Elements of Bioinformatics Autumn 2010

VELI MÄKINEN

HTTP://WWW.CS.HELSINKI.FI/EN/COURSES/ 582606/2010/S/K/1

Lecture Thu 25.11.

GENE PREDICTION CONTINUED AND COMPLETING THE PIPELINES

Part I

STATISTICAL APPROACHES TO GENE PREDICTION: HMMS, VITERBI, FORWARD, BACKWARD

Hidden Markov Models : Idea

- Consider using GC content to segment a DNA sequence into coding and non-coding parts.
- A natural way to model this is to study "two"-state finite automaton reading the DNA, where one state corresponds to being in coding part and the other to being in non-coding part:

Hidden Markov Models: Idea

- Now, the above automaton just recognizes any DNA sequence and the path taken through the automaton labels each position as coding or non-coding.
 - Plug in the state-dependent probabilities of emitting a symbol and small probabilities to change the state.
 - The most probable path through the automaton corresponds to the most probable segmentation given the parameters (transition and emission probabilities).

Hidden Markov Models: Definition

- Hidden Markov Models could be defined as the probabilistic extension of finite automaton like the previous example suggests, but the convention is to separate emissions and transitions:
 - Nodes emit symbols and all transitions are epsilon-transitions.
 - Equivalent notion in terms of expressibility.

Hidden Markov Models: Definition

- *Hidden Markov Model (HMM)* is a tuple (H, Σ, T, E, p), where H={1,...,|H|} is the set of states, Σ the set of symbols, T the set of transitions, E the set of emissions, and p the probability distribution for elements of T and E, with the following conditions:
 - Let p(t) and p(e) denote the probability for transition t:=(h,h') in T and emission e:=(h,c) in E, respectively, where h,h' in H and c in Σ:

× $\sum_{h' \text{ in } H} p(h,h')=1$, $\sum_{c \text{ in } \Sigma} p(h,c)=1$ for all h in H.

- There is a single *start state* h_{start} in H such that there is no transition (h, h_{start}) in T.
- There is a single *end state* h_{end} in H such that there is no transition (h_{end}, h) in T.

Hidden Markov Models: Definition

• A *path through HMM* is a sequence **h** of hidden states $h=h_0,h_1,h_2,...,h_n,h_{n+1}$, where $h_0=h_{start}$, $h_{n+1}=h_{end}$, and h_i in H\{ h_{start} , h_{end} }. The probability of path **h** given a sequence $c=c_1,c_2,...,c_n$, c_i in Σ , is

$$P(h \mid c) = \prod_{i=0}^{n} p(h_i, h_{i+1}) \prod_{i=1}^{n} p(h_i, c_i).$$

- Let us denote
 - by H(n) the set of all paths through HMM of length n + 2 including start (h_0) and end (h_{n+1}) states,
 - by H^p(n) the set of all (*prefix*) paths of length n+1 inside HMM excluding end state (h_{n+1}),
 - by H^s(n) the set of all (*suffix*) paths of length n+1 inside HMM excluding start state (h_o),
 - and by H^{*}(n) the set of all (*local*) paths of length n inside HMM excluding start (h_o) and end (h_{n+1}) states.

Three common problems studied on HMM

• Most probable path:

- Given sequence $\mathbf{c}=\mathbf{c}_1,\mathbf{c}_2,...,\mathbf{c}_n$, \mathbf{c}_i in Σ , find the path \mathbf{h}^* having the highest probability:
 - $h^* = \underset{h \in H(n)}{\arg \max} P(h \mid c) = \underset{h \in H(n)}{\arg \max} \prod_{i=0} p(h_i, h_{i+1}) \prod_{i=1} p(h_i, c_i).$
- Probability of sequence being generated by HMM:

ο Given sequence $\mathbf{c}=\mathbf{c}_1,\mathbf{c}_2,...,\mathbf{c}_n$, \mathbf{c}_i in Σ , compute the probability

$$\sum_{e \in H(n)} P(h \mid c) = \sum_{h \in H(n)} \prod_{i=0}^{n} p(h_i, h_{i+1}) \prod_{i=1}^{n} p(h_i, c_i).$$

• Probability of c_j matching state k: • Given sequence $c=c_1, c_2, ..., c_n$, c_i in Σ , compute the probability $\sum_{h \in H(n)} P(h | c, h_j = k) = \sum_{h \in H(n), h_i = k} \prod_{i=0}^n p(h_i, h_{i+1}) \prod_{i=1}^n p(h_i, c_i)$

Three common problems studied on HMM

• All three problems can be solved using dynamic programming:

- First one with an algorithm called *viterbi*.
- Second one with an algorithm called *forward*.
- Third one with a combination of executing forward algorithm on **c** and its reverse (called *backward* algorithm then).
- The difference in viterbi and forward is simply to replace max with sum.

