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Protein sequence alignment

 We have discussed alignment of DNA sequences

 Amino acid sequences can be aligned as well

 However, the design of the substitution matrix is more 
involved because of the larger alphabet

 Homologs can be easier identified with alignment of 
protein sequences:

 Synonymous (silent) mutations that do not change the amino 
acid coding are frequent

 Every third nucleotide can be mismatch in an alignment where 
amino acids match perfectly

 Frameshifts, introns, etc. should be taken into account when 
aligning protein coding DNA sequences



Example

 Consider RNA sequence 
alignment:

AUGAUUACUCAUAGA...

AUGAUCACCCACAGG...

 Versus protein sequence 
alignment:

MITHR...

MITHR...
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Scoring amino acid 
alignments

 Substitutions between chemically 
similar amino acids are more frequent 
than between dissimilar amino acids

 We can check our scoring model 
against this

http://en.wikipedia.org/wiki/List_of_standard_amino_acids



Score matrices

 Let A = a1a2…an and B = b1b2…bn be sequences of equal 
length (no gaps allowed to simplify things)

 To obtain a score for alignment of A and B, where ai is 
aligned against bi, we take the ratio of two probabilities

 The probability of having A and B where the characters match 
(match model M)

 The probability that A and B were chosen randomly (random model 
R)



Score matrices: random model

 Under the random model, the probability of having A
and B is

where qxi is the probability of occurrence of amino 
acid type xi

 Position where an amino acid occurs does not affect 
its type



Score matrices: match model

 Let pab be the probability of having amino acids of type a
and b aligned against each other given they have evolved 
from the same ancestor c

 The probability is



Score matrices: log-odds ratio score

 We obtain the score S by taking the ratio of these two 
probabilities

and taking a logarithm of the ratio



Score matrices: log-odds ratio score

 The score S is obtained by summing over character 
pair-specific scores:

 The probabilities qa and pab are extracted from data



Calculating score matrices for amino acids

 Probabilities qa are in principle easy 
to obtain:

 Count relative frequencies of every 
amino acid in a sequence database



Calculating score matrices for amino acids

 To calculate pab we can use a 
known pool of aligned sequences

 BLOCKS is a database of highly 
conserved regions for proteins

 It lists multiple aligned, 
ungapped and conserved protein 
segments

 Example from BLOCKS shows 
genes related to human gene 
associated with DNA-repair defect 
xeroderma pigmentosum

Block PR00851A

ID XRODRMPGMNTB; BLOCK 

AC PR00851A; distance from previous block=(52,131) 

DE Xeroderma pigmentosum group B protein signature

BL adapted; width=21; seqs=8; 99.5%=985; strength=1287 
XPB_HUMAN|P19447 ( 74)   RPLWVAPDGHIFLEAFSPVYK 54 

XPB_MOUSE|P49135 ( 74)   RPLWVAPDGHIFLEAFSPVYK 54 

P91579 ( 80)             RPLYLAPDGHIFLESFSPVYK 67 

XPB_DROME|Q02870 ( 84)   RPLWVAPNGHVFLESFSPVYK 79 

RA25_YEAST|Q00578 ( 131) PLWISPSDGRIILESFSPLAE 100 

Q38861 ( 52)             RPLWACADGRIFLETFSPLYK 71 

O13768 ( 90)             PLWINPIDGRIILEAFSPLAE 100

O00835 ( 79)             RPIWVCPDGHIFLETFSAIYK 86

http://blocks.fhcrc.org



BLOSUM matrix

 BLOSUM is a score matrix for 
amino acid sequences derived 
from BLOCKS data

 First, count pairwise matches 
fx,y for every amino acid type 
pair (x, y)

 For example, for column 3 and 
amino acids L and W, we find 8 
pairwise matches: fL,W = fW,L = 
8

RPLWVAPD

RPLWVAPR

RPLWVAPN

PLWISPSD

RPLWACAD

PLWINPID

RPIWVCPD



Creating a BLOSUM matrix

 Probability pab is obtained by 
dividing fab with the total number 
of pairs (note difference with 
course book):

 We get probabilities qa by

RPLWVAPD

RPLWVAPR

RPLWVAPN

PLWISPSD

RPLWACAD

PLWINPID

RPIWVCPD



Creating a BLOSUM matrix 

 The probabilities pab and qa can now be plugged into

to get a 20 x 20 matrix of scores s(a, b).

