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1 IntrodutionMyriad non-trivial ombinatorial questions onerning strings turn out to havee�ient solutions via extensive use of su�x trees [2℄. This is no surprise, sinesu�x trees summarize the whole substring ontent of a text string in an eonomiway; su�x trees ontain a root to leaf path for eah su�x of the text suh thateah substring of the text an be read as a pre�x of some path. Edges of thetree are labeled with text substrings, and an be represented just by pointersto the text. The tree has n leaves and at most n − 1 internal nodes, and henerepresenting pointers in the tree and pointers into the text take overall O(n)omputer words, n being the text length. The linear size requirement has madesu�x trees attrative for many appliations. After all, representing the O(n2)substrings of a text in O(n) spae is a remarkably powerfull tool. Even moreadvantageous is that su�x trees an be onstruted in linear time [35, 27, 34℄.Bioinformatis is a �eld where su�x trees would seem to have the strongestpotential; unlike the natural language texts formed by words and delimiters, bi-ologial sequenes are streams of symbols without any prede�ned word bound-aries. Su�x trees treat any substring equally, regardless of it being a word ornot. This perfet synergy has reated a vast literature desribing su�x tree-based algorithms for sequene analysis problems (see e.g. [15℄).Unfortunately, the theoretially attrative properties of su�x trees do notalways meet the pratial realm. For example, the problem of searhing approx-imate ourrenes of a pattern in a long text ould be solved using su�x tree-like data strutures (see e.g. a reent development in this area [6℄). In pratie,the highly popular software tools like BLAST [1℄ are based on quite di�erenttehniques.The main reason why su�x trees have remained mainly as theoretial tools istheir immense spae onsumption. Even for a reasonable size genomi sequeneof 100MB, its su�x tree may require 5GB of main memory. This phenomenon isnot just a onsequene of onstant fators in the implementation of the struture,but rather an asymptoti e�et. When examined more arefully, one noties thata sequene of length n from an alphabet Σ requires only n log |Σ| bits of spae,whereas its su�x tree requires O(n log n) bits. Hene, the spae requirement isby no means linear when measured in bit-level. In the sequel, we express allspae requirements in bits.The size bottlenek of su�x trees has made the researh turn into lookingfor more spae-eonomi variants of su�x trees. One popular alternative is thesu�x array [26℄. It basially removes the onstant fator of su�x trees to 1, aswhat remains from su�x trees is a lexiographially ordered array of startingpositions of su�xes in the text. That oupies n log n bits. Many tasks on su�xtrees an be simulated by log n fator slowdown using su�x arrays.A reent twist in the development is the rise of abstrat data strutures; theoperations supported by a data struture are identi�ed and the best possibleimplementation is seeked for that supports those operations. This line of de-velopment has led to ompressed su�x arrays [14, 10, 32, 13, 11℄. These datastrutures take, in essense, n log |Σ|(1+o(1)) bits of spae, being asymptotiallyspae-optimal. For ompressible sequenes they take even less spae. More im-1



portantly, they simulate su�x array operations with logarithmi slowdowns,and support some operations (like pattern searh) even faster than plain su�xarrays or su�x trees. These strutures are also alled self-indexes as they donot need the text to funtion; the text is atually represented ompressed withinthe index. See [31℄ for a survey on these strutures.Very reently Sadakane [33℄ extended the abstrat data struture oneptto over su�x trees, identifying typial operations su�x trees are assumed topossess. Some of these operations, like navigating in a tree, were already exten-sively studied by Munro, Raman, and Rao [29℄. In addition to these navigationaloperations, su�x trees have several other useful operations suh as su�x links,onstant time lowest ommon anestor (la) queries, and pattern searh apa-bilites. Sadakane developed a fully funtional su�x tree struture by ombiningompressed su�x arrays with several other non-trivial new strutures. Eahoperation was supported by at most log n slowdown, often the slowdown beingonly onstant. The spae requirement was shown to be still asymptotially op-timal, more aurately, |CSA| + 6n + o(n) bits, where |CSA| is the size of theompressed su�x array used.This paper studies an implementation of Sadakane's ompressed su�x tree.We implemented the struture following losely the original proposal [33℄. Sinethere are many sub-strutures involved, there are many plaes to onsider spae-time tradeo� issues. For example, some of the sublinear o(n) strutures turn outto have inpratially large onstants, and in suh ases it is essential to onsiderwhether some onstant fator c in spae usage an be turned into O(c) timefator. Our aim was to develop a version that has spae-time tradeo� parameterswhenever possible. We managed to engineer a version with reasonable spae-e�ieny (see Set. 8 for some numbers).A problem related to pratial implementation is how to onstrut the om-pressed su�x tree without using too muh extra spae at onstrution time.There are many other tasks in ompressed su�x tree onstrution that need spe-ial attention: (1) How to onstrut the Burrows-Wheeler transform on whihthe ompressed su�x arrays are based on; (2) storing sampled text/su�x arraypositions; (3) diret onstrution of ompressed longest ommon pre�x infor-mation, and (4) onstrution of balaned parantheses representation of su�xtree diretly from ompressed su�x array. Tasks (1), (3) and (4) have beenonsidered in [18℄ and later improved in [19℄ so as to obtain an O(n logǫ n) timealgorithm to onstrut ompressed su�x trees. Task (2) is related to our hoieof implementing ompressed su�x arrays using strutures evolved from FM-index [10℄, and is takled in this paper. Also for task (3) our solution variatesslightly from [18℄ as we build on top of the su�xes-insertion algorithm [7℄ andthey build on top of the post-order traversal algorithm of [22℄. The �nal time-requirement of our implementation is O(n log n log |Σ|), being reasobaly lose tothe best urrent theoretial result [19℄.The outline of the artile is as follows. Setion 2 gives the basi de�nitionsand a very ursory overview of Sadakane's struture. 1 Setion 3 explains how1Although it is tehnially possible to follow this paper without understanding Sadakane'sstruture, we enourage the reader to study [33℄ to obtain a deeper understanding of the2