Viterbi algorithm

• Compute a matrix V[0...n+1,1...|H|] such that V[j,k] equals

 $\max_{h \in H^{p}(j), h_{j}=k} P(h \mid c_{1} \dots c_{j}) = \max_{h \in H^{p}(j-1)} \left(P(h \mid c_{1} \dots c_{j-1}) \max_{(h_{j-1}, k) \in T} p(h_{j-1}, k) p(k, c_{j}) \right).$

- That is, $V[j,k] = \max_{(k',k)\in T} V[j-1,k']p(k',k)p(k,c_j)$.
- Let k=1 denote the start state and k=|H| the end state.
 Initialization: V[0,1]=1.
 Finalization: V[n+1,|H|] = max (k',|H|) \in T V[n,k']p(k',|H|).
- Probability of the most probable path is V[n+1,|H|].
- The most probable path can be traced back checking which V[n,k']p(k',|H|) equals V[n+1,|H|], and so on.
- Running time O(n |T|).

Forward algorithm

• Compute a matrix F[0...n+1,1...|H|] such that F[j,k] equals

$$\sum_{h \in H^{p}(j), h_{j}=k} P(h \mid c_{1} \dots c_{j}) = \sum_{h \in H^{p}(j-1)} \left(P(h \mid c_{1} \dots c_{j-1}) \sum_{(h_{j-1}, k) \in T} p(h_{j-1}, k) p(k, c_{j}) \right)$$

• That is,
$$F[j,k] = \sum_{(k',k)\in T} F[j-1,k']p(k',k)p(k,c_j).$$

Let k=1 denote the start state and k=|H| the end state.
○ Initialization: F[0,1]=1.
○ Finalization: F[n+1,|H|] = ∑F[n,k']p(k',|H|).

 $(k', |H|) \in T$

• Probability of the sequence is F[n+1,|H|].

Backward algorithm

• Compute a matrix B[0...n+1,1...|H|] such that B[j,k] equals

$$\sum_{k \in H^{s}(j)} P(h \mid c_{n-j+1} \dots c_{n}) = \sum_{h \in H^{s}(j-1)} \left(P(h \mid c_{n-j+2} \dots c_{n}) \sum_{(k,h_{1}) \in T} p(k,h_{1}) p(k,c_{n-j+1}) \right).$$

• That is,
$$B[j,k] = \sum_{(k,k')\in T} B[j-1,k']p(k,k')p(k,c_{n-j+1}).$$

Let k=1 denote the start state and k=|H| the end state.
○ Initialization: B[0, |H|] = 1.
○ Finalization: B[n+1,1] = ∑B[n,k']p(1,k').

 $(1,k') \in T$

• Probability of the sequence is B[n+1,1].

Probability of c_i matching state k

• Can be computed through **F** and **B**:

$$\sum_{h \in H(n)} P(h | c_1 \dots c_n, h_j = k)$$

= $\sum_{h \in H^p(j), h_j = k} \left(P(h | c_1 \dots c_j) \sum_{(k,k') \in T} p(k,k') \sum_{h' \in H^s(n-j), h'_1 = k'} P(h' | c_{j+1} \dots c_n) \right)$
= $F[j,k] \sum_{(k,k') \in T} p(k,k') B[n-j+1,k']$

Log transform

- Multiplication is the source of numerical problems in HMM algorithms.
- However, easy to go over by transforming series of multiplications into summation of logarithms:

$$\log \prod_{i} p_{i} = \sum_{i} \log p_{i}$$

• For example, in viterbi we can fill in table VL[] with rule

$$\mathcal{I}[j,k] = \max_{(k',k)\in T} \mathcal{V}L[j-1,k'] + \log p(k',k) + \log p(k,c_j).$$

• Then

 $V[j,k] = 2^{VL[j,k]}$ with initialization VL[0,1]=1.

Where the probabilities?

- Learn from the data (Introduction to Machine Learning course).
- Given a set of valid annotated hidden paths (like DNA sequences with exon/intron annotation), it is easy to compute the frequencies of different emissions and transitions taken.
 - Add pseudocounts to cope with too sparse training data.
- Without the annotation, the task of optimizing the parameters is hard:
 - General local optimization routines such as EM algorithm / simulated annealing are used.

