Elements of Bioinformatics Autumn 2010

VELI MÄKINEN

HTTP://WWW.CS.HELSINKI.FI/EN/COURSES/ 582606/2010/S/K/1

Lecture Mon 22.11.

GENE PREDICTION

Gene prediction

• Two approaches:

• Statistics & machine learning

- × Statistical characteristics of nucleotide content in genes differs from rest of the DNA
- × Possible to learn the charasteristics from already analyzed species.

o Similarity-based

- × With sequenced mRNA or protein, the task of gene prediction is best formulated as *gene finding problem*, using sequence alignment and dynamic programming.
- × Can also be applied starting from genes of other species like the statistical approach.

Part I

GENE FINDING: SEQUENCE ALINGMENT ALLOWING INTRONS

Gene finding

- Even assuming that the protein sequence is known, finding the corresponding gene in eukaryote DNA is non-trivial due to introns.
 - Can be tackled using dynamic programming e.g. as follows:
 - Compute a matrix S[0...m,0...n,0...p] such that S[i,j,k] gives the maximum score of exons in dna[1...j] translating into protein[1...i] with k introns, under constraints on the min,max intron length and splice markers (gt...ag,...)
 - × Substitution scores can be adjusted for optimizing *codon usage* and allowing measurement errors in dna and protein sequencing.
 - High scoring S[m,j,o...p] such that dna[j+1...j+3] is a stop codon are good candidates for a gene translating into the protein.
 - Straightforward solution takes O(mnp*maxintronlength) time, but this is easily improved to O(mnp) using *sliding window maxima technique*.
 - Too slow for large scale analyses?

max = 7

max = 6

that there is no A[j]>A[i], for indices i<j inside the sliding window.

Gene finding in practice

- Not all proteins have been sequenced!
- Protein sequences are typically predicted from DNA, so the reverse direction is not a typical scenario.
 - Still, aligning protein sequence predicted from DNA of species A to the DNA sequence of species B is a valid approach to locate potential genes in B.
 - Basic dynamic programming tends to be too slow in doing massive scanning (all known genes against new sequence), so BLAST is often used instead:
 - × Assign gap extension penalty small to allow introns in the alignment.
 - Or just consider good scoring local alignments, and try to reconstruct the gene from those.
 - Exon chaining problem (Snyder & Stormo, *Journal of molecular biology*, 248:1-18, 1995)

Gene resequencing

- Next-generation short-read sequencing technologies have been applied to measure mRNA (RNA-seq)
- Gives a direct way to find genes (and curate the current annotations created from indirect data).

RNA-seq for gene finding

• Two approaches:

- Assembly mRNA from short reads of cDNA and apply the previous approaches.
- Align the short reads of cDNA directly to the genome and vote for exons.

• Obvious advantages to previous indirect approaches:

• No need for sophisticated scoring schemes: enough to model measurement errors and small variations (same species)

Complications:

• All transcripts measured at ones: How to find all plausible exon chains corresponding to all transcripts?

More at the Spring course: Biological Sequence Analysis

Statistical gene prediction

- What can be deduced from just the genome content?
- Introns often have markers at both ends (gt...ag,...), but these markers also appear in other places.
- Statistical properties need to be used to distinguish between coding and non-coding regions.
- Already non-trivial for prokaryotes as not all start codon stop codon pairs (*open reading frames*, ORFs) correspond to genes.
- Hidden Markov Model (HMM) –techniques (an extension of dynamic programming framework) can be used for this prediction task.

Part II

PRELUDE TO STATISTICAL APPROACHES TO GENE PREDICTION: BIOLOGICAL WORDS

Biological words: k-mer statistics

- To understand statistical approaches to gene prediction, we need to study what is known about the structure and statistics of DNA.
 - o 1-mers: individual nucleotides (bases)
 - o 2-mers: dinucleotides (AA, AC, AG, AT, CA, ...)
 - 3-mers: codons (AAA, AAC, ...)
 - 4-mers and beyond

1-mers: base composition

• Typically DNA exists as *duplex* molecule (two complementary strands)

5'-GGATCGAAGCTAAGGGCT-3' 3'-CCTAGCTTCGATTCCCGA-5'

Top strand:7 G, 3 C, 5 A, 3 TBottom strand:3 G, 7 C, 3 A, 5 TDuplex molecule:10 G, 10 C, 8 A, 8 TBase frequencies:10/36 8/36 8/36

These are something we can determine experimentally.

fr(G + C) = 20/36, fr(A + T) = 1 - fr(G + C) = 16/36

G+C content

- fr(G + C), or G+C content is a simple statistics for describing genomes
- Notice that one value is enough to characterise fr(A), fr(C), fr(G) and fr(T) for duplex DNA
- Is G+C content (= base composition) able to tell the difference between genomes of different organisms?