we implemented ompressed su�x arrays (related to task (1)) and provides asolutions to task (2). Setion 4 extrapolates the solution mentioned in [18℄ fortask (3). Setion 5 gives an overview of balaned parantheses and desribesour onstrution algorithm, solving task (4). Setion 6 explains how we imple-mented the lowest ommon anestor struture by adding a spae-time tradeo�parameter. Setion 7 explains the software engineering onventions used. Some�nal remarks are given in Set. 8.The software pakage is available at http://www.s.helsinki.fi/group/suds/.2 PreliminariesA string T = t1t2 · · · tn is a sequene of haraters from an ordered alphabet
Σ. A substring of T is any string Ti...j = titi+1 · · · tj, where 1 ≤ i ≤ j ≤ n.A su�x of T is any substring Ti...n, where 1 ≤ i ≤ n. A pre�x of T is anysubstring T1...j, where 1 ≤ j ≤ n. A pattern is a short string over the alphabet
Σ. We say that pattern P = p1p2 · · · pk ours at position j of text string T i�
p1 = tj , p2 = tj+1, . . . , pk = tj+k−1.De�nition 1 (Adopted from [15℄) The keyword trie for set P of patterns is arooted direted tree K satisfying three onditions: (1) Eah edge is labeled withexatly one harater; (2) any two edges out of the same node have distint labels;(3) every pattern P of P maps to some node v of K suh that the haraters onthe path from the root of K to v spell out P , and every leaf of K is mapped toby some pattern in P.De�nition 2 The su�x trie of text T is a keyword trie for set S, where S isthe set of all su�xes of T .De�nition 3 The su�x tree of text T is the path-ompressed su�x trie of T ,i.e., a tree that is obtained by representing eah maximal non-branhing pathof the su�x trie as a single edge labeled by the atenation of the labels in theorresponding edges of the su�x trie. The edge labels of su�x tree orrespondto substrings of T ; eah edge an be represented as a pair (l, r), suh that Tl...rgives the label.The de�nition for a keyword tree is analogous.De�nition 4 A path label of a node v is the atenation of edge labels from rootto v. Its length is alled string depth. The number of edges from root to v isalled node depth.De�nition 5 The su�x link sl(v) of an internal node v with path label xα,where x denotes a single harater and α denotes a possibly empty substring, isthe node with path label α.ontext. 3



A typial operation on su�x trees is the lowest ommon anestor query,whih an be used to ompute the longest ommon extension lce(i, j) of arbitrarytwo su�xes Ti...n and Tj...n: Let v and w be the two leaves of su�x tree havepath labels Ti...n and Tj...n, respetively. Then the path label α of the lowestommon anestor node of v and w is the longest pre�x shared by the two su�xes.We have lce(i, j) = |α|.The following abstrat de�nition aptures the above mentioned typial su�xtree operations.De�nition 6 An abstrat su�x tree for a text supports the following opera-tions:1. root(): returns the root node.2. isleaf(v): returns Yes if v is a leaf, and No otherwise.3. child(v, c): returns the node w that is a hild of v and the edge (v,w)begins with harater c, or returns 0 if no suh hild exists.4. sibling(v): returns the next sibling of node v.5. parent(v): returns the parent node of v.6. edge(v, d): returns the d-th harater of the edge-label of an edge pointingto v.7. depth(v): returns the string depth of node v.8. lca(v,w): returns the lowest ommon anestor between nodes v and w.9. sl(v): returns the node w that is pointed to by the su�x link from v.The rest of the paper studies an approah to support the abstrat su�x treeoperations e�iently, while using less spae than the pointer-based lassialsu�x tree implementations.2.1 Overview of Compressed Su�x TreeSadakane [33℄ shows how to implement eah operation listed in Def. 6 by meansof a sequene of operations on (1) ompressed su�x array, (2) lcp-array 2, (3)balaned parantheses representation of su�x tree hierarhy, and (4) a struturefor lca-queries. In the following setions we explain how we implemented thosestrutures.2Sadakane [33℄ uses name Height-array 4



