
V E L I M Ä K I N E N

H T T P : / / W W W . C S . H E L S I N K I . F I / E N / C O U R S E S /
5 8 2 6 0 6 / 2 0 1 0 / S / K / 1

Elements of Bioinformatics
Autumn 2010

R A P I D A L I G N M E N T M E T H O D S :

F A S T A A N D B L A S T

G E N O M E - W I D E C O M P A R I S O N :

S U F F I X T R E E , M U M M E R

Lecture Mon 8.11.

The biological problem

 Global and local alignment

algoritms are slow in practice

 Consider the scenario of

aligning a query sequence
against a large database of

sequences

 New sequence with unknown

function

http://www.ebi.ac.uk/embl/Services/DBStats/

3

Problem with large amount of sequences

 Exponential growth in both number and total
length of sequences

 Possible solution: Compare against model
organisms only

 With large amount of sequences, chances are that
matches occur by random

 Need for statistical analysis

4

First solution: FASTA

 FASTA is a multistep algorithm for sequence alignment (Wilbur and
Lipman, 1983)

 The sequence file format used by the FASTA software is widely used
by other sequence analysis software

 Main idea:

 Choose regions of the two sequences (query and database) that look
promising (have some degree of similarity)

 Compute local alignment using dynamic programming in these regions

5

FASTA outline

 FASTA algorithm has five steps:
 1. Identify common k-mers between I and J

 2. Score diagonals with k-mer matches, identify 10 best
diagonals

 3. Rescore initial regions with a substitution score matrix

 4. Join initial regions using gaps, penalise for gaps

 5. Perform dynamic programming to find final alignments

7

Analyzing the k-mer content

 Example query string I: TGATGATGAAGACATCAG

 For k = 8, the set of k-mers of I is

TGATGATG

GATGATGA

ATGATGAA

TGATGAAG

…

GACATCAG

8

Analyzing the k-mer content

 There are n-k+1 k-mers in a string of length n

 If at least one k-mer of I is not found from another string J, we know
that I differs from J

 Need to consider statistical significance: I and J might share k-
mers by chance only

 Let m=|I| and n=|J|

99

Word lists and comparison by content

 The k-mers of I can be arranged into a table of k-mer occurences
Lw(I)

 Consider the k-mers when k=2 and I=GCATCGGC:

GC, CA, AT, TC, CG, GG, GC

AT: 3

CA: 2

CG: 5

GC: 1, 7

GG: 6

TC: 4

Start indecies of k-mer GC in I

Building Lw(I) takes O(n) time

10

Common k-mers

 Number of common k-mers in I and J can be
computed using Lw(I) and Lw(J)

 For each k-mer w in I, there are |Lw(J)|
occurrences in J

 Therefore I and J have common
k-mer pairs

 This can be computed in O(m + n + 4k) time

 O(m + n + 4k) time to build the lists

 O(4k) time to multiply the corresponding list entry sizes (in
DNA strings)

11

Common k-mers

 I = GCATCGGC

 J = CCATCGCCATCG

Lw(J)

AT: 3, 9

CA: 2, 8

CC: 1, 7

CG: 5, 11

GC: 6

TC: 4, 10

Lw(I)

AT: 3

CA: 2

CG: 5

GC: 1, 7

GG: 6

TC: 4

Common k-mers

2

2

0

2

2

0

2

10 in total

12

FASTA outline

 FASTA algorithm has five steps:
 1. Identify common k-mers between I and J

 2. Score diagonals with k-mer matches, identify 10 best
diagonals

 3. Rescore initial regions with a substitution score matrix

 4. Join initial regions using gaps, penalise for gaps

 5. Perform dynamic programming to find final alignments

13

Dot matrix comparisons

 k-mer matches in two sequences I and J can be represented as a dot
matrix

 Dot matrix element (i, j) has ”a dot”, if the k-mer starting at position
i in I is identical to the k-mer starting at position j in J

 The dot matrix can be plotted for various k

i

j

I = … ATCGGATCA …

J = … TGGTGATGC …

i

j

14

29.9-1.10 /

k=1 k=4

k=8 k=16

Dot matrix (k=1,4,8,16)

for two DNA sequences

X85973.1 (1875 bp)