G+C content and genome sizes (in megabasepairs, Mb) for various organisms

- Mycoplasma genitalium
- Escherichia coli K-12
- Pseudomonas aeruginosa PAO1
- Pyrococcus abyssi
- Thermoplasma volcanium
- Caenorhabditis elegans
- Arabidopsis thaliana
- Homo sapiens

31.6%0.58550.7%4.69366.4%6.26444.6%1.76539.9%1.58536%9735%12541%3080

Base frequencies in duplex molecules

- Consider a DNA sequence generated randomly, with probability of each letter being independent of position in sequence
- You could expect to find a uniform distribution of bases in genomes...

3′-...CCTAGCTTCGATTCCCGA...-5′

- This is not, however, the case in genomes, especially in prokaryotes
 - This phenomena is called *GC skew*

DNA replication fork

- When DNA is replicated, the molecule takes the *replication fork* form
- New complementary DNA is synthesised at both strands of the "fork"
- New strand in 5'-3' direction corresponding to replication fork movement is called *leading strand* and the other *lagging strand*

DNA replication fork

- This process has specific starting points in genome (*origins of replication*)
- Observation: Leading strands have an excess of G over C
- This can be described by *GC skew* statistics

GC skew

- GC skew is defined as (#G #C) / (#G + #C)
- It is calculated at successive positions in intervals (windows) of specific width

$$5' - \ldots G$$

 $3' - \ldots CCTAGCTTCGATTCCGATTCCGA - - 3'$
 $(4-2)/(4+2) = 1/3$
 $(3-2)/(3+2) = 1/5$

G-C content & GC skew

 G-C content & GC skew statistics can be displayed with a circular genome map

i.i.d. model for nucleotides

• Assume that bases

- o occur independently of each other
- bases at each position are **i**dentically **d**istributed
- Probability of the base A, C, G, T occuring is p_A , p_C , p_G , p_T , respectively
 - For example, we could use $p_A = p_C = p_G = p_T = 0.25$ or estimate the values from known genome data

Joint probability is then just the product of independent variables

• For example, $P(TG) = p_T p_G$

Refining the i.i.d. model

 i.i.d. model describes some organisms well (see Deonier's book) but fails to characterise many others

• We can refine the model by having the DNA letter at some position depend on letters at preceding positions

- Let's assume that in sequence X the letter at position t, X_t, depends only on the previous letter X_{t-1} (*first-order markov chain*)
- Probability of letter b occuring at position t given $X_{t-1} = a$: $p_{ab} = P(X_t = b | X_{t-1} = a)$
- We consider *homogeneous* markov chains: probability p_{ab} is independent of position t

Estimating p_{ab}

• We can estimate probabilities p_{ab} ("the probability that b follows a") from observed dinucleotide frequencies

...the values p_{AA} , p_{AC} , ..., p_{TG} , p_{TT} sum to 1

Estimating
$$p_{ab}$$

• $p_{ab} = P(X_t = b \mid X_{t-1} = a) = P(X_t = b, X_{t-1} = a)$
Probability of transition $a \rightarrow b$
Base frequency of nucleotide a,
fr(a)
0.052 / 0.345 \approx 0.151
 $A C G T$
A 0.146 0.052 0.058 0.089
C 0.063 0.029 0.010 0.056
C 0.063 0.029 0.010 0.056
C 0.050 0.030 0.028 0.051
T 0.086 0.047 0.063 0.140
P(X_t = b, X_{t-1} = a)
P(X_t = b \mid X_{t-1} = a)
P(X_t = b \mid X_{t-1} = a)

• From a transition matrix, it is easy to generate a DNA sequence of length n:

- First, choose the starting base randomly according to the base frequency distribution
- Then, choose next base according to the distribution $P(x_t | x_{t-1})$ until n bases have been chosen

TTC TTCA A

Look for R code in Deonier's book

	A	С	G	Т		
А	0.423	0.151	0.168	0.258		
С	0.399	0.184	0.063	0.354		
G	0.314	0.189	0.176	0.321		
Т	0.258	0.138	0.187	0.415		

 $P(X_t = b | X_{t-1} = a)$

#!/usr/bin/env python

import sys, random

n = int(sys.argv[1])

Example Python code for generating DNA sequences with first-order Markov chains.