3 Compressed Su�x ArraySu�x array is a simpli�ed version of su�x tree; it only lists the su�xes of thetext in lexiogaphi order. Let SA[1 . . . n] be a table suh that TSA[i]...n givesthe i-th smallest su�x in lexiographi order. Notie that this table an be�lled by a depth-�rst traversal on su�x tree following its edges in lexiogaphiorder.As the array SA takes n log n bits, there has been onsiderable e�ort inbuilding ompressed su�x arrays to redue its spae requirement, see e.g. [14,10, 32℄. The following aptures typial su�x arrays operations on an abstratlevel.De�nition 7 An abstrat su�x array for a text T supports the following oper-ations:
• lookup(i): returns SA[i],
• inverse(i): returns j = SA−1[i], de�ned suh that SA[j] = i,
• Ψ(i): returns SA−1[SA[i] + 1], and
• substring(i, l): returns T [SA[i] . . . SA[i] + l − 1].The funtion Ψ[i] is de�ned as follows:De�nition 8

Ψ(i) =

{

i′ suh that SA[i′] = SA[i] + 1 (if SA[i] < n)
1 if SA[i] = n3.1 Our ImplementationWe used Suint Su�x Array (SSA) of [23℄ to implement the abstrat suf-�x array operations. The base struture is the wavelet tree [13℄ build on theBurrows-Wheeler transform [3℄.3 Let us brie�y revise the struture, as we extendit to support funtions Ψ and inverse that are not onsidered in the originalproposal.The Burrows-Wheeler transform T bwt is de�ned as T bwt[i] = TSA[i]−1 (where

SA[i] − 1 = SA[n] when SA[i] = 1). A property of T bwt used in ompressedsu�x arrays is so-alled LF -mapping:De�nition 9
LF (i) =

{

i′ suh that SA[i′] = SA[i] − 1 (if SA[i] > 1)
n if SA[i] = 1It an be shown [10℄ that LF -mapping an omputed by the means of T bwt:3For bakground on these tehniques, see a reent survey [31℄.5



Lemma 1 ([10℄) Let c = T bwt[i]. Then
LF (i) = C[c] + rankc(T

bwt, i), (1)where C[c] is the the number of positions of T bwt ontaining harater smallerthan c and rankc(T
bwt, i) tells how many times harater c ours upto position

i in T bwt.Table C[1 . . . |Σ|] an be stored as is in |Σ| log n bits of spae, and spae-e�ient data strutures built for storing rankc-funtion values. For example, asimpli�ed version of the wavelet tree (see [23, Set. 5℄) stores those values in
n log |Σ|(1+ o(1)) bits so that eah rankc value (as well as value T bwt[i]) an beomputed in O(log |Σ|) time.Let us now onsider how the abstrat su�x array operations an be simu-lated using LF -mapping. First, notie that LF -mapping lets us browse the textbakwards starting from any given position. We store for every R-th text posi-tion i′×R its loation in su�x array expliitly: sampledSAinverse[i′] = j suhthat SA[j] = i′×R. Now, the substring(i, l)-query an be supported as follows.We ompute the smallest integer i′ suh that i + l ≤ i′ × R. Then substring
Ti...i′×R−1 is retrieved in reverse order by applying LF -mapping repeatedly:
ti′×R−1 = T bwt[j], ti′×R−2 = T bwt[LF [j]], ti′×R−3 = T bwt[LF [LF [j]]], . . . . Re-trieving a single harater takes O(log |Σ|) time, hene the total time omplexityfor substring(i, l) is O((l +R) log |Σ|). Answering inverse(i) is analogous: LF -mapping is applied i′ × R − i times starting from sampledSAinverse[i′]. Theindex j reahed in the end has the desidered property S[j] = i. The time neededis O(R log |Σ|).For answering lookup(i) and Ψ(i) we need more strutures. We store val-ues B[j] = 1 suh that SA[i] is divisible by R. That is, we mark the suf-�x array indies ontaining sampled text positions. We store these sampledpositions in the su�x array order into another table sampledSA suh that
sampledSA[rank1(B, j)] = SA[j] whenever B[j] = 1. Funtion lookup(i) annow be answered by applying j = LF [j] starting with j = i until B[j] = 1.Then lookup(i) = sampledSA[rank1(B, j)] + k, where k is the number of times
LF -mapping was applied. The time needed is still O(R log |Σ|), as the binary
rank1(B, j)-query an be answered in onstant time after building o(n) bitsdata strutures on top of B [20℄.Finally, to answer Ψ(i), we �rst apply j = lookup(i), then apply LF -mapping starting from sampledSAinverse[j/R + 1] until reahing again index
i. Let i′ be the index reahed just before applying LF [i′] = i. By de�nition
Ψ(i) = i′. This omputation also takes O(R log |Σ|) time.In our implementation, we use the Hu�man-tree shape as advised in [23℄,so that the struture takes 2n