 Next slide presents the BLOSUM62 matrix

 Values scaled by factor of 2 and rounded to integers

 Additional step required to take into account expected evolutionary distance

 Described in Deonier’s book in more detail



BLOSUM62

A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V  B  Z  X  *

A  4 -1 -2 -2  0 -1 -1  0 -2 -1 -1 -1 -1 -2 -1  1  0 -3 -2  0 -2 -1  0 -4 

R -1  5  0 -2 -3  1  0 -2  0 -3 -2  2 -1 -3 -2 -1 -1 -3 -2 -3 -1  0 -1 -4 

N -2  0  6  1 -3  0  0  0  1 -3 -3  0 -2 -3 -2  1  0 -4 -2 -3  3  0 -1 -4 

D -2 -2  1  6 -3  0  2 -1 -1 -3 -4 -1 -3 -3 -1  0 -1 -4 -3 -3  4  1 -1 -4 

C  0 -3 -3 -3  9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4 

Q -1  1  0  0 -3  5  2 -2  0 -3 -2  1  0 -3 -1  0 -1 -2 -1 -2  0  3 -1 -4 

E -1  0  0  2 -4  2  5 -2  0 -3 -3  1 -2 -3 -1  0 -1 -3 -2 -2  1  4 -1 -4 

G  0 -2  0 -1 -3 -2 -2  6 -2 -4 -4 -2 -3 -3 -2  0 -2 -2 -3 -3 -1 -2 -1 -4 

H -2  0  1 -1 -3  0  0 -2  8 -3 -3 -1 -2 -1 -2 -1 -2 -2  2 -3  0  0 -1 -4 

I -1 -3 -3 -3 -1 -3 -3 -4 -3  4  2 -3  1  0 -3 -2 -1 -3 -1  3 -3 -3 -1 -4 

L -1 -2 -3 -4 -1 -2 -3 -4 -3  2  4 -2  2  0 -3 -2 -1 -2 -1  1 -4 -3 -1 -4 

K -1  2  0 -1 -3  1  1 -2 -1 -3 -2  5 -1 -3 -1  0 -1 -3 -2 -2  0  1 -1 -4 

M -1 -1 -2 -3 -1  0 -2 -3 -2  1  2 -1  5  0 -2 -1 -1 -1 -1  1 -3 -1 -1 -4 

F -2 -3 -3 -3 -2 -3 -3 -3 -1  0  0 -3  0  6 -4 -2 -2  1  3 -1 -3 -3 -1 -4 

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4  7 -1 -1 -4 -3 -2 -2 -1 -2 -4 

S  1 -1  1  0 -1  0  0  0 -1 -2 -2  0 -1 -2 -1  4  1 -3 -2 -2  0  0  0 -4 

T  0 -1  0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1  1  5 -2 -2  0 -1 -1  0 -4 

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1  1 -4 -3 -2 11  2 -3 -4 -3 -2 -4 

Y -2 -2 -2 -3 -2 -1 -2 -3  2 -1 -1 -2 -1  3 -3 -2 -2  2  7 -1 -3 -2 -1 -4 

V  0 -3 -3 -3 -1 -2 -2 -3 -3  3  1 -2  1 -1 -2 -2  0 -3 -1  4 -3 -2 -1 -4 

B -2 -1  3  4 -3  0  1 -1  0 -3 -4  0 -3 -3 -2  0 -1 -4 -3 -3  4  1 -1 -4 

Z -1  0  0  1 -3  3  4 -2  0 -3 -3  1 -1 -3 -1  0 -1 -3 -2 -2  1  4 -1 -4 

X  0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2  0  0 -2 -1 -1 -1 -1 -1 -4 

* -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4  1



Using BLOSUM62 matrix

MQLEANADTSV

|  | |

LQEQAEAQGEM

= 2 + 5 – 3 – 4 + 4 + 0 + 4 + 0 – 2 + 0 + 1

= 7



Why positive score alignment is 
meaningfull?

