Elements of Bioinformatics Autumn 2010

VELI MÄKINEN

HTTP://WWW.CS.HELSINKI.FI/EN/COURSES / 582606/2010/S/K/1

Lecture Thu 25.11.

GENE PREDICTION CONTINUED AND
COMPLETING THE PIPELINES

Part I

STATISTICAL APPROACHES TO GENE PREDICTION:

HMMS, VITERBI, FORWARD, BACKWARD

Hidden Markov Models : Idea

- Consider using GC content to segment a DNA sequence into coding and non-coding parts.
- A natural way to model this is to study "two"-state finite automaton reading the DNA, where one state corresponds to being in coding part and the other to being in non-coding part:

Hidden Markov Models: Idea

- Now, the above automaton just recognizes any DNA sequence and the path taken through the automaton labels each position as coding or non-coding.
- Plug in the state-dependent probabilities of emitting a symbol and small probabilities to change the state.
- The most probable path through the automaton corresponds to the most probable segmentation given the parameters (transition and emission probabilities).

Hidden Markov Models: Definition

- Hidden Markov Models could be defined as the probabilistic extension of finite automaton like the previous example suggests, but the convention is to separate emissions and transitions:
- Nodes emit symbols and all transitions are epsilon-transitions.
- Equivalent notion in terms of expressibility.

Hidden Markov Models: Definition

- Hidden Markov Model (HMM) is a tuple (H, $\Sigma, \mathrm{T}, \mathrm{E}, \mathrm{p})$, where $H=\{1, \ldots,|H|\}$ is the set of states, Σ the set of symbols, T the set of transitions, E the set of emissions, and p the probability distribution for elements of T and E , with the following conditions:
- Let $\mathrm{p}(\mathrm{t})$ and $\mathrm{p}(\mathrm{e})$ denote the probability for transition $\mathrm{t}:=\left(\mathrm{h}, \mathrm{h}^{\prime}\right)$ in T and emission e:=(h,c) in E, respectively, where h,h' in H and c in Σ :
$\times \sum_{h^{\prime} \text { in }} \mathrm{p}\left(\mathrm{h}, \mathrm{h}^{\prime}\right)=1, \sum_{\mathrm{c} \text { in } \Sigma} \mathrm{p}(\mathrm{h}, \mathrm{c})=1$ for all h in H .
- There is a single start state $\mathrm{h}_{\text {start }}$ in H such that there is no transition (h , $\mathrm{h}_{\text {start }}$) in T .
- There is a single end state $\mathrm{h}_{\text {end }}$ in H such that there is no transition $\left(\mathrm{h}_{\text {end }}\right.$, h) in T.

Hidden Markov Models: Definition

- A path through HMM is a sequence h of hidden states $\mathbf{h}=\mathrm{h}_{\mathrm{o}}, \mathrm{h}_{1}, \mathrm{~h}_{2}, \ldots, \mathrm{~h}_{\mathrm{n}}, \mathrm{h}_{\mathrm{n}+1}$, where $\mathrm{h}_{\mathrm{o}}=\mathrm{h}_{\text {start }}, \mathrm{h}_{\mathrm{n}+1}=\mathrm{h}_{\text {end }}$, and h_{i} in $\mathrm{H} \backslash\left\{\mathrm{h}_{\text {start }}, \mathrm{h}_{\text {end }}\right\}$. The probability of path \mathbf{h} given a sequence $\mathrm{c}=\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}, \mathrm{c}_{\mathrm{i}}$ in Σ, is

$$
P(h \mid c)=\prod_{i=0}^{n} p\left(h_{i}, h_{i+1}\right) \prod_{i=1}^{n} p\left(h_{i}, c_{i}\right) .
$$

- Let us denote
- by H(n) the set of all paths through HMM of length $\mathrm{n}+2$ including start $\left(\mathrm{h}_{\mathrm{o}}\right)$ and end $\left(h_{n+1}\right)$ states,
- by $\mathrm{H}^{\mathrm{p}}(\mathrm{n})$ the set of all (prefix) paths of length $\mathrm{n}+1$ inside HMM excluding end state ($\mathrm{h}_{\mathrm{n}+1}$),
- by $\mathrm{H}^{\mathrm{s}}(\mathrm{n})$ the set of all (suffix) paths of length $\mathrm{n}+1$ inside HMM excluding start state (h_{0}),
- and by $\mathrm{H}^{*}(\mathrm{n})$ the set of all (local) paths of length n inside HMM excluding start $\left(h_{0}\right)$ and end $\left(h_{n+1}\right)$ states.