R log n + n(H0 + 2)(1 + o(1)) bits of spae andsupports all the abstrat su�x array operations in O(R ∗ H0) average time.(Worst ase O(R ∗ log n). Use R + l instead of R for substring(i, l) funtiontime requirement.) Here H0 is the zeroth order entropy of T . Reall that
H0 ≤ log |Σ|. Fixing any R = Ω( log n

log |Σ|), the struture takes O(n log |Σ|) bits.6



3.2 Spae-e�ient Constrution via Dynami StrutureThe onstrution of the struture is done in two phases. First the Burrows-Wheeler transform is onstruted, then the additional strutures (wavelet tree,tables C, sampledSA, sampledSAinverse, and B and its rank strutures) arereated.The �rst phase an be exeuted in O(n log n log |Σ|) time and using nH0 +
o(n log |Σ|) bits of spae by using the dynami self-index explained in [24℄. Weimplemented the simpli�ed version that uses O(n log |Σ|) bits: Instead of usingthe more ompliated solution to solve rank-queries on dynami bitvetors, weused the O(n) bits struture of [4℄ (see also [24, Set. 3.2℄). Using this inside thedynami wavelet trees of [24℄, one obtains the laimed result (see the paragraphjust before Set. 6 in [24℄). The result is atually a dynami wavelet tree of theBurrows-Wheeler transform supporting rankc-queries in O(log n log |Σ|) time.This is easily onverted into a stati struture of the original SSA (in time linearin the size of the struture) that supports rankc-queries in O(log |Σ|) time. Inour implementation, we use the Hu�man-shaped wavelet tree to improve thespae to O(nH0) bits. This onversion is also easily done by extrating theBurrows-Wheeler transform from the dynami wavelet tree with a depth-�rsttraversal and reating the Hu�man-balaned stati wavelet tree instead as in[23℄.We are left with explaining how to onstrut the rest of the strutures.Table C is trivial to onstrut in O(|Σ| + n) time. Tables sampledSA,
sampledSAinverse and bitvetor B an be onstruted as follows. We apply
LF -mapping from the index of the last text position on (whih is now possibleas table C and wavelet tree to support rankc-queries of Lemma 1 are ready).That is, we virtually san the text bakwards by using LF -mapping. Wheneverwe are at a text position divisible by R, say at position i × R, we also knowthe su�x array index, say j. That is, we an diretly mark B[j] = 1 and store
sampledSAinverse[i] = j. After virtually sanning the text bakwards we have�lled B and sampledSAinverse orrretly. To �ll in table sampledSA, we �rstpreproess B for rank1(B, i) queries, and then virtually san the text bakwardsagain. Analogously as before, whenever we are at a text position divisible by
R, say at position i × R, we also know the su�x array index, say j. At thosepositions, we store sampledSA[rank1(B, j)] = i. The spae used for the on-strution is the same as what the resulting strutures take. The time needed is
O(n log |Σ|) as eah LF -step takes O(log |Σ|) time and we have 2n steps.The bottlenek in the onstrution time is the reation of the Burrows-Wheeler transform within O(n log |Σ|) bits of spae. Our implementation uses
O(n log n log |Σ|) time for the task. This an be sped up in theory using e.g. the
O(n log log |Σ|) time algorithm of [17℄ that guarantees the same asymptotispae.4 lcp-arrayArray lcp[1 . . . n − 1] is used to store the longest ommon pre�x informationbetween onseutive su�xes in the lexiographi order. That is, lcp[i] =7



|prefix(TSA[i]...n, TSA[i+1]...n)|, where prefix(X,Y ) = x1 · · · xj suh that x1 =
y1, x2 = y2, . . . , xj = yj, but xj+1 6= yj+1. Sadakane [33℄ desribes a leverenoding of the lcp-array that uses 2n+o(n) bits. The enoding is based on thefat that values i + lcp[i] are inreasing when listed in the text position order.That is, sequene S = s1, . . . , sn−1 = 1+ lcp[SA−1[1]], 2+ lcp[SA−1[2]], . . . , n−
1 + lcp[SAn−1[n − 1]] is inreasing (see next subsetion to see why).To enode the inreasing list S, it is enough to enode eah diff(i) =
si − si−1 in unary: 0diff(i)1, where we assume s0 = 0 and 0d denotes repetitionof 0-bit d-times. This enoding, all it H, takes at most 2n bits. We have theonnetion diff(k) = select1(H, k)− select1(H, k − 1)− 1, where select1(H, k)gives the position of the k-th 1-bit in H. Bitvetor H an be preproessedto answer select1(H, k)-queries in onstant time using o(|H|) bits extra spae[28, 5℄.Computing lcp[i] an now be done as follows. Compute k = SA[i] using
lookup(i) of ompressed su�x array. Value lcp[i] equals select1(H, k) − k.4.1 Spae-e�ient Constrution via Kasai et al. AlgorithmKasai et al. [22℄ gave a linear time algorithm to onstrut lcp-array given su�xarray SA. One ould use it to onstrut the enoding H by applying what isdesribed above, but the intermediate lcp-array would take n log n bits. Instead,one an easily modify Kasai et al. algorithm to diretly give enoding H [18℄.Kasai et al. algorithm is based on the observation that lcp-array valuesfor onseutive su�xes in the text order annot derease muh. More on-retely, it holds lcp[SA−1[i + 1]] ≥ lcp[SA−1[i]] − 1 [22℄. This has the on-sequene that one an an ompute the lcp-values in the text order, at eahstep taking advantage of the already omputed pre�x length in the previ-ous step: Let ℓ = max(0, lcp[SA−1[i]] − 1). Then lcp[SA−1[i + 1]] = ℓ +
|prefix(Ti+1+ℓ...n, TSA[SA−1[i+1]+1]+ℓ...n)|. Funtion prefix() an be omputedtrivially by sanning the text; this will take amortized onstant time per step, asthe omparison position in the �rst argument will advane at eah step. Now, toprodue H diretly, we notie that the evaluation order is the same as the orderin whih lcp-values are stored in H. A step of the algorithm beomes simply:Let ℓ = max(0, lcp−1). Then lcp = ℓ+|prefix(Ti+1+ℓ...n, TSA[SA−1[i+1]+1]+ℓ...n)|and append H with 0lcp1. Here lcp = 0 initially and aesses SA[i] and SA−1[j]an done by operations lookup(i) and inverse(j) on ompressed su�x array.After produing H, one an preproess it for onstant time select1 queries inlinear time.The onstrution uses no extra memory in addition to text, ompressed su�xarray, and the outome of size 2n+ o(n) bits. Using the ompressed su�x arrayexplained earlier in this paper, the time requirement is O(n log n).5 Balaned ParanthesesThe balaned paranthesis representation P of a tree is produed by a preordertraversal printing ′(′ whenever a node is visited the �rst time, and printing ′)′8