Initialisation: use packages 'sys' and 'random', read sequence length from input.

pi = {'a' : 0.345, 'c' : 0.158, 'g' : 0.159, 't' : 0.337}

```
def choose(dist):
```

```
r = random.random()

sum = 0.0

keys = dist.keys()

for k in keys:

sum += dist[k]

if sum > r:

return k

return keys[-1]
```

```
c = choose(pi)
for i in range(n - 1):
    sys.stdout.write(c)
    c = choose(tm[c])
sys.stdout.write(c)
sys.stdout.write("\n")
```

Function choose(), returns a key (here 'a', 'c', 'g' or 't') of the dictionary 'dist' chosen randomly according to probabilities in dictionary values.

Choose the first letter, then choose next letter according to $P(x_t | x_{t-1})$.

• Now we can quickly generate sequences of arbitrary length...

tt ctt caa a a ta aggat agt gatt ctt att gg ctt a agg gat a a caatt ta gat ctt tt tt cat ga at cat gt a t gt caa cgt ta a a agt t ga a ctg caa t a agt t c a construction of the set of tttacacacqattqtttatctqcqtqcqaaqcatttcactacatttqccqatqccaaaaqtatttaacatttqqtaaacaaattqacttaaatcqcqcacttaqa ${\tt gtttgacgtttcatagttgatgcqtgtctaacaattacttttagttttttaaatqcgtttgtctacaatcattaatcagctctggaaaaacattaatqcatttaaac$ cacaatqqataattaqttacttattttaaaattcacaaaqtaattattcqaataqtqccctaaqaqaqtactqqqqqttaatqqcaaaqaaaattactqtaqtqaaqagctttgaggtcagacaaacaagtgaatggaagacagaaaaagctcagcctagaattagcatgtttttgagtggggaattacttggttaactaaagtgttcatgactgtggataagaaaacagcaaacaaatttagtattattttcctagtaaaaagcaaacatcaaggagaaattggaagctgcttgttcagtttgcattaaattaaaaatttatttttttqtacaattqttcaaqcaactttqaatttqcaqattttaacccactqtctatatqqqacttcqaattaaattqactqqtctqcatcacaaatttcaactqccacttqaataqttcacaatcaaaacataqqaaqqatctactqctaaaaqcaaaaqcqtattqqaatqataaaaaaactttqatqtttaaaaaaactacaaccttaatqaa ${\tt ttaaagttgaaaaaaatattcaaaaaaaaaaaaatcagttcttggcgagtaatatttttgatgtttgagatcagggttacaaaataagtgcatgagattaactcttcaa$ taaaagaaaaaggagattaaaaatacctgcggtgccacattttttgttacgggcatttaaggtttgcatgtgttgagcaattgaaacctacaactcaataagtcatg

Dinucleotide frequencies Simulated Observed

aa	0.145	0.146
ac	0.050	0.052
ag	0.055	0.058
at	0.092	0.089
са	0.065	0.063
СС	0.028	0.029
cg	0.011	0.010
ct	0.058	0.056
ga	0.048	0.050
gc	0.032	0.030
gg	0.029	0.028
gt	0.050	0.051
ta	0.084	0.086
tc	0.052	0.047
tg	0.064	0.063
tt	0.138	0.0140

n = 10000

- The model is able to generate correct proportions of 1- and 2-mers in genomes...
- ...but fails with k=3 and beyond.