Y11931.1 (2013 bp)

15

16

k=1 k=4

k=8 k=16

Dot matrix

(k=1,4,8,16) for two

protein sequences

CAB51201.1 (531 aa)

CAA72681.1 (588 aa)

Shading indicates

now the match score

according to a

score matrix

(Blosum62 here)

Computing diagonal sums

 We would like to find high scoring diagonals of the dot matrix

 Lets index diagonals by the offset, l = i - j

C C A T C G C C A T C G

G *

C * *

A * *

T * *

C * *

G

G *

C

k=2

I

J

Diagonal l = i – j = -6

17

Computing diagonal sums

 As an example, lets compute diagonal sums for I = GCATCGGC, J =
CCATCGCCATCG, k = 2

 1. Construct k-mer list Lw(J)

 2. Diagonal sums Sl are computed into a table, indexed with the offset
and initialised to zero

l -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Sl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18

Computing diagonal sums

 3. Go through k-mers of I, look for matches in Lw(J) and update
diagonal sums

C C A T C G C C A T C G

G *

C * *

A * *

T * *

C * *

G

G *

C

I

J
For the first 2-mer in I,

GC, LGC(J) = {6}.

We can then update

the sum of diagonal

l = i – j = 1 – 6 = -5 to

S-5 := S-5 + 1 = 0 + 1 = 1

19

Computing diagonal sums

 3. Go through k-mers of I, look for matches in Lw(J) and update
diagonal sums

C C A T C G C C A T C G

G *

C * *

A * *

T * *

C * *

G

G *

C

I

J
Next 2-mer in I is CA,

for which LCA(J) = {2, 8}.

Two diagonal sums are

updated:

l = i – j = 2 – 2 = 0

S0 := S0 + 1 = 0 + 1 = 1

I = i – j = 2 – 8 = -6

S-6 := S-6 + 1 = 0 + 1 = 1

20

Computing diagonal sums

 3. Go through k-mers of I, look for matches in Lw(J) and update
diagonal sums

C C A T C G C C A T C G

G *

C * *

A * *

T * *

C * *

G

G *

C

I

J
Next 2-mer in I is AT,

for which LAT(J) = {3, 9}.

Two diagonal sums are

updated:

l = i – j = 3 – 3 = 0

S0 := S0 + 1 = 1 + 1 = 2

I = i – j = 3 – 9 = -6

S-6 := S-6 + 1 = 1 + 1 = 2

21

Computing diagonal sums

After going through the k-mers of I, the result is:

l -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Sl 0 0 0 0 4 1 0 0 0 0 4 1 0 0 0 0 0

C C A T C G C C A T C G

G *

C * *

A * *

T * *

C * *

G

G *

C

I

J

22

Algorithm for computing diagonal sum of scores

Sl := 0 for all 1 – n < l ≤ m – 1

Compute Lw(J) for all k-mers w

for i := 1 to m – k +1 do

w := IiIi+1…Ii+k-1

for j ∊ Lw(J) do

l := i – j

Sl := Sl + 1

end

end

Match score is here 1

23

FASTA outline

 FASTA algorithm has five steps:
 1. Identify common k-mers between I and J

 2. Score diagonals with k-mer matches, identify 10 best
diagonals

 3. Rescore initial regions with a substitution score matrix

 4. Join initial regions using gaps, penalise for gaps

 5. Perform dynamic programming to find final alignments

24

Rescoring initial regions

 Each high-scoring diagonal chosen in the previous step is rescored
according to a score matrix

 This is done to find subregions with identities shorter than k

 Non-matching ends of the diagonal are trimmed

I: C C A T C G C C A T C G

J: C C A A C G C A A T C A

I’: C C A T C G C C A T C G

J’: A C A T C A A A T A A A

75% identity, no 4-mer identities

33% identity, one 4-mer identity

25

Joining diagonals

 Two offset diagonals can be joined with a gap, if the resulting
alignment has a higher score

 Separate gap open and extension are used

 Find the best-scoring combination of diagonals

High-scoring

diagonals

Two diagonals

joined by a gap

26

FASTA outline

 FASTA algorithm has five steps:
 1. Identify common k-mers between I and J

 2. Score diagonals with k-mer matches, identify 10 best
diagonals

 3. Rescore initial regions with a substitution score matrix

 4. Join initial regions using gaps, penalise for gaps

 5. Perform dynamic programming to find final alignments

27

Local alignment in the highest-scoring region

 Last step of FASTA: perform local
alignment using dynamic programming
around the highest-scoring diagonals

