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Checking for additivity

 How can we check if our data is additive?

 Let i, j, k and l be four distinct species

 Compute 3 sums: dij + dkl, dik + djl, dil + djk
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Four-point condition

i

j l

k i

j l

k i

j l

kdik

djl

dil

djk

dij dkl

 The sums are represented by the three figures

 Left and middle sum cover all edges, right sum does not

 Four-point condition: i, j, k and l satisfy the four-point 
condition if two of the sums dij + dkl, dik + djl, dil + djk are 
the same, and the third one is smaller than these two
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Checking for additivity

 An n x n matrix D is additive if and only if the four 
point condition holds for every 4 distinct elements 1 
≤ i, j, k, l ≤ n

 See exercises for grounding of three-point 
(ultrametric) and four-point (additive) conditions.



7

Finding an additive phylogenetic tree

 Additive trees can be found with, for example, the neighbor 
joining method (Saitou & Nei, 1987)

 The neighbor joining method produces unrooted trees, 
which have to be rooted by other means
 A common way to root the tree is to use an outgroup

 Outgroup is a species that is known to be more distantly related to 
every other species than they are to each other

 Root node candidate: position where the outgroup would join the 
phylogenetic tree

 However, in real-world data, even additivity usually does 
not hold very well
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Neighbor joining algorithm

 Neighbor joining works in a similar fashion to 
UPGMA

 Find clusters C1 and C2 that minimise a function f(C1, C2)

 Join the two clusters C1 and C2 into a new cluster C

 Add a node to the tree corresponding to C

 Assign distances to the new branches

 Differences in
 The choice of function f(C1, C2)

 How to assign the distances
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Neighbor joining algorithm

 Recall that the distance dij for clusters Ci and Cj was

 Let u(Ci) be the separation of cluster Ci from other clusters 
defined by 

where n is the number of clusters.
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Neighbor joining algorithm

 Instead of trying to choose the clusters Ci and Cj

closest to each other, neighbor joining at the same 
time
 Minimises the distance between clusters Ci and Cj and

 Maximises the separation of both Ci and Cj from other clusters
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Neighbor joining algorithm

 Initialisation as in UPGMA

 Iteration

 Find clusters i and j for which dij – u(Ci) – u(Cj) is minimal

 Define new cluster k by Ck = Ci ∪ Cj, and define dkl for all l

 Define a node k with edges to i and j. Remove clusters i and j

 Assign length ½ dij + ½ (u(Ci) – u(Cj)) to the edge i -> k

 Assign length ½ dij + ½ (u(Cj) – u(Ci)) to the edge j -> k

 Termination: 
 When only one cluster remains
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Neighbor joining algorithm: example

a  b  c  d

a  0  6  7  5

b     0 11  9

c        0  6

d           0

i  u(i)

a  (6+7+5)/2 = 9

b  (6+11+9)/2 = 13

c  (7+11+6)/2 = 12

d  (5+9+6)/2 = 10

i,j  dij – u(Ci) – u(Cj)

a,b   6  - 9   - 13 = -16

a,c   7  - 9   - 12 = -14

a,d   5  - 9   - 10 = -14

b,c  11  - 13   - 12 = -14  

b,d   9  - 13   - 10 = -14

c,d   6  - 12   - 10 = -16

Choose either pair

to join
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Neighbor joining algorithm: example

a  b  c  d

a  0  6  7  5

b     0 11  9

c        0  6

d           0

i  u(i)

a  (6+7+5)/2 = 9

b  (6+11+9)/2 = 13

c  (7+11+6)/2 = 12

d  (5+9+6)/2 = 10

i,j  dij – u(Ci) – u(Cj)

a,b   6  - 9   - 13 = -16

a,c   7  - 9   - 12 = -14

a,d   5  - 9   - 10 = -14

b,c  11  - 13   - 12 = -14  

b,d   9  - 13   - 10 = -14

c,d   6  - 12   - 10 = -16

a    b    c    d 

e

dae = ½ 6 + ½ (9 – 13) = 1

dbe = ½ 6 + ½ (13 – 9) = 5 

dbedae

This is the first step only…



Neighbor joining algorithm: correctness

 Theorem: If D is an additive matrix, neighbor 
joining algorithm correctly constructs the 
corresponding additive tree.
Proof. (given on blackboard) 
Idea: Show that the leaves i and j joined must be 
neighbors in the additive tree (see Durbin et al., pp. 
190-191). Then the theorem follows by induction.
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S E Q U E N C E  A S S E M B L Y

Part II
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Genome sequencing & assembly

 DNA sequencing

 How do we obtain DNA sequence information from organisms?