---> Biological sequence analysis course

Part II

COMPLETING THE PIPELINES: CLUSTERING, UPGMA, NEIGHBOR JOINING

Recall: Time series expression profiling

• It is possible to make a series of microarray experiments to obtain a time series expression profile for each gene.

• *Cluster* similarly behaving genes.

Clustering

Hierarchical clustering

- Iteratively join two closest clusters until forming a tree hierarchy (agglomerative... also divisive version exists)
- Distance between clusters can be e.g. max pair-wise distance (complete linkage), min (single-linkage), UPGMA (average linkage), neigbor joining
- Partitional clustering
 - o k-means, etc.

Distances in a phylogenetic tree

- Distance matrix D = (d_{ij}) gives pairwise distances for *leaves* of the phylogenetic tree
- In addition, the phylogenetic tree will now specify distances between leaves and internal nodes
 - Denote these with d_{ij} as well

Distance d_{ij} states how far apart species i and j are evolutionary

Distances in evolutionary context

- Distances d_{ij} in evolutionary context satisfy the following conditions
 - Positivity: $d_{ij} ≥ 0$
 - Identity: $d_{ij} = 0$ if and only if i = j
 - Symmetry: $d_{ij} = d_{ji}$ for each i, j
 - Triangle inequality: $d_{ij} \le d_{ik} + d_{kj}$ for each i, j, k
- Distances satisfying these conditions are called *metric*
- In addition, evolutionary mechanisms may impose additional constraints on the distances
 - additive and ultrametric distances

Additive trees

A tree is called *additive*, if the distance between any pair of leaves (i, j) is the sum of the distances between the leaves and a node k on the shortest path from i to j in the tree

 $\mathbf{d}_{ij} = \mathbf{d}_{ik} + \mathbf{d}_{jk}$

Ultrametric trees

A rooted additive tree is called an *ultrametric tree*, if the distances between any two leaves i and j, and their common ancestor k are equal

• Edge length d_{ij} corresponds to the time elapsed since divergence of i and j from the common parent

 $d_{ik} = d_{ik}$

 In other words, edge lengths are measured by a *molecular clock* with a constant rate

Identifying ultrametric data

• We can identify distances to be ultrametric by the three-point condition:

D corresponds to an ultrametric tree if and only if for any three **species** i, j and k, the distances satisfy $d_{ij} \le \max(d_{ik}, d_{kj})$

 If we find out that the data is ultrametric, we can utilise a simple algorithm to find the corresponding tree

UPGMA algorithm

- UPGMA (unweighted pair group method using arithmetic averages) constructs a phylogenetic tree via clustering
- The algorithm works by at the same time
 - Merging two clusters
 - Creating a new node on the tree
- The tree is built from leaves towards the root
- UPGMA produces a ultrametric tree

Cluster distances

• Let distance d_{ij} between clusters C_i and C_j be

$$d_{ij} = \frac{1}{|C_i || C_j |} \sum_{p \in C_i, q \in C_j} d_{pq},$$

that is, the average distance between points (species) in the cluster.

UPGMA algorithm

Initialisation

- Assign each point i to its own cluster C_i
- Define one leaf for each sequence, and place it at height zero

Iteration

- Find clusters i and j for which d_{ij} is minimal
- Define new cluster k by $C_k = C_i \cup C_j$, and define d_{kl} for all l
- \circ Define a node **k** with children i and j. Place **k** at height $d_{ij}/2$
- Remove clusters i and j

Termination:

 \circ When only two clusters i and j remain, place root at height $d_{ij}/2$

UPGMA implementation

 In naive implementation, each iteration takes O(n²) time with n sequences => algorithm takes O(n³) time

 The algorithm can be implemented to take only O(n²) time (see Gronau & Moran, 2006, for a survey)

Problem solved?

- We now have a simple algorithm which finds a ultrametric tree
 - If the data is ultrametric, then there is exactly one ultrametric tree corresponding to the data (proof left as an exercise)
 - The tree found is then the "correct" solution to the phylogeny problem, if the assumptions hold
- Unfortunately, the data is not ultrametric in practice
 - Measurement errors distort distances
 - Basic assumption of a molecular clock does not hold usually very well

Tree which corresponds to non-ultrametric distances Incorrect ultrametric reconstruction by UPGMA algorithm