 Region to be aligned covers –w and +w
offset diagonal to the highest-scoring
diagonals

 With long sequences, this region is
typically very small compared to the whole
m x n matrix

w

w

Dynamic programming matrix

M filled only for the green region

28

Properties of FASTA

 Fast compared to local alignment using dynamic programming only

 Only a narrow region of the full matrix is aligned

 Lossy filter : may fail to find some high scoring local alignments

 Increasing parameter k decreases the number of hits:

 Increases specificity

 Decreases sensitivity

 Decreases running time

29

Properties of FASTA

 FASTA looks for initial exact matches to query
sequence

 Two proteins can have very different amino acid sequences
and still be biologically similar

 This may lead into a lack of sensitivity with diverged
sequences

 Demonstration of FASTA at EBI

 http://www.ebi.ac.uk/fasta/

30

Note on alternative implementations

 Generalized suffix tree can be used for counting the common k-mer
pairs in optimal time and space (see exercise 5.2 at Algorithms for
Bioinformatics course)

 Generalized suffix tree with some additional data structures can also be
used for directly computing all maximal matches, i.e., tuples
{(i',i),(j',j)} such that ai'...ai =bj'...bj and the ranges cannot be extended
left or right (see Gusfield's book Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational Biology).

 Descending suffix walk with the query on the suffix tree of the
database can also be modified to solve the maximal matches problem.

 MUMMER software (http://mummer.sourceforge.net/) implements
these kind of ideas.

 Exercise: Try Mummer and learn what are MUM, MAM, and MEM, and for
what purposes they can be used.

31

http://mummer.sourceforge.net/

C

Suffix tree

A

C

T

4 2 1 5 36

C A T A C T
1 2 3 4 5 6

C
T

T
A

T

T
A
C
T

A

T
C
T

A

Abstract representation of suffix tree

C A T A C T
1 2 3 4 5 6

C

Suffix link

X

aX

suffix link

Descending suffix walk

suffix tree of D Set l=1. Read Q[1,m] left-to-right,

always going down in the tree

when possible. If the next symbol

of Q does not match any edge

label on current position, take

suffix link (l++), and try again.

(Suffix link in the root to itself

emits a symbol). Let v be a node

visited after reading a symbol Q[r]

just before taking a suffix link.

Then Q[l,r] is a maximal match

with substrings of D (whose

occurrences can be found from

the subtree of v), and e.g. the

longest common substring of Q

and D is Q[l,r] with largest r-l.

Listing all maximal matches is

more complicated but doable.

v

BLAST: Basic Local Alignment Search Tool

 BLAST (Altschul et al., 1990) and its variants are some of the most
common sequence search tools in use

 Roughly, the basic BLAST has three parts:

 1. Find segment pairs between the query sequence and a database
sequence above score threshold (”seed hits”)

 2. Extend seed hits into locally maximal segment pairs

 3. Calculate p-values and a rank ordering of the local alignments

 Gapped BLAST introduced in 1997 allows for gaps in alignments

36

Finding seed hits

 First, we generate a set of neighborhood sequences for given k,
match score matrix and threshold T

 Neighborhood sequences of a k-mer w include all strings of length k
that, when aligned against w, have the alignment score at least T

 For instance, let I = GCATCGGC, J = CCATCGCCATCG and k = 5,
match score be 1, mismatch score be 0 and T = 4

37

Finding seed hits

 I = GCATCGGC, J = CCATCGCCATCG, k = 5, match score 1,
mismatch score 0, T = 4

 This allows for one mismatch in each k-mer

 The neighborhood of the first k-mer of I, GCATC, is GCATC and the
15 sequences

A A C A A

CCATC,G GATC,GC GTC,GCA CC,GCAT G

T T T G T

38

Finding seed hits

 I = GCATCGGC has 4 k-mers and thus 4x16 = 64 5-mer patterns to
locate in J

 Occurrences of patterns in J are called seed hits

 Patterns can be found using exact search in time proportional to the
sum of pattern lengths + length of J + number of matches (Aho-
Corasick algorithm)

 Attend 58093 String processing algorithms to learn Aho-Corasick and
alike algorithms.