whenever a node is visited the last time [29℄. Letting ′(′= 1 and ′)′ = 0, thesequene P takes 2u bits on a tree of u nodes. A su�x tree of n leaves an haveat most n− 1 internal nodes, and hene its balaned paranthesis representationtakes at most 4n bits.Munro, Raman, and Rao [29℄ explain how to simulate tree traversal by meansof P . After building several strutures of sublinear size, one an go e.g. fromnode to its �rst hild, from node to its next sibling, and from node to its par-ent, eah in onstant time. Sadakane [33℄ lists many other operations that arerequired in his ompressed su�x tree. All these navigational operations an beexpressed as ombinations of the following funtions: rankp, selectp, findclose,and enclose. Here p is a onstant size bitvetor pattern, e.g. 10 expresses anopen-lose paranthesis pair. Funtion rankp(P, i) returns the number of our-renes of p in P upto position i. Funtion selectp(P, j) returns the position ofthe j-th ourrenes of p in P . Funtion findclose(P, i) returns the position ofthe mathing losing paranthesis for the open paranthesis at position i. Fun-tion enclose(P, i) returns the open paranthesis position of the parent of the nodewhose open paranthesis is at position i.To get an idea of the power of the above navigational operations, let usonsider how to ompute the subtree size for a given node v. Let v be the j-thnode in the preorder of the tree. Then i = select1(P, j) gives its loation in P .Its subtree is enoded in the subrange P [i+1 . . . k−1], where k = findclose(P, i).As eah node in the subtree of v is enoded by two bits, the number of nodesin the subtree of v is simply (i − k − 1)/2. Also the number of hildren in thesubtree of v is easily alulated: As pattern p = 10 represents an open-loseparanthesis pair, i.e. a hild node, the amount of hildren in the subtree of v is
rankp(P, k) − rank(P, i).5.1 Our ImplementationWe used the existing rank and select implementations that are explained andexperimented in [12℄. There rank is the onstant time solution of Clark [5℄,but select is implemented by binary searh on rank values (the onstant timesolution [5℄ is inferior to this on pratial inputs [12℄). Setion 7 explains howthese solutions are modi�ed to the ase of short patterns p, as the originalimplementations assume p = 1. For findclose and enclose we used Navarro'simplementations explained in [30℄ that are based on [29℄; these are faster inpratie than the original, but worst ase is raised from onstant to O(log log n).5.2 Spae-e�ient Constrution via LCP InformationTo build balaned parantheses sequene of su�x tree spae-e�iently one annot proeed naively; doing preorder traversal on a pointer-based su�x tree re-quires O(n log n) bits of extra memory. We onsider a new approah that buildsthe parantheses sequene inrementally. Very similar algorithm is given in [18℄;we will onsider the di�erenes in the end of the setion.Reall from [7, Theorem 7.5, p. 97℄ the su�xes-insertion algorithmto onstrut su�x tree from LCP information: The algorithm adds suf-9



�xes in lexiographi order into a tree, having the keyword tree of su�xes
TSA[1]...n, TSA[2]...n, . . . , TSA[i]...n ready after i-th step. Su�x TSA[i+1]...n is thenadded after �nding bottom-up from the rightmost path of the tree the orretinsertion point. That is, the split node v losest to the rightmost leaf (or-responding to su�x TSA[i]...n) whose string depth is smaller or equal to lcp[i]is seeked for. If the depth is equal, then a new leaf (orresponding to su�x
TSA[i+1]...n) is reated as its hild. Otherwise, its outgoing rightmost edge issplitted, a new internal node is inserted in between, and the leaf orrespond-ing to su�x TSA[i+1]...n is added as its rightmost hild. It is easy to see by anamortizement argument that this algorithm takes linear time.The problem of the su�xes-insertion algorithm for our purposes is that thetree struture takes O(n log n) bits. For this reason, we develop a new version ofthis algorithm that represents the neessary parts of this dynamially hangingtree struture by spae-e�ient data strutures.The idea is that at eah step of the algorithm we have the balaned paran-theses representation of the urrent tree ready. Unfortunately, the paranthesesstruture does not hange sequentially, so we need to maintain it using a dy-nami bitvetor allowing insertions of bits (open/lose parantheses) inside it.Suh bitvetor an be maintained using O(n) bits of spae so that aessingthe bits and inserting/deleting takes O(log n) time [4, 24℄. In addition to thebalaned parantheses to store the tree hierarhy, we need more operations onthe rightmost path; we need to be able to virtually browse the rightmost pathfrom leaf to root as well as to ompute the the string depth of eah node visited.Let us �rst study string depths. Consider sequene E(i) = e1, e2, . . . , ek ofegde label lengths from leaf to root in the righmost path after i-th step of thealgorithm. Naturally ∑k

