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Hidden Markov Models : Idea

 Consider using GC content to segment a DNA sequence into 
coding and non-coding parts.

 A natural way to model this is to study ”two”-state finite 
automaton reading the DNA, where one state corresponds 
to being in coding part and the other to being in non-coding 
part:
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Hidden Markov Models: Idea

 Now, the above automaton just recognizes any DNA sequence and the 
path taken through the automaton labels each position as coding or 
non-coding.

 Plug in the state-dependent probabilities of emitting a symbol and small 
probabilities to change the state.

 The most probable path through the automaton corresponds to the most 
probable segmentation given the parameters (transition and emission 
probabilities).
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Hidden Markov Models: Definition

 Hidden Markov Models could be defined as the 
probabilistic extension of finite automaton like the previous 
example suggests, but the convention is to separate 
emissions and transitions:

 Nodes emit symbols and all transitions are epsilon-transitions.

 Equivalent notion in terms of expressibility.
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Hidden Markov Models: Definition

 Hidden Markov Model (HMM) is a tuple (H, Σ, T, E, p), 
where H={1,…,|H|} is the set of states, Σ the set of symbols, 
T the set of transitions, E the set of emissions, and p the 
probability distribution for elements of T and E, with the 
following conditions:  
 Let p(t) and p(e) denote the probability for transition t:=(h,h’) in T and 

emission  e:=(h,c) in E, respectively, where h,h’ in H and c in Σ:

 ∑h’ in H p(h,h’)=1, ∑c in Σ p(h,c)=1 for all h in H.

 There is a single start state hstart in H such that there is no transition (h, 
hstart) in T.

 There is a single end state hend in H such that there is no transition (hend, 
h) in T. 
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Hidden Markov Models: Definition

 A path through HMM is a sequence h of hidden states 
h=h0,h1,h2,...,hn,hn+1, where h0=hstart, hn+1=hend, and hi in H\{hstart, hend}. 
The probability of path h given a sequence c=c1,c2,...,cn, ci in Σ, is

 Let us denote 

 by H(n) the set of all paths through HMM of length n + 2 including start (h0) 
and end (hn+1) states, 

 by Hp(n) the set of all (prefix) paths of length n+1 inside HMM excluding 
end state (hn+1), 

 by Hs(n) the set of all (suffix) paths of length n+1 inside HMM excluding 
start state (h0) , 

 and by H*(n) the set of all (local) paths of length n inside HMM excluding 
start (h0) and end (hn+1) states.

8

.),(),()|(
10

1 



n

i

ii

n

i

ii chphhpchP



Three common problems studied on HMM

 Most probable path:

 Given sequence c=c1,c2,...,cn , ci in Σ, find the path h* having the 
highest probability:

 Probability of sequence being generated by HMM:

 Given sequence c=c1,c2,...,cn , ci in Σ, compute the probability

 Probability of cj matching state k:

 Given sequence c=c1,c2,...,cn , ci in Σ, compute the probability
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Three common problems studied on HMM

 All three problems can be solved using dynamic 
programming:

 First one with an algorithm called viterbi.

 Second one with an algorithm called forward.

 Third one with a combination of executing forward algorithm 
on c and its reverse (called backward algorithm then).

 The difference in viterbi and forward is simply to replace max 
with sum.

10



Viterbi algorithm

 Compute a matrix V[0…n+1,1...|H|] such that V[j,k] equals 

 That is,

 Let k=1 denote the start state and k=|H| the end state. 

 Initialization: 

 Finalization: 

 Probability of the most probable path is V[n+1,|H|].

 The most probable path can be traced back checking which 
V[n,k’]p(k’,|H|) equals V[n+1,|H|], and so on.

 Running time O(n |T|).
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Forward algorithm

 Compute a matrix F[0…n+1,1...|H|] such that F[j,k] equals 

 That is,

 Let k=1 denote the start state and k=|H| the end state. 

 Initialization: 

 Finalization: 

 Probability of the sequence is F[n+1,|H|].
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Backward algorithm

 Compute a matrix B[0…n+1,1...|H|] such that B[j,k] equals 

 That is,

 Let k=1 denote the start state and k=|H| the end state. 

 Initialization: 

 Finalization: 

 Probability of the sequence is B[n+1,1].

13

.),(),()|()|(
)1( ),(

112

)(

1

1

 
 





 














jHh Thk

jnnjn

jHh

njn
ss

ckphkpcchPcchP 

.),()',(]',1[],[
)',(

1



Tkk

jnckpkkpkjBkjB

.)',1(]',[]1,1[
)',1(





Tk

kpknBnB

.1|]|,0[ HB



Probability of cj matching state k

 Can be computed through F and B:
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Log transform

 Multiplication is the source of numerical problems in HMM 
algorithms.

 However, easy to go over by transforming series of 
multiplications into summation of logarithms:

 For example, in viterbi we can fill in table VL[] with rule

 Then 

with initialization VL[0,1]=1.
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Where the probabilities?

 Learn from the data (Introduction to Machine Learning
course).

 Given a set of valid annotated hidden paths (like DNA 
sequences with exon/intron annotation), it is easy to 
compute the frequencies of different emissions and 
transitions taken.
 Add pseudocounts to cope with too sparse training data.

