
V E L I M Ä K I N E N

H T T P : / / W W W . C S . H E L S I N K I . F I / E N / C O U R S E S /
5 8 2 6 0 6 / 2 0 1 0 / S / K / 1

Elements of Bioinformatics
Autumn 2010

G E N E P R E D I C T I O N C O N T I N U E D

A N D

C O M P L E T I N G T H E P I P E L I N E S

Lecture Thu 25.11.

S T A T I S T I C A L A P P R O A C H E S T O G E N E
P R E D I C T I O N :

H M M S , V I T E R B I , F O R W A R D , B A C K W A R D

Part I

Hidden Markov Models : Idea

 Consider using GC content to segment a DNA sequence into
coding and non-coding parts.

 A natural way to model this is to study ”two”-state finite
automaton reading the DNA, where one state corresponds
to being in coding part and the other to being in non-coding
part:

4

coding non-coding
ε

ε

start

ε ε

endε ε
{A,C,G,T}

{A,C,G,T}

Hidden Markov Models: Idea

 Now, the above automaton just recognizes any DNA sequence and the
path taken through the automaton labels each position as coding or
non-coding.

 Plug in the state-dependent probabilities of emitting a symbol and small
probabilities to change the state.

 The most probable path through the automaton corresponds to the most
probable segmentation given the parameters (transition and emission
probabilities).

5

coding non-coding

ε: 0.02

start

endε: 0.02{A: 0.19,

C: 0.29,

G: 0.29,

T: 0.19}

{A: 0.24,

C: 0.24,

G: 0.24,

T: 0.24}ε: 0.02

ε: 0.02

ε: 0.5 ε: 0.5

Hidden Markov Models: Definition

 Hidden Markov Models could be defined as the
probabilistic extension of finite automaton like the previous
example suggests, but the convention is to separate
emissions and transitions:

 Nodes emit symbols and all transitions are epsilon-transitions.

 Equivalent notion in terms of expressibility.

6

coding
non-coding

ε: 0.02

start

endε: 0.02

{A: 0.2,

C: 0.3,

G: 0.3,

T: 0.2}

{A: 0.25,

C: 0.25,

G: 0.25,

T: 0.25}ε: 0.02

ε: 0.02

ε: 0.5 ε: 0.5

ε: 0.96 ε: 0.96

Hidden Markov Models: Definition

 Hidden Markov Model (HMM) is a tuple (H, Σ, T, E, p),
where H={1,…,|H|} is the set of states, Σ the set of symbols,
T the set of transitions, E the set of emissions, and p the
probability distribution for elements of T and E, with the
following conditions:
 Let p(t) and p(e) denote the probability for transition t:=(h,h’) in T and

emission e:=(h,c) in E, respectively, where h,h’ in H and c in Σ:

 ∑h’ in H p(h,h’)=1, ∑c in Σ p(h,c)=1 for all h in H.

 There is a single start state hstart in H such that there is no transition (h,
hstart) in T.

 There is a single end state hend in H such that there is no transition (hend,
h) in T.

7

Hidden Markov Models: Definition

 A path through HMM is a sequence h of hidden states
h=h0,h1,h2,...,hn,hn+1, where h0=hstart, hn+1=hend, and hi in H\{hstart, hend}.
The probability of path h given a sequence c=c1,c2,...,cn, ci in Σ, is

 Let us denote

 by H(n) the set of all paths through HMM of length n + 2 including start (h0)
and end (hn+1) states,

 by Hp(n) the set of all (prefix) paths of length n+1 inside HMM excluding
end state (hn+1),

 by Hs(n) the set of all (suffix) paths of length n+1 inside HMM excluding
start state (h0) ,

 and by H*(n) the set of all (local) paths of length n inside HMM excluding
start (h0) and end (hn+1) states.

8

.),(),()|(
10

1 



n

i

ii

n

i

ii chphhpchP

Three common problems studied on HMM

 Most probable path:

 Given sequence c=c1,c2,...,cn , ci in Σ, find the path h* having the
highest probability:

 Probability of sequence being generated by HMM:

 Given sequence c=c1,c2,...,cn , ci in Σ, compute the probability

 Probability of cj matching state k:

 Given sequence c=c1,c2,...,cn , ci in Σ, compute the probability

9

.),(),(maxarg)|(maxarg*
10

1
)()(








n

i

ii

n

i

ii
nHhnHh

chphhpchPh

.),(),()|(
)(10

1

)(

 
 






nHh

n

i

ii

n

i

ii

nHh

chphhpchP

  
  


n

i

ii

nHh khnHh

n

i

iij chphhpkhchP
j 1)(),(0

1),(),(),|(

Three common problems studied on HMM

 All three problems can be solved using dynamic
programming:

 First one with an algorithm called viterbi.