j=1 ej = n, as the string depth of the leaf is n. To �ndthe split node v of the (i+1)-th step, we just need to ompute the smallest j suhthat sdepth(j) = n −
∑j

j′=1 ej′ ≤ lcp[i], as this tells us to skip j edges before(virtually) reahing the split node v. To update the sequene e1, e2, . . . , ek toorrespond the new rightmost path, it is enough to delete values e1, . . . , ej from
E(i), insert value esplit = lcp[i]−sdepth(j) as the �rst element in E(i), and then�nally insert eleaf = n − lcp[i] as the �rst element in E(i). These two valuesorrespond to the lengths of the edge labels of the two new edges on the path; if
esplit = 0, i.e. the new leaf is inserted diretly as the hild of v, then only value
eleaf is inserted. After these modi�ations, we have reated the sequene E(i+1)of edge label lengths from leaf to root in the righmost path after (i + 1)-th stepof the algorithm. We will later onsider how to maintain sequenes E(i) duringthe algorithm in suint form suh that the modi�ations to the beginning arepossible.In addition to the string depths, we need to maintain information to �ndthe insertion position in the balaned parantheses representation P of the tree.This is analogous to the maintainane of string depths. Consider again the i-thstep of the algorithm. Eah node in the rightmost path of the urrent tree isrepresented by an open paranthesis in P . Moreover, these parantheses ourin the same order as the nodes in the path. Hene, we an list the distanesbetween these nodes with a sequene similar to E(i). Let this sequene be
D(i) = d1, d2, . . . dk, where dk′ gives the distane between open parantheses10



of k′-th and (k′ + 1)-th node omputed bottom-up from leaf to root in therightmost path. Sine P is at most of length 2n, we have that ∑k
j=1 dj ≤ 2n ateah step. To modify P from step i to step i + 1, we do the following. First,we assume that P is not ompleted with respet to the rightmost path, i.e., itdoes not ontain the k losing parantheses in the end to lose the nodes on therightmost path (exept the leaf). These losing parantheses will be added onethe orresponding subtrees beome ready (when no more updates are possible).Let p = |P | − 1 after step i (position of the last open paranthesis), and again

j the smallest value suh that sdepth(j) ≤ lcp[i]. Hene, we may append Pby j − 1 lose parantheses, as this is the amount of nodes on the rightmostpath whose subtrees beome ready. The open paranthesis of the split node
v is at position pos(j) = p −

∑j
j′=1 dj′ in P . If a new internal node is to beinserted (in ase sdepth(j) < lcp[i]), we insert a new open paranthesis just before

r = pos(j−1); to see why, notie that P [pos(j)+1 . . . r−1] ontains the balanedparanthesis representation of the subtree of v exept the subtree of its rightmosthild starting at P [r]. In ase sdepth(j) = lcp[i] P stays internally unhanged,as the new leaf will be added diretly under v. In both ases we append P with anew leaf node (appending open-lose paranthesis pair). Finally, we must updatesequene D(i) to orrespond to the urrent state of P . In ase sdepth(j) < lcp[i]we notie that dj an be reused as the distane between v and its new rightmosthild node (new internal node). Hene, it is enough to delete values d1, . . . ,
dj−1 from D(i) and insert in the beginning value dleaf = p + j + 2− r (distanebetween new internal node and new leaf). In ase sdepth(j) = lcp[i], we deletevalues d1, . . . , dj from D(i) and insert in the beginning dleaf = p+j+1−pos(j).After these modi�ations, we have updated P to orrespond to step i+1 as wellas reated sequenes E(i + 1) and D(i + 1). By indution, after adding the lastsu�x (and after losing the rightmost path by adding losing parantheses asmany as there are elements in E(n)) we have P orresponding to the su�x treeof the text. The pseudoode of the algorithm is given in Fig. 1.Handling sequene of variable length integers. We still need to onsiderhow to manipulate sequenes E and D spae-e�iently (notie that a triviallinked list approah would take O(n log n) bits spae, being no improvement tothe original algorithm). We enode the values using variable length pre�x odes.Let us �x Elias δ enoding [8℄. It has the property that for any integer x, it holds
|δ(x)| = log x + o(log x) bits. More importantly, a sequene δ(x1)δ(x2) · · · δ(xk)an be uniquely deoded into x1, x2, . . . , x2. This an be done in onstant timeper ode, assuming a preomputed table of size o(N), where N =

∑k
i=1 xi (Seee.g. [25℄). Notie also that ∑k

i=1 |δ(xi)| ≤ k log n
k (1 + o(1)) = O(n) by theonvexity of logarithm. Hene, we an store E and D using O(n) bits.The only remaining problem is how to support insertions and deletions fromthe beginning of δ-enoded sequenes. This an be done e.g. as follows: Reserve

cn bits of spae, where c is a onstant in the O(n) spae limit for the enodedsequene. Store the enoded sequene aligned to the end of the memory area,and remember the starting position. A deletion from the beginning is done byreading by deoding the �rst ode in onstant time and shifting the starting11



