
Elements of Bioinformatics (autumn 2010)

Lecturer: Veli Mäkinen

Exercise 4

Tue 30.11, 16-18, C222, Esa Pitkänen

Choose any 5 assignments from below (each assignment gives 1 point, 5 points is maxi-
mum for each week; you can do more for better learning, of course).

1. Motif discovery and statistical significance.

Given a set of N promoter sequences each of length L, an exact motif finding
problem can be formulated as the task of finding k-mers that occur in n out of N
promoter sequences (at least once in each) and have small probability of occurring
that many times in a random set of sequences following the same distribution as
the promoter sequences.

Let Cw denote the number of promoter sequences containing k-mer w =

w1w2 · · ·wk.

a) Derive an estimate for the expected value of Cw assuming the background
follows the i.i.d. model.

b) Why Cw divided by its expected value does not give a good ranking for report-
ing the statistically most significant k-mer motifs?

c) Find out what kind of different rankings (statistical tests) are used in this kind
of contexts. What do you need to know about the distribution of values Cw to
use them?

2. Generating DNA sequences with higher-order Markov chains.

Write a python program to read the k-th order distribution of a given DNA se-
quence (for given k), and to generate a new sequence of the same length simulating
the same distribution.

3. Extracting training set for HMM parameter estimation.

Write a python program that, given a gene name, extracts the corresponding
DNA sequence with each position labeled with the information of whether be-
longing to exon or to intron (according to any chosen transcript). (Use SQL to
find the exon/intron intervals, then extract the corresponding sequences from the
chromosome files; see previous exercises for a related example).

4. Training coding/non-coding HMM.

Assume a set of DNA sequences with coding/non-coding labeling (as given
by the preceding assignment). Write a python program that trains the emis-
sion/transition probabilities for the coding/non-coding HMM considered at lec-
tures, given the training data.



5. Implementing viterbi.

Write a python program that implements the viterbi algorithm in the special
case of the coding/non-coding HMM (or directly the general case). (Now if you
have completed also preceding two assignments, you can try out whether the gene
prediction works at all with this simple HMM.)

6. Better HMM for gene prediction.

Sketch a visual representation of a HMM that would recognize complete genes
and not just coding/non-coding areas. Take into account start/end codons, re-
quired dinucleotides at exon/intron boundaries, CAI index for frequent codons,
etc. Notice, you can enhance the standard HMM definition by emissions of several
symbols at a time, etc.

7. Correctness of UPGMA.

Prove that UPGMA algorithm constructs an ultrametric tree if the distances are
ultrametric.