 Genome assembly

 What is needed to put together DNA sequence information from 
sequencing?

 First statement of sequence assembly problem (according 
to G. Myers):

 Peltola, Söderlund, Tarhio, Ukkonen: Algorithms for some string 
matching problems arising in molecular genetics. Proc. 9th IFIP 
World Computer Congress, 1983
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?

Recovery of shredded newspaper
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DNA sequencing

 DNA sequencing: resolving a nucleotide sequence 
(whole-genome or less)

 Many different methods developed
 Maxam-Gilbert method (1977)

 Sanger method (1977)

 High-throughput methods
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Sanger sequencing: sequencing by synthesis

 A sequencing technique developed by Fred Sanger

 Also called dideoxy sequencing



20http://en.wikipedia.org/wiki/DNA_polymerase

DNA polymerase

 A DNA polymerase is an 
enzyme that catalyzes DNA 
synthesis

 DNA polymerase needs a 
primer

 Synthesis proceeds always in 5’-
>3’ direction
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Dideoxy sequencing

 In Sanger sequencing, chain-terminating 
dideoxynucleoside triphosphates (ddXTPs) are 
employed
 ddATP, ddCTP, ddGTP, ddTTP lack the 3’-OH tail of dXTPs

 A mixture of dXTPs with small amount of ddXTPs is 
given to DNA polymerase with DNA template and 
primer

 ddXTPs are given fluorescent labels
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Dideoxy sequencing

 When DNA polymerase encounters a ddXTP, the 
synthesis cannot proceed

 The process yields copied sequences of different 
lengths

 Each sequence is terminated by a labeled ddXTP



Determining the sequence

 Sequences are sorted 
according to length by 
capillary electrophoresis

 Fluorescent signals 
corresponding to labels 
are registered

 Base calling: identifying 
which base corresponds to 
each position in a read 

 Non-trivial problem!

Output sequences from

base calling are called reads

23
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Reads are short!

 Modern Sanger sequencers can produce quality 
reads up to ~750 bases1

 Instruments provide you with a quality file for bases in reads, 
in addition to actual sequence data

 Compare the read length against the size of the 
human genome (2.9x109 bases)

 Reads have to be assembled!

1 Nature Methods - 5, 16 - 18 (2008) 
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Problems with sequencing

 Sanger sequencing error rate per base varies from 1% 
to 3%1

 Repeats in DNA
 For example, ~300 base Alu sequence repeats over million 

times in human genome

 Repeats occur in different scales

 What happens if repeat length is longer than read 
length?
 We will get back to this problem later

1 Jones, Pevzner (2004)
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Shortest superstring problem

 Find the shortest string that ”explains” the reads

 Given a set of strings (reads), find a shortest 
string that contains all of them

 See Algorithms for Bioinformatics course notes and 
exercises for studies on the shortest superstring 
problem (approximation algorithm, generalization 
to approximate case).
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Shortest superstrings: issues

 NP-hard problem: unlikely to have an efficient 
(exact) algorithm; approximate solutions exist

 Reads may be from either strand of DNA

 Is the shortest string necessarily the correct 
assembly?

 What about errors in reads?

 Low coverage -> gaps in assembly
 Coverage: average number of times each base occurs in the set 

of reads (e.g., 5x coverage)
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Whole-genome shotgun sequence

 Whole-genome shotgun sequence assembly starts 
with a large sample of genomic DNA

1. Sample is randomly partitioned into inserts of length > 500 
bases

2. Inserts are multiplied by cloning them into a vector which 
is used to infect bacteria

3. DNA is collected from bacteria and sequenced

4. Reads are assembled
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Assembly of reads with Overlap-Layout-Consensus algorithm

 Overlap
 Finding potentially overlapping reads

 Layout
 Finding the order of reads along DNA

 Consensus

 Deriving the DNA sequence from the layout

Kececioglu, J.D. and E.W. Myers. 1995. Combinatorial algorithms for

DNA sequence assembly. Algorithmica 13: 7-51. 