 Without the annotation, the task of optimizing the 
parameters is hard:

 General local optimization routines such as EM algorithm / 
simulated annealing are used. 
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Recall: Phylogeny by distance method pipeline

For all pairs of 
species, find the 

homologous
genes

genome sequences

of the species

Compute the 
rearrangement
distance for all
pairs of species

permutations 

representing

the homologs 

Build the 
phylogenetic
tree from the 

distances

D(A,B) for all species A and B

Element 1 Element 2

Element 3
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Recall: Progressive multiple alignment example
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Recall: Time series expression profiling

 It is possible to make a series of microarray 
experiments to obtain a time series expression 
profile for each gene.

 Cluster similarly behaving genes.
20



Clustering

 Hierarchical clustering

 Iteratively join two closest clusters until forming a tree 
hierarchy (agglomerative… also divisive version exists)

 Distance between clusters can be e.g. max pair-wise distance 
(complete linkage), min (single-linkage), UPGMA (average 
linkage), neigbor joining

 Partitional clustering

 k-means, etc.
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Distances in a phylogenetic tree

 Distance matrix D = (dij) 
gives pairwise distances for 
leaves of the phylogenetic 
tree

 In addition, the phylogenetic 
tree will now specify 
distances between leaves and 
internal nodes

 Denote these with dij as well

2 3 4 51

6

7

8

Distance dij states how 

far apart species i and j

are evolutionary
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Distances in evolutionary context

 Distances dij in evolutionary context satisfy the 
following conditions

 Positivity: dij ≥0

 Identity: dij = 0 if and only if i = j

 Symmetry: dij = dji for each i, j

 Triangle inequality: dij ≤ dik + dkj for each i, j, k

 Distances satisfying these conditions are called 

metric

 In addition, evolutionary mechanisms may impose 

additional constraints on the distances

⊳ additive and ultrametric distances
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Additive trees

 A tree is called additive, if the distance between any 
pair of leaves (i, j) is the sum of the distances 
between the leaves and a node k on the shortest path 
from i to j in the tree

dij = dik + djk
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Additive trees: example

A B C D

A 0 2 4 4

B 2 0 4 4

C 4 4 0 2

D 4 4 2 0

A

B

C

D

1

1

2
1

1
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Ultrametric trees

 A rooted additive tree is called an ultrametric tree, if the 
distances between any two leaves i and j, and their common 
ancestor k are equal

dik = djk

 Edge length dij corresponds to the time elapsed since 
divergence of i and j from the common parent

 In other words, edge lengths are measured by a molecular 
clock with a constant rate
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Identifying ultrametric data

 We can identify distances to be ultrametric by the 
three-point condition:

D corresponds to an ultrametric tree if and only if for 
any three species i, j and k, the distances satisfy       
dij ≤ max(dik, dkj)

 If we find out that the data is ultrametric, we can 

utilise a simple algorithm to find the corresponding 

tree
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Ultrametric trees
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Ultrametric trees
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Only vertical segments of the 

tree have correspondence to 

some distance dij:

Horizontal segments act as 

connectors.

d8,9
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Ultrametric trees
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dik = djk for any two leaves

i, j and any ancestor k of

i and j
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Ultrametric trees
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Three-point condition: there are

no leafs i, j for which dij > max(dik, djk)

for some leaf k.
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UPGMA algorithm

 UPGMA (unweighted pair group method using 
arithmetic averages) constructs a phylogenetic tree 
via clustering

 The algorithm works by at the same time

 Merging two clusters

 Creating a new node on the tree

 The tree is built from leaves towards the root

 UPGMA produces a ultrametric tree
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Cluster distances

 Let distance dij between clusters Ci and Cj be

that is, the average distance between points (species) 
in the cluster.
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UPGMA algorithm

 Initialisation

 Assign each point i to its own cluster Ci

 Define one leaf for each sequence, and place it at height zero

 Iteration

 Find clusters i and j for which dij is minimal

 Define new cluster k by Ck = Ci ∪ Cj, and define dkl for all l

 Define a node k with children i and j. Place k at height dij/2

 Remove clusters i and j

 Termination: 
 When only two clusters i and j remain, place root at height dij/2
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UPGMA implementation

 In naive implementation, each iteration takes O(n2)
time with n sequences => algorithm takes O(n3) time

 The algorithm can be implemented to take only 
O(n2) time (see Gronau & Moran, 2006, for a survey)
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Problem solved?

 We now have a simple algorithm which finds a ultrametric 
tree

 If the data is ultrametric, then there is exactly one ultrametric tree 
corresponding to the data (proof left as an exercise)

 The tree found is then the ”correct” solution to the phylogeny 
problem, if the assumptions hold

 Unfortunately, the data is not ultrametric in practice

 Measurement errors distort distances

 Basic assumption of a molecular clock does not hold usually very 
well
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Incorrect reconstruction of non-ultrametric data by
UPGMA

1

2
3

4

1 2 34

Tree which corresponds 

to non-ultrametric 

distances

Incorrect ultrametric reconstruction

by UPGMA algorithm


