transitions, emissions, and their probabilities,
make HMMs a powerful modeling device. So far we have used zero-th order Markov
model for emission probabilities (probabilities only depended on the state, not on
the sequence context). We could use as well first-order Markov chains or, more
generally, k-th order Markov chains, in which the probability depends on the state
and on the last k symbols preceding the current one: P(si | si−k · · · si−1) = P(si |
s1 · · · si−1).
Notice that the states of the HMM are independent, in the sense that each state
can choose a different order Markov chain it uses for its emission probabilities. In
addition to the use of different order Markov chains, we could adjust how many
symbols are emitted in each state. Use these considerations to design a realistic
HMM for eukaryote gene prediction. Try to take into account intron/exon bound-
ary di-nucleotides, codon adaptation, and other features known about eukaryote
genes. Consider also how you can train the HMM.

2. Profile HMMs I. Profile HMMs are an extension of HMMs to the problem of
aligning a sequence with an existing multiple alignment (profile). Consider for
example a multiple alignment of a protein family:

AVLSLSKTTNNVSPA
AV-SLSK-TANVSPA
A-LSLSK-TANV-PA
A-LSSSK-TNNV-PA
AS-SSSK-TNNV-PA
AVLSLSKTTANV-PA

We considered the problem of aligning a sequence A against a profile in the context
of progressive multiple alignment, and the idea was to consider the multiple align-
ment as a sequence of columns and apply normal pair-wise alignment with proper
extensions of substitution and indel scores. Consider A = AVTLSLSTAANVSPA

aligned to the our example profile above, for example, as follows:

AVTLSLS--TAANVSPA

AV-LSLSKTTN-NVSPA
AV--SLSK-TA-NVSPA
A--LSLSK-TA-NV-PA
A--LSSSK-TN-NV-PA
AS--SSSK-TN-NV-PA
AV-LSLSKTTA-NV-PA



start

I0

D1

I1

M1

D2

I2

M2

· · ·

· · ·

· · ·

Dm

Im

Mm end

Figure 1: Profile HMM illustration without showing the transition and emission prob-
abilities.

Here we have added two gaps to the sequence and two gap columns to the profile
following the ‘once a gap, always a gap’ principle.

Profile HMMs are created using inhomogeneous Markov chains, such that each
columns form separate match, insertion, and deletions states, and transitions go
from left to right, as illustrated in Figure 1. Match and deletion states emit the
columns of the profile, so they do not contain self-loops. Insertion states emit
symbols from the input sequence, so they contain self-loops to allow any number
of symbols emitted between states that emit also columns of the profile.

Since the resulting HMM is reading only one sequence, the Viterbi, forward, and
backward algorithms are almost identical to the ones we studied so far. The only
difference is that deletion states are silent with respect to the input string, as they
do not emit any symbol.

a) Modify the Viterbi recurrences to handle both emitting and silent states.
b) Derive the Viterbi recurrences specific to profile HMMs.

3. Profile HMMs II.

Derive a local alignment version of a profile HMM.

4. Pair HMMs (2 points)

Pair HMMs are a variant of HMMs emitting two sequences, such that a path
through the HMM can be interpreted as an alignment of the input sequences.
Such pair HMMs have a match state emitting a symbol from both sequences
simultaneously, and symmetric insertion and deletion states to emit only from
one input sequence.

a) Fix a definition for pair HMMs and derive the corresponding Viterbi, forward,
and backward recurrences. Hint. The result should look very similar to
Gotoh’s algorithm for global alignment with affine gap costs.

b) Derive the probability of ai aligning to bj over all alignments of A = a1 · · · am
and B = b1 · · · bn.



c) Let pij denote the probability derived above to align ai to bj . We say that
the most robust alignment of A and B is the alignment maximizing the
sum of values pij over i, j such that the ai → bj substitution is part of the
alignment. Derive a dynamic programming algorithm to compute this most
robust alignment.

5. NP-hardness.

Give an alternative proof for the NP-hardness of the longest common subsequence
problem on multiple sequences, by using a reduction from the vertex cover problem.
Hint. From a graph G = (V = {1, . . . , |V |}, E) and integer k, construct |E| + 1
sequences having LCS of length |V | − k if and only if there is vertex cover of size
k in G. Recall that vertex cover V ′ is a subset of V such that all edges in E are
incident to at least one vertex in V .

6. DAG-path alignment I.

Reformulate the DAG-path alignment problem as a local alignment problem. Can
the algorithm be modified to solve this variant?

7. DAG-path alignment II.

Show how to use DAG-path alignment to align a protein sequence to DNA. Hint.
Represent the protein sequence as a codon-DAG replacing each amino acid by a
sub-DAG representing its codons.

8. DAG-path alignment III.

Consider a DAG with predicted exons as vertices and arcs formed by pairs of
exons predicted to appear inside a transcript: this is called a splicing graph. If
you apply DAG-path alignment on splicing graph and the codon-DAG of previous
assignment, what problem are you trying to solve?