Finding overlaps

 First, pairwise overlap 
alignment of reads is 
resolved

 Reads can be from either 
DNA strand: The reverse 
complement r* of each 
read r has to be 
considered

acggagtcc

agtccgcgctt

5’ 3’

3’ 5’

… a t g a g t g g a …

… t a c t c a c c t …

r1

r2

r1: tgagt, r1
*: actca

r2: tccac, r2
*: gtgga

30
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Example sequence to assemble

 20 reads:

5’ – CAGCGCGCTGCGTGACGAGTCTGACAAAGACGGTATGCGCATCG

TGATTGAAGTGAAACGCGATGCGGTCGGTCGGTGAAGTTGTGCT - 3’

#   Read        Read*

1 CATCGTCA    TCACGATG

2 CGGTGAAG    CTTCACCG

3 TATGCGCA    TGCGCATA

4 GACGAGTC    GACTCGTC

5 CTGACAAA    TTTGTCAG

6 ATGCGCAT    ATGCGCAT

7 ATGCGGTC GACCGCAT

8 CTGCGTGA    TCACGCAG

9 GCGTGACG    CGTCACGC

10 GTCGGTGA    TCACCGAC 

#   Read        Read*

11 GGTCGGTG    CACCGACC

12 ATCGTGAT    ATCACGAT

13 GCGCTGCG    CGCAGCGC

14 GCATCGTG    CACGATGC

15 AGCGCGCT    AGCGCGCT

16 GAAGTTGT    ACAACTTC

17 AGTGAAAC    GTTTCACT

18 ACGCGATG    CATCGCGT

19 GCGCATCG    CGATGCGC

20 AAGTGAAA    TTTCACTT
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Finding overlaps

 Overlap between two reads can be 
found with a dynamic 
programming algorithm

 Errors can be taken into account

 See 
http://www.cs.helsinki.fi/u/nvalima
k/opetus/afb10/ex4/prob1-4.pdf
(solution for assignment 4.)

 Overlap scores stored into the 
overlap matrix

 Entries (i,j) denote the suffix overlap 
of read ri with prefix of rj .

 Each read corresponds to two rows 
and two columns; complements 
need to be considered as well.

1 CATCGTCA

6 ATGCGCAT

12 ATCGTGAT

Overlap(1, 6) = 3

Overlap(1, 12) = 7

1

6

12

3

7

1

http://www.cs.helsinki.fi/u/nvalimak/opetus/afb10/ex4/prob1-4.pdf
http://www.cs.helsinki.fi/u/nvalimak/opetus/afb10/ex4/prob1-4.pdf
http://www.cs.helsinki.fi/u/nvalimak/opetus/afb10/ex4/prob1-4.pdf
http://www.cs.helsinki.fi/u/nvalimak/opetus/afb10/ex4/prob1-4.pdf
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Overlap graph

 In practice, computing pair-
wise overlaps is time 
comsuming

 Speed-up techniques required

 Find a way to compute only 
significantly long overlaps

 Instead of overlap matrix, one 
should directly construct its sparse 
version, overlap graph.

 Exact significantly long overlaps 
can be computing efficiently using 
suffix trees, but suffix tree of all 
reads takes too much space for 
large genomes.

 Suffix trees can be replaced by 
compressed data structures, like 
FM-index (see Durbin’s guest 
lecture on Wednesday 16-, B222)

1

6

12

3

7

Four types of directed edges:

ri  overlaps rj

ri  overlaps rj*

ri* overlaps rj

ri* overlaps rj*



Finding layout & consensus

 Method extends the 
assembly greedily by 
choosing the best overlaps

 Both orientations are 
considered

 Sequence is extended as 
far as possible

7*    GACCGCAT

6     ATGCGCAT

14        GCATCGTG

1          CATCGTGA

12          ATCGTGAT

19      GCGCATCG

13* CGCAGCGC

---------------------

CGCATCGTGAT

Ambiguous bases

Consensus sequence

34



Finding layout & consensus

 We move on to next best 
overlaps and extend the 
sequence from there

 The method stops when there 
are no more overlaps to 
consider

 A number of contigs is 
produced

 Contig stands for contiguous 
sequence, resulting from 
merging reads

2           CGGTGAAG

10        GTCGGTGA

11       GGTCGGTG

7    ATGCGGTC

---------------------

ATGCGGTCGGTGAAG

35
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Whole-genome shotgun sequencing: summary

 Ordering of the reads is initially unknown

 Overlaps resolved by aligning the reads

 In a 3x109 bp genome with 500 bp reads and 5x coverage, 
there are ~107 reads and ~107(107-1)/2 = ~5x1013 pairwise 
sequence comparisons

… …
Original genome sequence

Reads

Non-overlapping

read

Overlapping reads

=> Contig
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Repeats in DNA and genome assembly

Pop, Salzberg, Shumway (2002)

Two instances of the same repeat
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Repeats in DNA cause problems in sequence 
assembly

 Recap: if repeat length exceeds read length, we 
might not get the correct assembly

 This is a problem especially in eukaryotes
 ~3.1% of genome consists of repeats in Drosophila, ~45%

in human

 Possible solutions
1. Increase read length – feasible?