 Compare this approach to FASTA

39

Extending seed hits: original BLAST

 Initial seed hits are extended into locally
maximal segment pairs or High-
scoring Segment Pairs (HSP)

 Extensions do not add gaps to the alignment

 Sequence is extended until the alignment
score drops below the maximum attained
score minus a threshold parameter value

 All statistically significant HSPs reported

AACCGTTCATTA

| || || ||

TAGCGATCTTTT

Initial seed hit

Extension

Altschul, S.F., Gish, W., Miller, W., Myers, E. W. and

Lipman, D. J., J. Mol. Biol., 215, 403-410, 1990

40

Extending seed hits: gapped BLAST

 In a later version of BLAST, two seed hits
have to be found on the same diagonal

 Hits have to be non-overlapping

 If the hits are closer than A (additional
parameter), then they are joined into a HSP

 Threshold value T is lowered to achieve
comparable sensitivity

 If the resulting HSP achieves a score at least
Sg, a gapped extension is triggered

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, and

Lipman DJ, Nucleic Acids Res. 1;25(17), 3389-402, 1997

41

Gapped extensions of HSPs

 Local alignment is performed starting
from the HSP

 Dynamic programming matrix filled in
”forward” and ”backward” directions
(see figure)

 Skip cells where value would be Xg

below the best alignment score found
so far

Region potentially searched

by the alignment algorithm

HSP

Region searched with score

above cutoff parameter

42

Estimating the significance of results

 In general, we have a score S(D, X) = s for a sequence X found in
database D

 BLAST rank-orders the sequences found by p-values

 The p-value for this hit is P(S(D, Y) ≥ s) where Y is a random sequence
with the same charasteristics as X

 Measures the amount of ”surprise” of finding sequence X

 A smaller p-value indicates more significant hit

 A p-value of 0.1 means that one-tenth of random sequences would have as
large score as our result

43

Estimating the significance of results

 In BLAST, p-values are computed roughly as follows

 There are mn places to begin an optimal alignment in the m x n
alignment matrix

 Optimal alignment is preceded by a mismatch and has t matching
(identical) letters

 (Assume match score 1 and mismatch/indel score -∞)

 Let p = P(two random letters are equal)

 The probability of having a mismatch and then t matches is (1-p)pt

44

Estimating the significance of results

 We model this event by a Poisson distribution (why?) with mean λ =
nm(1-p)pt

 P(there is local alignment t or longer)

≈ 1 – P(no such event)

= 1 – e-λ = 1 – exp(-nm(1-p)pt)

 An equation of the same form is used in Blast:

 E-value = P(S(D, Y) ≥ s) ≈ 1 – exp(-mnγξt) where γ > 0
and 0 < ξ < 1

 Parameters γ and ξ are estimated from data

 For better analysis, see
 Chapter 10 in Evens & Grant: Statistical Methods in Bioinformatics, Springer 2005 (you

may need to read Chapters 1-9 as well to fully understand the theory), or

 Durbin et al. page 39 (similar as above, but derived with score matrices)

45

Properties of BLAST

 Better sensitivity than in FASTA

 Still a lossy filter

 Has become the standard in Bioinformatics:

 This is due to the p-value computation and ranking of results

 However, these computations apply to any alignment algorithm
not just to BLAST

 BLAST may fail to find real occurrences, even those with smallest
p-values

46

Alternatives to BLAST

 Gapped seeds & other advanced filtering mechanisms

 Burkhardt & Kärkkäinen: Gapped q-Grams (CPM 2001)

 Li et al.: PatternHunter (Bioinformatics 2002)

 Compressed indexing & search space pruning

 Lam et at.: Compressed indexing and local alignment of DNA,
Bioinformatics, 25:1754-1760, 2008.

 Many short read alignment software extending the idea (Bowtie, BWA,
SOAP2, readaligner)

 Russo et al.: Indexed Hierarchical Approximate String Matching
(SPIRE 2008)

 Will be covered in the Biological Sequence Analysis course,
Spring 2011

47