 We have designed scoring matrix so that expected 
score of random match at any position is negative:

 This can be seen by noticing that 

where H(q2 || p) is the relative entropy (or Kullback-
Leibler divergence) of distribution q2 = q x q with 
respect to distribution p. Value of H(q2 || p) is always 
positive unless q2=p. (Exercise: show why.)
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What about gap penalties?

 Similar log-odds reasoning gives that the gap penalty 
should be –log f(k), where k is the gap length, and f() 
is the function modeling the replication process (See 
Durbin et al., page 17).
 - log δk for the linear model

 - log (α + β(k – 1)) for the affine gap model

 However, logarithmic gap penalties are difficult (yet 
possible) to take into account in dynamic 
programming:

 Eppstein et al. Sparse dynamic programming II: convex and 
concave cost functions. Journal of the ACM, 39(3):546-567, 
1992.
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What about gap penalties? (2)

 Typically some ad hoc values are used, like δ=8 in 

the linear model and α=12, β=2 in the affine gap 
model.

 It can be argued that penalty of insertion + deletion 
should be always greater than penalty for one 
mismatch.

 Otherwise expected score of random match may get positive.
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Multiple alignment

 Consider a set of d sequences on 
the right

 Orthologous sequences from 
different organisms

 Paralogs from multiple duplications

 How can we study relationships 
between these sequences?

 Aligning simultaneously many 
sequences gives better estimates 
for the homology, as many 
sequences vote for the same 
”column”.

AGCAGTGATGCTAGTCG
ACAGCAGTGGATGCTAGTCG
ACAGAGTGATGCTATCG
CAGCAGTGCTGTAGTCG
ACAAGTGATGCTAGTCG
ACAGCAGTGATGCTAGCG
AGCAGTGGATGCTAGTCG
AAGTGATGCTAGTCG
ACAGCGATGCTAGGGTCG
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Multiple alignment notation

 Let M denote the multiple 
alignment, i.e., a matrix with 
d sequences being the rows 
with gap symbols ”-” inserted 
so that all rows are the same 
length.

 Let Mi* and M*j denote the i-
th row (j-th column) in the 
alignment, respectively, and 
Mij the symbol at i-th row 
and j-th column.
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A--GC-AGTG--ATGCTAGTCG
ACAGC-AGTG-GATGCTAGTCG
ACAG--AGT--GATGCTA-TCG
-CAGC-AGTG--CTG-TAGTCG
ACA---AGTG--ATGCTAGTCG
ACAGC-AGTG--ATGCTAG-CG
A--GC-AGTG-GATGCTAGTCG
A-AG----TG--ATGCTAGTCG
ACAGCGA-TGCTAGGGT---CG

i

j

Mi,j=A



Applications of multiple alignment

 Amino acid scoring 
matrix estimation 
(chicken or the egg 
problem)

 Phylogeny by parsimony 
(chicken or the egg 
problem again)
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A--GC-AGTG--ATGCTAGTCG
ACAGC-AGTG-GATGCTAGTCG
ACAG--AGT--GATGCTA-TCG
-CAGC-AGTG--CTG-TAGTCG
ACA---AGTG--ATGCTAGTCG
ACAGC-AGTG--ATGCTAG-CG
A--GC-AGTG-GATGCTAGTCG
A-AG----TG--ATGCTAGTCG
ACAGCGA-TGCTAGGGT---CG



Phylogeny by parsimony pipeline

For all pairs of 
species, find the 

homologous
genes

genome sequences

of the species

Compute 
multiple 

alignment for 
each homolog 

family

Select interesting

homologs

Build the 
phylogenetic 
tree based on 

the aligned 
columns

Element 1 Element 2

Element 3
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Optimal alignment of three sequences

 Alignment of A = a1a2…ai and B = b1b2…bj can end either in (-, bj), (ai, 
bj) or (ai, -)

 22 – 1 = 3 alternatives

 Alignment of A, B and C = c1c2…ck can end in 23 – 1 ways: (ai, -, -), (-, bj, 
-), (-, -, ck), (-, bj, ck), (ai, -, ck), (ai, bj, -) or (ai, bj, ck)

 Solve the recursion using three-dimensional dynamic programming 
matrix: O(n3) time and space

 Generalizes to d sequences but impractical with even a moderate 
number of sequences

25



Scoring multiple alignments

 Sum-of-pairs (SP) score:

 where s(a,b) is the given substitution score 
function.