Three common problems studied on HMM

- Most probable path:
- Given sequence $\mathbf{c}=\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}, \mathrm{c}_{\mathrm{i}}$ in Σ, find the path \mathbf{h}^{*} having the highest probability:

$$
h^{*}=\underset{h \in H(n)}{\arg \max } P(h \mid c)=\underset{h \in H(n)}{\arg \max } \prod_{i=0}^{n} p\left(h_{i}, h_{i+1}\right) \prod_{i=1}^{n} p\left(h_{i}, c_{i}\right) .
$$

- Probability of sequence being generated by HMM:
- Given sequence $\mathbf{c}=\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}, \mathrm{c}_{\mathrm{i}}$ in Σ, compute the probability

$$
\sum_{h \in H(n)} P(h \mid c)=\sum_{h \in H(n)} \prod_{i=0}^{n} p\left(h_{i}, h_{i+1}\right) \prod_{i=1}^{n} p\left(h_{i}, c_{i}\right) .
$$

- Probability of c_{j} matching state k :
- Given sequence $\mathbf{c}=\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}, \mathrm{c}_{\mathrm{i}}$ in Σ, compute the probability

$$
\sum_{h \in H(n)} P\left(h \mid c, h_{j}=k\right)=\sum_{h \in H(n), h_{j}=k} \prod_{i=0}^{n} p\left(h_{i}, h_{i+1}\right) \prod_{i=1}^{n} p\left(h_{i}, c_{i}\right)
$$

Three common problems studied on HMM

- All three problems can be solved using dynamic programming:
- First one with an algorithm called viterbi.
- Second one with an algorithm called forward.
- Third one with a combination of executing forward algorithm on \mathbf{c} and its reverse (called backward algorithm then).
- The difference in viterbi and forward is simply to replace max with sum.

Viterbi algorithm

- Compute a matrix V[o...n+1,1...|H|] such that V[j,k] equals

$$
\max _{h \in H^{p}\left(j, h_{j}=k\right.} P\left(h \mid c_{1} \ldots c_{j}\right)=\max _{h \in H^{p}(j-1)}\left(P\left(h \mid c_{1} \ldots c_{j-1}\right) \max _{\left(h_{j-1}, k\right) \in T} p\left(h_{j-1}, k\right) p\left(k, c_{j}\right)\right) .
$$

- That is, $V[j, k]=\max _{\left(k^{\prime}, k\right) \in T} V\left[j-1, k^{\prime}\right] p\left(k^{\prime}, k\right) p\left(k, c_{j}\right)$.
- Let $\mathrm{k}=1$ denote the start state and $\mathrm{k}=|\mathrm{H}|$ the end state.
- Initialization: $V[0,1]=1$.
- Finalization: $V[n+1,|H|]=\max _{\left(k^{\prime},|H|\right) \in T} V\left[n, k^{\prime}\right] p\left(k^{\prime},|H|\right)$.
- Probability of the most probable path is $\mathrm{V}[\mathrm{n}+1,|\mathrm{H}|]$.
- The most probable path can be traced back checking which V[n, $\left.\mathrm{k}^{\top}\right] p\left(\mathrm{k}^{\prime},|\mathrm{H}|\right)$ equals $\mathrm{V}[\mathrm{n}+1,|\mathrm{H}|]$, and so on.
- Running time O(n $|\mathrm{T}|$).

Forward algorithm

- Compute a matrix $\mathrm{F}[\mathrm{o} \ldots \mathrm{n}+1,1 \ldots|\mathrm{H}|]$ such that $\mathrm{F}[\mathrm{j}, \mathrm{k}]$ equals

$$
\sum_{h \in H^{\gamma}\left(j, h_{j}=k\right.} P\left(h \mid c_{1} \ldots c_{j}\right)=\sum_{h \in H^{p}(j-1)}\left(P\left(h \mid c_{1} \ldots c_{j-1}\right) \sum_{\left(h_{j-1}, k\right) \in T} p\left(h_{j-1}, k\right) p\left(k, c_{j}\right)\right) .
$$

- That is, $F[j, k]=\sum_{(k: k) \in T} F\left[j-1, k^{\prime}\right] p\left(k^{\prime}, k\right) p\left(k, c_{j}\right)$.
- Let $\mathrm{k}=1$ denote the start state and $\mathrm{k}=|\mathrm{H}|$ the end state.
- Initialization: $F[0,1]=1$.
- Finalization: $F[n+1,|H|]=\sum_{(k ;|H| \in \tau} F\left[n, k^{\prime}\right] p\left(k^{\prime},|H|\right)$.
- Probability of the sequence is $\mathrm{F}[\mathrm{n}+1,|\mathrm{H}|]$.