2. Divide genome into smaller parts, with known order, and 
sequence parts individually
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”Divide and conquer” sequencing approaches: BAC-
by-BAC

Whole-genome shotgun sequencing

Divide-and-conquer

Genome

Genome

BAC library
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BAC-by-BAC sequencing

 Each BAC (Bacterial Artificial Chromosome) is about 
150 kbp

 Covering the human genome requires ~30000 BACs

 BACs shotgun-sequenced separately
 Number of repeats in each BAC is significantly smaller

than in the whole genome...

 ...needs much more manual work compared to whole-
genome shotgun sequencing
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Hybrid method

 Divide-and-conquer and whole-genome shotgun 
approaches can be combined
 Obtain high coverage from whole-genome shotgun sequencing 

for short contigs

 Generate of a set of BAC contigs with low coverage

 Use BAC contigs to ”bin” short contigs to correct places

 This approach was used to sequence the brown 
Norway rat genome in 2004
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Paired end sequencing

 Paired end (or mate-pair) sequencing is technique 
where 
 both ends of an insert are sequenced

 For each insert, we get two reads

 We know the distance between reads, and that they are in 
opposite orientation

 Typically read length < insert length

kRead 1 Read 2
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Paired end sequencing

 The key idea of paired end sequencing:

 Both reads from an insert are unlikely to be in repeat regions

 If we know where the first read is, we know also second’s location

 This technique helps to WGSS higher organisms

kRead 1 Read 2

Repeat region



Scaffolding

 Paired end reads help to order the contigs into 
scaffolds.

 Even non-unique matches can be exploited

 Each contig pair receives votes from paired end reads that 
suggest ordering them to distance [min,max] apart.

 Find a global contig ordering that maximizes satisfied votes.

 Not an easy optimization problem.

44

Distance approximately known

Unique match Unique match Unique match Unique match

Distance approximately known



Alternative approach: Virtual sequencing by 
hybridization

 Consider all k-mers of all reads.

 Create a graph with each (k-1)-mer as a node and k-mers as 
edges: 

 There is an edge between nodes X=x1x2...xk-1 and Y=y1y2...yk-1 if  and 
only if x2...xk-1=y1...yk-2 and x1...xk-1yk-1 is a k-mer inside at least one 
read.

 Subgraph of de Bruijn graph.

 If coverage would be identical through the genome and 
there would be no errors in the reads, Eulerian path on the 
graph would give the solution (see Algorithms for 
Bioinformatics course).

 Some assemblers try to correct this graph in order to use 
the Eulerian path approach. 

45



First whole-genome shotgun sequencing project: 
Drosophila melanogaster

 Fruit fly is a common 
model organism in 
biological studies

 Whole-genome assembly 
reported in Eugene Myers, 
et al., A Whole-Genome 
Assembly of Drosophila, 
Science 24, 2000

 Genome size 120 Mbp

http://en.wikipedia.org/wiki/Drosophila_melanogaster 46
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Sequencing of the Human Genome

 The (draft) human 
genome was published in 
2001

 Two efforts:
 Human Genome Project 

(public consortium)

 Celera (private company)

 HGP: BAC-by-BAC 
approach

 Celera: whole-genome 
shotgun sequencing

HGP: Nature 15 February 2001

Vol 409 Number 6822

Celera: Science 16 February 2001

Vol 291, Issue 5507
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Genome assembly software

 phrap (Phil’s revised assembly program)

 AMOS (A Modular, Open-Source whole-genome 
assembler)

 CAP3 / PCAP

 TIGR assembler

 EULER

 Velvet

 Newbler

 SOAPdenovo

 ...
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Next generation sequencing techniques

 Sanger sequencing is the prominent first-generation 
sequencing method

 Many new sequencing methods have emerged
 454 (~400 bp reads)

 Illumina Solexa (35-150 bp reads)

 SOLiD (~50 bp reads, colour codes)

 Helicos (~55 bp reads from single molecule!)

 Pacific Biosciences  (“thousands of nucleotides”, TBA 
201?, third-generation sequencer)

 See Lars Paulin’s lecture on Thursday