ttacacacgattgtttatctgcgtgcgaagcatttcactacatttgccgatgcagccaaaagtatttaacatttggtaaacaaattgacttaaatcgcgcacttaga ${\tt gtttgacgtttcatagttgatgcqtgtctaacaattacttttagttttttaaatqcgtttgtctacaatcattaatcagctctggaaaaaacattaatqcatttaaac$ cacaatggataattagttacttattttaaaattcacaaagtaattattcgaatagtgccctaagagagtactggggttaatggcaaagaaaattactgtagtgaaga $\verb+taagcctgttattatcacctgggtactctggtgaatgcacataagcaaatgctacttcagtgtcaaagcaaaaaatttactgataggactaaaaaaccctttattt$ gctttgaqqtcaqacaaacaaqtqaatqqaaqacaqaaaaaqctcaqcctaqaattaqcatqttttqaqtqqqqaattacttqqttaactaaaqtqttcatqactqttcaqcatatqattqttqqtqqqcactacaaaqataqaaqaqttaaactaqqtqqtqqtqatttcqctaacacaqttttcatacaaqttctattttctcaatqqttttggataagaaaacagcaaacaaatttagtattattttcctagtaaaaagcaaacatcaaggagaaattggaagctgcttgttcagtttgcattaaattaaaaatttatttgaagtattcgagcaatgttgacagtctgcgttcttcaaataagcagcaaatcccctcaaaattgggcaaaaacctaccctggcttctttttaaaaaaaccaagaaattttttgtacaattgttcaagcaactttgaatttgcagattttaacccactgtctatatgggacttcgaattaaattgactggtctgcatcacaaatttcaactgccacttqaataqttcacaatcaaaaacataqqaaqqatctactqctaaaaqcaaaaqcqtattqqaatqataaaaaaactttqatqtttaaaaaaactacaaccttaatqaattaaaqttqaaaaaaatattcaaaaaaaqaaattcaqttcttqqcqaqtaatatttttqatqtttqaqatcaqqqttacaaaataaqtqcatqaqattaactcttcaataaaaqaaaaaqqaqattaaaaatacctqcqqtqccacattttttqttacqqqcatttaaqqtttqcatqtqttqaqcaattqaaacctacaactcaataaqtcatq

3-mers: codons

- We can extend the previous method to 3-mers
- k=3 is an important case in study of DNA sequences because of genetic code

3-mers in Escherichia coli genome

Word	Count Ob	served Exp	pected	Word	Count Observed Expected				
AAA	108924	0.02348	0.01492	CAA	76614	0.01651	0.01541		
AAC	82582	0.01780	0.01541	CAC	66751	0.01439	0.01591		
AAG	63369	0.01366	0.01537	CAG	104799	0.02259	0.01588		
AAT	82995	0.01789	0.01490	CAT	76985	0.01659	0.01539		
ACA	58637	0.01264	0.01541	CCA	86436	0.01863	0.01591		
ACC	74897	0.01614	0.01591	CCC	47775	0.01030	0.01643		
ACG	73263	0.01579	0.01588	CCG	87036	0.01876	0.01640		
ACT	49865	0.01075	0.01539	CCT	50426	0.01087	0.01589		
AGA	56621	0.01220	0.01537	CGA	70938	0.01529	0.01588		
AGC	80860	0.01743	0.01588	CGC	115695	0.02494	0.01640		
AGG	50624	0.01091	0.01584	CGG	86877	0.01872	0.01636		
AGT	49772	0.01073	0.01536	CGT	73160	0.01577	0.01586		
ATA	63697	0.01373	0.01490	СТА	26764	0.00577	0.01539		
ATC	86486	0.01864	0.01539	CTC	42733	0.00921	0.01589		
ATG	76238	0.01643	0.01536	CTG	102909	0.02218	0.01586		
ATT	83398	0.01797	0.01489	CTT	63655	0.01372	0.01537		

3-mers in Escherichia coli genome

Word	Count Ob	served Exp	pected	Word	Count Ob	served Expected		
GAA	83494	0.01800	0.01537	TAA	68838	0.01484	0.01490	
GAC	54737	0.01180	0.01588	TAC	52592	0.01134	0.01539	
GAG	42465	0.00915	0.01584	TAG	27243	0.00587	0.01536	
GAT	86551	0.01865	0.01536	TAT	63288	0.01364	0.01489	
GCA	96028	0.02070	0.01588	TCA	84048	0.01812	0.01539	
GCC	92973	0.02004	0.01640	TCC	56028	0.01208	0.01589	
GCG	114632	0.02471	0.01636	TCG	71739	0.01546	0.01586	
GCT	80298	0.01731	0.01586	TCT	55472	0.01196	0.01537	
GGA	56197	0.01211	0.01584	TGA	83491	0.01800	0.01536	
GGC	92144	0.01986	0.01636	TGC	95232	0.02053	0.01586	
GGG	47495	0.01024	0.01632	TGG	85141	0.01835	0.01582	
GGT	74301	0.01601	0.01582	TGT	58375	0.01258	0.01534	
GTA	52672	0.01135	0.01536	TTA	68828	0.01483	0.01489	
GTC	54221	0.01169	0.01586	TTC	83848	0.01807	0.01537	
GTG	66117	0.01425	0.01582	TTG	76975	0.01659	0.01534	
GTT	82598	0.01780	0.01534	TTT	109831	0.02367	0.01487	