Backward algorithm

- Compute a matrix $\mathrm{B}[\mathrm{o} \ldots \mathrm{n}+1,1 \ldots|\mathrm{H}|]$ such that $\mathrm{B}[\mathrm{j}, \mathrm{k}]$ equals

$$
\sum_{h \in H^{*}(j)} P\left(h \mid c_{n-j+1} \ldots c_{n}\right)=\sum_{h \in H^{*}(j-1)}\left(P\left(h \mid c_{n-j+2} \ldots c_{n}\right) \sum_{\left(k, h_{1}\right) \in T} p\left(k, h_{1}\right) p\left(k, c_{n-j+1}\right)\right) .
$$

- That is, $B[j, k]=\sum_{(k, k) \in T} B\left[j-1, k^{\prime}\right] p\left(k, k^{\prime}\right) p\left(k, c_{n-j+1}\right)$.
- Let $\mathrm{k}=1$ denote the start state and $\mathrm{k}=|\mathrm{H}|$ the end state.
- Initialization: $B[0,|H|]=1$.
- Finalization: $B[n+1,1]=\sum_{\left(, k k^{\prime}\right) \in T} B\left[n, k^{\prime}\right] p\left(1, k^{\prime}\right)$.
- Probability of the sequence is $\mathrm{B}[\mathrm{n}+1,1]$.

Probability of c_{j} matching state k

- Can be computed through F and B:

$$
\begin{aligned}
& \sum_{h \in H(n)} P\left(h \mid c_{1} \ldots c_{n}, h_{j}=k\right) \\
= & \sum_{h \in H^{p}(j), h_{j}=k}\left(P\left(h \mid c_{1} \ldots c_{j}\right) \sum_{\left(k, k^{\prime}\right) \in T} p\left(k, k^{\prime}\right) \sum_{h^{\prime} \in H^{s}(n-j), h_{1}^{\prime}=k^{\prime}} P\left(h_{j+1}^{\prime} \ldots c_{n}\right)\right) \\
= & F[j, k] \sum_{\left(k, k^{\prime}\right) \in T} p\left(k, k^{\prime}\right) B\left[n-j+1, k^{\prime}\right]
\end{aligned}
$$

Log transform

- Multiplication is the source of numerical problems in HMM algorithms.
- However, easy to go over by transforming series of multiplications into summation of logarithms:

$$
\log \prod_{i} p_{i}=\sum_{i} \log p_{i}
$$

- For example, in viterbi we can fill in table VL[] with rule

$$
V L[j, k]=\max _{\left(k^{\prime}, k\right) \in T} V L\left[j-1, k^{\prime}\right]+\log p\left(k^{\prime}, k\right)+\log p\left(k, c_{j}\right)
$$

- Then

$$
V[j, k]=2^{V L[j, k]}
$$

with initialization VL[0,1]=1.

Where the probabilities?

- Learn from the data (Introduction to Machine Learning course).
- Given a set of valid annotated hidden paths (like DNA sequences with exon/intron annotation), it is easy to compute the frequencies of different emissions and transitions taken.
- Add pseudocounts to cope with too sparse training data.
- Without the annotation, the task of optimizing the parameters is hard:
- General local optimization routines such as EM algorithm / simulated annealing are used.
\longrightarrow Biological sequence analysis course

Part II

COMPLETING THE PIPELINES:

 CLUSTERING, UPGMA, NEIGHBOR JOINING
Recall: Phylogeny by distance method pipeline

genome sequences of the species

Element 1 \square

Element 2
Compute the rearrangement distance for all pairs of species
For all pairs of species, find the homologous genes

Element 3
?

Build the
phylogenetic
tree from the
distances

Recall: Progressive multiple alignment example

Recall: Time series expression profiling

- It is possible to make a series of microarray experiments to obtain a time series expression profile for each gene.

- Cluster similarly behaving genes.

Clustering

- Hierarchical clustering
- Iteratively join two closest clusters until forming a tree hierarchy (agglomerative... also divisive version exists)
- Distance between clusters can be e.g. max pair-wise distance (complete linkage), min (single-linkage), UPGMA (average linkage), neigbor joining
- Partitional clustering
- k-means, etc.