 Second one with an algorithm called forward.

 Third one with a combination of executing forward algorithm
on c and its reverse (called backward algorithm then).

 The difference in viterbi and forward is simply to replace max
with sum.

10

Viterbi algorithm

 Compute a matrix V[0…n+1,1...|H|] such that V[j,k] equals

 That is,

 Let k=1 denote the start state and k=|H| the end state.

 Initialization:

 Finalization:

 Probability of the most probable path is V[n+1,|H|].

 The most probable path can be traced back checking which
V[n,k’]p(k’,|H|) equals V[n+1,|H|], and so on.

 Running time O(n |T|).

11

.),(),(max)|(max)|(max 1
),(

11
)1(

1
),(1









 




 

jj
Tkh

j
jHh

j
khjHh

ckpkhpcchPcchP
j

p
j

p


).,(),'(]',1[max],[
),'(

j
Tkk

ckpkkpkjVkjV 


|).|,'(]',[max|]|,1[
|)|,'(

HkpknVHnV
THk 



.1]1,0[V

Forward algorithm

 Compute a matrix F[0…n+1,1...|H|] such that F[j,k] equals

 That is,

 Let k=1 denote the start state and k=|H| the end state.

 Initialization:

 Finalization:

 Probability of the sequence is F[n+1,|H|].

12

.),(),()|()|(
)1(),(

111

),(

1

1

 
 



















jHh Tkh

jjj

khjHh

j
p

jj
p

ckpkhpcchPcchP 

.),(),'(]',1[],[
),'(





Tkk

jckpkkpkjFkjF

.|)|,'(]',[|]|,1[
|)|,'(





THk

HkpknFHnF

.1]1,0[F

Backward algorithm

 Compute a matrix B[0…n+1,1...|H|] such that B[j,k] equals

 That is,

 Let k=1 denote the start state and k=|H| the end state.

 Initialization:

 Finalization:

 Probability of the sequence is B[n+1,1].

13

.),(),()|()|(
)1(),(

112

)(

1

1

 
 





 














jHh Thk

jnnjn

jHh

njn
ss

ckphkpcchPcchP 

.),()',(]',1[],[
)',(

1



Tkk

jnckpkkpkjBkjB

.)',1(]',[]1,1[
)',1(





Tk

kpknBnB

.1|]|,0[HB

Probability of cj matching state k

 Can be computed through F and B:

14



  





  
























Tkk

khjHh Tkk khjnHh

njj

nHh

jn

kjnBkkpkjF

cchPkkpcchP

khcchP

j
p s

)',(

),()',(''),('

11

)(

1

]',1[)',(],[

)|'()',()|(

),|(

1





Log transform

 Multiplication is the source of numerical problems in HMM
algorithms.

 However, easy to go over by transforming series of
multiplications into summation of logarithms:

 For example, in viterbi we can fill in table VL[] with rule

 Then

with initialization VL[0,1]=1.

15

 
i

i

i

i pp loglog

).,(log),'(log]',1[max],[
),'(

j
Tkk

ckpkkpkjVLkjVL 


],[2],[kjVLkjV 

Where the probabilities?

 Learn from the data (Introduction to Machine Learning
course).

 Given a set of valid annotated hidden paths (like DNA
sequences with exon/intron annotation), it is easy to
compute the frequencies of different emissions and
transitions taken.
 Add pseudocounts to cope with too sparse training data.

 Without the annotation, the task of optimizing the
parameters is hard:

 General local optimization routines such as EM algorithm /
simulated annealing are used.

16

Biological sequence analysis course

C O M P L E T I N G T H E P I P E L I N E S :

C L U S T E R I N G , U P G M A , N E I G H B O R J O I N I N G

Part II

Recall: Phylogeny by distance method pipeline

For all pairs of
species, find the

homologous
genes

genome sequences

of the species

Compute the
rearrangement
distance for all
pairs of species

permutations

representing

the homologs

Build the
phylogenetic
tree from the

distances

D(A,B) for all species A and B

Element 1 Element 2

Element 3

18

?

Recall: Progressive multiple alignment example

19

ACACGAT ACGATG ACAGGAT ACAGGA

ACACGAT-
AC--GATG

ACAGGAT
ACAGGA-

ACACGAT-
AC--GATG
ACAGGAT-
ACAGGA--

?

Recall: Time series expression profiling

 It is possible to make a series of microarray
experiments to obtain a time series expression
profile for each gene.

 Cluster similarly behaving genes.
20

Clustering

 Hierarchical clustering

 Iteratively join two closest clusters until forming a tree
hierarchy (agglomerative… also divisive version exists)

 Distance between clusters can be e.g. max pair-wise distance
(complete linkage), min (single-linkage), UPGMA (average
linkage), neigbor joining

 Partitional clustering

 k-means, etc.