2nd order Markov Chains

- Markov chains readily generalise to higher orders
- In 2nd order markov chain, position t depends on positions t-1 and t-2
- Transition matrix:

A C G T AA AC AG AT CA

Codon Adaptation Index (CAI)

- Observation: cells prefer certain codons over others in highly expressed genes
 - Gene expression: DNA is transcribed into RNA (and possibly translated into protein) Moderately

expressed

Amino acid	Codon	Predicted	Gene class I	Gene class II	
Phe	TTT	0.493	0.551	0.291	\mathbf{i}
	TTC	0.507	0.449	0.709	Highly
Ala	GCT	0.246	0.145	0.275	expressed
	GCC	0.254	0.276	0.164	expressed
	GCA	0.246	0.196	0.240	
	GCG	0.254	0.382	0.323	
Asn	AAT	0.493	0.409	0.172	
	AAC	0.507	0.591	0.828	

Codon frequencies for some genes in E. coli

Codon Adaptation Index (CAI)

- Consider an amino acid sequence $X = x_1 x_2 \dots x_n$
- Let p_k be the probability that codon k is used in highly expressed genes
- Let q_k be the highest probability that a codon coding for the same amino acid as codon k has
 - For example, if codon k is "GCC", the corresponding amino acid is Alanine (see genetic code table; also GCT, GCA, GCG code for Alanine)
 - Assume that $p_{GCC} = 0.164$, $p_{GCT} = 0.275$, $p_{GCA} = 0.240$, $p_{GCG} = 0.323$
 - $\circ \text{ Now } q_{\text{GCC}} = q_{\text{GCT}} = q_{\text{GCA}} = q_{\text{GCG}} = \mathbf{0.323}$

Codon Adaptation Index (CAI)

• CAI is defined as

$$CAI = \left(\prod_{k=1}^{n} p_k / q_k\right)^{1/n}$$

• CAI can be given also in *log-odds* form:

$$log(CAI) = (1/n) \sum_{k=1}^{n} log(p_k / q_k)$$

	CAI: example with an E. coli gene q_k											
						())					P_k
_	М	A	L	Т	K	А	E	М	S	E	Y	L
_	ATG	GCG	CTT	ACA	AAA	GCT	GAA	ATG	TCA	GAA	TAT	CTG
	1.00	0.47	0.02	0.45	0.80	0.47	0.79	1.00	0.43	0.79	0.19	0.02
		0.06	0.02	0.47	0.20	0.06	0.21		0.32	0.21	0.81	0.02
		0.28	0.04	0.04		0.28			0.03			0.04
		0.20	0.03	0.05		0.20			0.01			0.03
			0.01						0.04			0.01
			0.89						0.18			0.89
-	ATG	GCT	TTA	ACT	AAA	GCT	GAA	ATG	TCT	GAA	TAT	TTA
		GCC	TTG	ACC	AAG	GCC	GAG		TCC	GAG	TAC	TTG
		GCA	CTT	ACA		GCA			TCA			CTT
		GCG	CTC	ACG		GCG			TCG			CTC
			СТА						AGT			СТА
			CTG						AGC			CTG 1/n
	[1.00	0.20	0.04	0.04	0.80	0.47	0.79	1.00	0.03	0.79	0.19	0.89]
-	[1.00	0.47	0.89	0.47	0.80	0.47	0.79	1.00	0.43	0.79	0.81	0.89

CAI: properties

- CAI = 1.0 : each codon was the most frequently used codon in highly expressed genes
- Log-odds used to avoid numerical problems
 O What happens if you multiply many values <1.0 together?
- In a sample of E.coli genes, CAI ranged from 0.2 to 0.85
- CAI correlates with mRNA levels: can be used to predict high expression levels

Biological words: summary

- Simple 1-, 2- and 3-mer models can describe interesting properties of DNA sequences
 - GC skew can identify DNA replication origins
 - It can also reveal *genome rearrangement* events and *lateral transfer* of DNA
 - GC content can be used to locate genes: human genes are comparably GC-rich
 - CAI predicts high gene expression levels

Biological words: summary

- k=3 models can help to identify correct *reading frames*
 - Reading frame starts from a start codon and stops in a stop codon
 - Consider what happens to translation when a single extra base is introduced in a reading frame
- Also word models for k > 3 have their uses