Algorithm BalanedParanthesesViaLCP(lp, n):
P.Append((()); { Add root and �rst leaf }
p = 2; {Position of the last open paranthesis }
D.Push(1); E.Push(n); {Initialize staks storing node/string depth information on rightmost path}for i = 1 to n − 1 do {Add the su�xes in the lexiographi order}

lcp = lcp[i]; {lcp value an also be omputed from its ompressed representation}Find smallest j suh that sdepth = n − E.Sum(j) ≤ lcp; {E.Sum(j) =
Pj

j′=1
ej′ }Append P with j − 1 losing parentheses;if sdepth < lcp then {Add new internal node and a leaf}

r = p − D.Sum(j − 1); {Position in P}
P.Insert((, r);do j times E.Pop();
E.Push(lcp − sdepth); E.Push(n − lcp);do j − 1 times D.Pop();
D.Push(p + j + 2 − r);else {Add new leaf}
r = p − D.Sum(j);do j times E.Pop();
E.Push(n − lcp);do j times D.Pop();
D.Push(p + j + 1 − r);end if

P.Append(());
p = |P | − 1;end forAppend P with |E| losing parentheses;Figure 1: Constrution of balaned parantheses representation of su�x tree bya spae-e�ient version of su�xes-insertion algorithm.
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position to the right aordingly. Identially an insertion is done by shifting thestarting position to the left to make room for the new ode.We an onlude that given the lcp-array, we an onstrut the balanedparantheses sequene in O(n log n) time using O(n) bits working spae.Improving running time to linear. Finally, the time requirement an beimproved to linear by replaing the dynami bit vetor by a pathing tehnique[21℄: The idea is to postpone the updates until a bu�er of length n bits isfull. Then sort the n/ log n insertions positions stored in the bu�er using Radixsort in O(n/ log n) time, and merge the insertion positions with the alreadyonstruted P in O(n/ log n) time under RAM. The bu�er an beome full only
O(log n) times, and hene the total time used for operations on P is linear.Comparison to Hon and Sadakane solution. Hon and Sadakane [18℄ de-sribe a very similar algorithm. They build on top of an algorithm in [22℄ thatsimulates the post-order traversal of su�x tree given the lcp-values (Kasai etal. desribe the algorithm for ordinary trees, but it an easily be speialized tosu�x trees). The string depths (values E) are handled identially to our algo-rithm. The di�erene is in handling node depths (values D). We use values Dto trak the insertion position in P . Hon and Sadakane represent P as a forestof trees suh that eah root orresponds to a node in the rightmost path. Thesenodes partition urrent P into piees that do not hange during the latter stepsof the algorithm. The tree of a piee is suh that when preorder traversed oneobtains the piee by onatenating the bits stored at eah node. Spae-e�ienyis obtained by reating hildren only when O(log n) bits are stored at a node.This means that there are overall O(n/ log n) pointers, needing overall O(n)bits. Handling the bu�ers of O(log n) bits is easy, sine insertions of ( to thebeginning or of ) to the end an be done in onstant time under RAM model.The insertion operations take plae during the algorithm when new internalnodes are visited in postorder.There is, however, a problem with texts of type an#, where #<a: Postordertraversal will visit all the leaf nodes �rst, reating n trees eah ontaining twobits orresponding to (). Keeping pointers to those trees take O(n log n) bits.These pointers are neessary in order to �nd out whih trees are merged whena new internal node is visited. In fat, these pointers also need to be insertedto a stak, sine they will be merged in their reverse reation order. The solvethis problem, one an proeed as follows. Merge the small trees (bu�ers) so thateah remaining tree (bu�er) has size Θ(log n) bits. Use δ-enoding to store thedistanes of merge-boundaries. This guarantees that there are only O(n/ log n)trees, and the pointers to those trees (and inside them) take overall O(n) bits.Similarly as before, the δ-enoded values oupy O(n) bits.In fat, these latter δ-values are analogous to the node-depth values D weare using. The di�erene between the approahes remains the handling of P .Hon [16, page 59℄ o�ers a more elegant solution to the problem; instead oftrying to form P on the �y, one onstruts only a version of P that ontainsleaves () and losing parantheses ). That is, remove line P.Insert((, r) from the13