Distances in a phylogenetic tree

- Distance matrix D $=\left(\mathrm{d}_{i j}\right)$ gives pairwise distances for leaves of the phylogenetic tree
- In addition, the phylogenetic tree will now specify distances between leaves and internal nodes
- Denote these with d_{ij} as well

Distance d_{ij} states how far apart species i and j are evolutionary

Distances in evolutionary context

- Distances d_{ij} in evolutionary context satisfy the following conditions
- Positivity: $\mathrm{d}_{\mathrm{ij}} \geq 0$
- Identity: $\mathrm{d}_{\mathrm{ij}}=0$ if and only if $\mathrm{i}=\mathrm{j}$
- Symmetry: $\mathrm{d}_{\mathrm{ij}}=\mathrm{d}_{\mathrm{ij}}$ for each i, j
- Triangle inequality: $\mathrm{d}_{\mathrm{ij}} \leq \mathrm{d}_{\mathrm{ik}}+\mathrm{d}_{\mathrm{kj}}$ for each $\mathrm{i}, \mathrm{j}, \mathrm{k}$
- Distances satisfying these conditions are called metric
- In addition, evolutionary mechanisms may impose additional constraints on the distances \triangleright additive and ultrametric distances

Additive trees

- A tree is called additive, if the distance between any pair of leaves (i, j) is the sum of the distances between the leaves and a node k on the shortest path from ito j in the tree

$$
\mathrm{d}_{\mathrm{ij}}=\mathrm{d}_{\mathrm{ik}}+\mathrm{d}_{\mathrm{jk}}
$$

Additive trees: example

	A	B	C	D
A	0	2	4	4
B	2	0	4	4
C	4	4	0	2
D	4	4	2	0

Ultrametric trees

- A rooted additive tree is called an ultrametric tree, if the distances between any two leaves i and j, and their common ancestor k are equal

$$
\mathrm{d}_{\mathrm{ik}}=\mathrm{d}_{\mathrm{jk}}
$$

- Edge length d_{ij} corresponds to the time elapsed since divergence of i and j from the common parent
- In other words, edge lengths are measured by a molecular clock with a constant rate

Identifying ultrametric data

- We can identify distances to be ultrametric by the three-point condition:
D corresponds to an ultrametric tree if and only if for any three species i, j and k, the distances satisfy $\mathrm{d}_{\mathrm{ij}} \leq \max \left(\mathrm{d}_{\mathrm{ik}}, \mathrm{d}_{\mathrm{kj}}\right)$
- If we find out that the data is ultrametric, we can utilise a simple algorithm to find the corresponding tree

Ultrametric trees

Ultrametric trees

Ultrametric trees

Ultrametric trees

UPGMA algorithm

- UPGMA (unweighted pair group method using arithmetic averages) constructs a phylogenetic tree via clustering
- The algorithm works by at the same time
- Merging two clusters
- Creating a new node on the tree
- The tree is built from leaves towards the root
- UPGMA produces a ultrametric tree

Cluster distances

- Let distance d_{ij} between clusters C_{i} and C_{j} be

$$
d_{i j}=\frac{1}{\left|C_{i} \| C_{j}\right|} \sum_{p \in C_{i}, q \in C_{j}} d_{p q},
$$

that is, the average distance between points (species) in the cluster.

UPGMA algorithm

- Initialisation

- Assign each point i to its own cluster C_{i}
- Define one leaf for each sequence, and place it at height zero
- Iteration
- Find clusters i and j for which d_{ij} is minimal
- Define new cluster k by $C_{k}=C_{i} \cup C_{j}$, and define $d_{k l}$ for all I
- Define a node k with children i and j. Place k at height $d_{i j} / 2$
- Remove clusters i and j
- Termination:
- When only two clusters i and j remain, place root at height $d_{i j} / 2$

$$
\begin{array}{llll}
1 & 2 & \\
0 & 0 & \\
& & & \\
& & &
\end{array}
$$

4°

5

UPGMA implementation

- In naive implementation, each iteration takes $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time with n sequences $=>$ algorithm takes $O\left(n^{3}\right)$ time
- The algorithm can be implemented to take only $O\left(n^{2}\right)$ time (see Gronau \& Moran, 2006, for a survey)

Problem solved?

- We now have a simple algorithm which finds a ultrametric tree
- If the data is ultrametric, then there is exactly one ultrametric tree corresponding to the data (proof left as an exercise)
- The tree found is then the "correct" solution to the phylogeny problem, if the assumptions hold
- Unfortunately, the data is not ultrametric in practice
- Measurement errors distort distances
- Basic assumption of a molecular clock does not hold usually very well

Incorrect reconstruction of non-ultrametric data by UPGMA

Tree which corresponds to non-ultrametric distances

Incorrect ultrametric reconstruction by UPGMA algorithm