 Assumes all columns are independent.

 Scores s(a,’-’)=s(’-’,b) are the gap costs in the linear model.

 For affine gap cost model, gaps are ignored from above and 
computed separately.  

 Widely used model in practice, but has the problem of 
counting the same substitutions several times:

 See Durbin et al., page 140 for arguments against using this model. 
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Scoring multiple alignments (2)

 Minimum entropy score:

 Let cj(a) be the number of times symbol a occurs at column 
M*j. 



 Assumes all columns and all rows are independent.

 No benefit from having close amino acids at the same column.

 Gaps can either be counted as normal symbols, or separately in 
the case of affine gap costs.
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Multiple alignment in practice

 In practice, real-world multiple alignment problems are usually solved 
with heuristics

 Progressive multiple alignment outline

 Choose two sequences and align them

 Choose third sequence w.r.t. two previous sequences and align the third 
against them

 ”Once a gap, always a gap” principle

 Repeat until all sequences have been aligned

 Different options how to choose sequences and score alignments
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Multiple alignment in practice

 Profile-based progressive multiple alignment: 
CLUSTALW

 Construct a distance matrix of all pairs of sequences using 
dynamic programming

 Progressively align pairs in order of decreasing similarity 

 CLUSTALW uses various heuristics to contribute to accuracy

29



Generic framework for progressive multiple 
alignment

 Compute all pair-wise alignments for the d input 
sequences, converting the score into a distance 
D(A,B) between each sequence pair A,B.

 Use any hierarchical clustering algorithm on the 
distances D(,) to create a guide tree defining the 
order in which sequences are aligned:

 Leaves represent the d sequences, and internal nodes the 
multiple alignment of the sequences in the leaves.

 Multiple alignment to the root is created bottom-up aligning at 
each node  sequence against sequence, sequence against 
multiple alignment, or multiple alignment against multiple 
alignment.

30



Progressive multiple alignment example

31

ACACGAT ACGATG ACAGGAT ACAGGA

ACACGAT-
AC--GATG

ACAGGAT
ACAGGA-

ACACGAT-
AC--GATG
ACAGGAT-
ACAGGA--



Practical exact algorithm for multiple 
alignment

 Small multiple alignments using SP score can be 
constructed without heuristics using a search space 
pruning technique by Carrillo & Lipman 1988:

 Idea is to use sum of optimal pair-wise alignments as upper-
bound for multiple alignment score, and a heuristically 
obtained multiple aligment as a lower-bound.

 This gives lower-bound for each pair-wise alignment inside the 
optimal multiple alignment, and limits the cells in the high-
dimensional dynamic programming matrix that need to be 
taken into account in the computation.

32



Practical exact algorithm for multiple 
alignment (2)

 Let S(Ai’,Ai) be the optimal global alignment score of 
sequences Ai’ and Ai whose alignments inside the 
multiple alignment have score

 Obviously

 This gives the lower-bound

where M’ is a sub-optimal alignment computed  
using e.g. heuristic progressive alignment.
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Practical exact algorithm for multiple 
alignment (3)

 Now find a set Bi’i of coordinate pairs (ki’,ki) such that 
the best alignment of Ai’ and Ai through (ki’,ki) scores 
at least LBi’i.

 Compute S(Ai’[1,ki’],Ai[1,ki]) and S(Ai’
-1[1,|Ai’|-ki’],Ai

-1[1,|Ai|-
ki]), where -1 denotes the reverse of the sequence.

 Set Bi’i consists of all coordinate pairs (ki’,ki) where the sum of 
the two scores above is at least LBi’i.

 Only coordinates (k1,k2,...,kd) such that (ki’,ki) is in 
Bi’i for all i’,i need to be considered in filling the d-
dimensional dynamic programming matrix to 
compute the optimal multiple alignment.
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