21

22

Distances in a phylogenetic tree

 Distance matrix D = (dij)
gives pairwise distances for
leaves of the phylogenetic
tree

 In addition, the phylogenetic
tree will now specify
distances between leaves and
internal nodes

 Denote these with dij as well

2 3 4 51

6

7

8

Distance dij states how

far apart species i and j

are evolutionary

23

Distances in evolutionary context

 Distances dij in evolutionary context satisfy the
following conditions

 Positivity: dij ≥0

 Identity: dij = 0 if and only if i = j

 Symmetry: dij = dji for each i, j

 Triangle inequality: dij ≤ dik + dkj for each i, j, k

 Distances satisfying these conditions are called

metric

 In addition, evolutionary mechanisms may impose

additional constraints on the distances

⊳ additive and ultrametric distances

24

Additive trees

 A tree is called additive, if the distance between any
pair of leaves (i, j) is the sum of the distances
between the leaves and a node k on the shortest path
from i to j in the tree

dij = dik + djk

25

Additive trees: example

A B C D

A 0 2 4 4

B 2 0 4 4

C 4 4 0 2

D 4 4 2 0

A

B

C

D

1

1

2
1

1

26

Ultrametric trees

 A rooted additive tree is called an ultrametric tree, if the
distances between any two leaves i and j, and their common
ancestor k are equal

dik = djk

 Edge length dij corresponds to the time elapsed since
divergence of i and j from the common parent

 In other words, edge lengths are measured by a molecular
clock with a constant rate

27

Identifying ultrametric data

 We can identify distances to be ultrametric by the
three-point condition:

D corresponds to an ultrametric tree if and only if for
any three species i, j and k, the distances satisfy
dij ≤ max(dik, dkj)

 If we find out that the data is ultrametric, we can

utilise a simple algorithm to find the corresponding

tree

28

Ultrametric trees

9

8

7

5 4 3 2 1

6

Observation time

T
im

e

29

Ultrametric trees

9

8

7

5 4 3 2 1

6

Observation time

T
im

e

Only vertical segments of the

tree have correspondence to

some distance dij:

Horizontal segments act as

connectors.

d8,9

30

Ultrametric trees

9

8

7

5 4 3 2 1

6

Observation time

T
im

e

dik = djk for any two leaves

i, j and any ancestor k of

i and j

31

Ultrametric trees

9

8

7

5 4 3 2 1

6

Observation time

T
im

e

Three-point condition: there are

no leafs i, j for which dij > max(dik, djk)

for some leaf k.

32

UPGMA algorithm

 UPGMA (unweighted pair group method using
arithmetic averages) constructs a phylogenetic tree
via clustering

 The algorithm works by at the same time

 Merging two clusters

 Creating a new node on the tree

 The tree is built from leaves towards the root

 UPGMA produces a ultrametric tree

33

Cluster distances

 Let distance dij between clusters Ci and Cj be

that is, the average distance between points (species)
in the cluster.

,
||||

1

,





ji CqCp

pq

ji

ij d
CC

d

34

UPGMA algorithm

 Initialisation

 Assign each point i to its own cluster Ci

 Define one leaf for each sequence, and place it at height zero

 Iteration

 Find clusters i and j for which dij is minimal

 Define new cluster k by Ck = Ci ∪ Cj, and define dkl for all l

 Define a node k with children i and j. Place k at height dij/2

 Remove clusters i and j

 Termination:
 When only two clusters i and j remain, place root at height dij/2

35

1 2

3

4

5

36

1 2

3

4

5
1 2

6
2,1

2

1
d

37

1 2

3

4

5
1 2 4 5

6 7
5,4

2

1
d

38

1 2

3

4

5
1 2 4 5

6 7

8

3

7,3
2

1
d

39

1 2

3

4

5
1 2 4 5

6 7

8

3

9

8,6
2

1
d

40

UPGMA implementation

 In naive implementation, each iteration takes O(n2)
time with n sequences => algorithm takes O(n3) time

 The algorithm can be implemented to take only
O(n2) time (see Gronau & Moran, 2006, for a survey)

41

Problem solved?

 We now have a simple algorithm which finds a ultrametric
tree

 If the data is ultrametric, then there is exactly one ultrametric tree
corresponding to the data (proof left as an exercise)

 The tree found is then the ”correct” solution to the phylogeny
problem, if the assumptions hold

 Unfortunately, the data is not ultrametric in practice

 Measurement errors distort distances

 Basic assumption of a molecular clock does not hold usually very
well

42

Incorrect reconstruction of non-ultrametric data by
UPGMA

1

2
3

4

1 2 34

Tree which corresponds

to non-ultrametric

distances

Incorrect ultrametric reconstruction

by UPGMA algorithm