algorithm of Fig. 1. Then run the algorithm reversed reading lcp-values fromright to left. This reates a version of P that only ontains leaves () and openparantheses (. These two sequenes are easy to merge to form P as the leaves() our in the same order, and between two leaves all the losing paranthesesappear before the open parantheses. For example, let P ′ = ()())()())) and
P ′′ = ((()()(()() be the two sequenes onstruted after forward and bak-ward sanning of lcp-values. Then after mathing the leaves (), the plaement ofopen and lose parantheses are uniquely de�ned, that is, P = ((()())(()())).Setting the parantheses in the other order between the seond and third leafwould yield another leaf, whih is not allowed.Our implementation. In our implementation, we do not yet use any of theabove three di�erent ways to ahieve linear time. Our implementation fol-lows the pseudoode given in Fig. 1. Moreover, sine we use the ompressed
lcp-values, the time requirement of balaned parantheses onstrution remains
O(n log n) even after applying one of the speed ups.6 Lowest Common Anestor StrutureFarah-Colton and Bender [9℄ desribe a O(n log n) bits struture that an bepreproessed for a tree in O(n) time to support onstant time lowest ommonanestor (la) queries. Sadakane [33℄ modi�ed this struture to take O(n) bitsof spae without a�eting the time requirements. We implemented Sadakane'sproposal that builds on top of the balaned parantheses representation of pre-vious setion, adding lookup tables taking o(n) bits.While implementing Sadakane's proposal, we faed a pratial problem; oneof the sublinear strutures for la-queries takes spae n(log log n)2/ log n bits,whih on pratial inputs is onsiderable amount: This lookup table was takinghalf the size of the omplete ompressed su�x tree on some inputs. To go aroundthis bottlenek, we added a spae-time tradeo� parameter K suh that usingspae n(log log n)2/(K log n) bits for this struture, one an answer la-queriesin time O(K).7 Implementation DesignWe used objet oriented programming using C++-language to reate an easily us-able and maintainable software pakage. Eah abstrat data struture explainedabove is its own lass, making it easy to hange the underlying implementationsat any phase. For example, one an easily swith to another ompressed su�xarray implementation just by writing a new lass with the same name and sameoperations supported.We used to some extend generi programming in order to avoid writing sim-ilar ode segments. A novel example of its use is our rankp(P, i) / selectp(P, j)funtion implementations (see Set. 5 for de�nitions). These operations areneeded in Sadakane's ompressed su�x tree for many di�erent short patterns
p like 0, 1, 10, 01. It is known how to build o(n) bits strutures for eah �xed p14



so that rankp and selectp queries an be answered in onstant time. Instead ofopy-pasting those odes and hanging some details depending on the pattern
p, we used one generi implementation that only assumes that short substringsof a virtual indiator vetor of P an be aessed in onstant time. A virtual in-diator vetor of P with respet to a pattern p is I(P, p) = I[1 . . . |P |] suh that
I[i] = 1 i� pattern p ours at position i in P , otherwise I[i] = 0. Now, afterbuilding a table storing for eah (log |P |)/2 length substring α of P the mappingto its indiator vetor I(α, p) = I[1 . . . |α|], one an aess any O(log |P |)-lengthsubstring of I(P, p) in onstant time. This aess is enough to guarantee on-stant time rankp and selectp operations: Complete I(P, p) is only needed in on-strution time to build the lookup tables of [20, 28, 5℄. Later on the rankp and
selectp funtions onsult the lookup tables and need only aess to short frag-ments of I(P, p). These aesses are independent of p. Only the pointer to thelookup table to map substrings α of P to the indiator vetor I(α, p) depends on
p. Notie that the alternative approah of keeping the indiator vetors I(P, p)stored in memory for eah of the k values of p would require k|P | bits of mem-ory. Now we are only using k2(log |P |)/2(log |P |)/2 = (k/2)

√

|P | log |P | = o(|P |)bits. Thus, our approah is just as time/spae-e�ient as the trivial approahof using tailored ode. What we gain is the generality as the ode works forany p without any hanges to the ode (the generation of the lookup table forreating the mapping is parameterized by p as well).7.1 Corretness.The most di�ult goal to ahieve in the implementation (in general) is theorretness. We wanted to avoid the typial setting of doing one month imple-mentation and three months bug �xing. We adopted a strategy often assoiatedwith Extreme Programming, namely, we produed eah week a working release.In this partiular ase this strategy suited our purposes perfetly.We started the projet by taking an already existing implementation of a suf-�x tree. We implemented the �rst version of the abstrat su�x tree (Def. 6) bysupporting the funtions via the lassial su�x tree. Funtions suh as lca were�rst implemented by trivial sanning. This was our �rst release. The work on-tinued by onverting the su�x tree hierarhy into balaned parantheses form,and implementing the required traversal operations by trivial sanning. Ab-strat su�x array was implemented �rst by normal su�x array. This re�nementontinued gradually, so that eah week we had a new release whose orretnessould be ompared to the previous release. After two months, we had a fullyworking implementation of ompressed su�x tree ready. One more month wasused in implementing the spae-e�ient onstrution algorithms. The ompletework required equals about three months from two undergraduate students.8 Final remarksAs one an see, our implementation of ompressed su�x tree follows very loselythe theoretial proposals. We made only ouple of hoies towards pratial ef-�ieny and very few towards reduing the implementation work. The former is15



mainly beause we do not yet have exeuted extensive experimentation to guidethe hoie of pratial alternatives. For the latter matter, we used previousimplementations as basis as muh as possible. Many of these are also imple-mentations of the best algorithms for the partiular tasks. Yet there exists somealgorithms that ould be used to speed up our onstrution algorithm. Pluggingin those algorithms is left for future work.The most important future task is to experiment the new spae/time trade-o�s ahieved with respet to lassial su�x trees. Preliminary experimentsshow that the spae-e�ieny is very appealing: The ompressed su�x tree fora 10MB DNA sequene requires 32MB. This is already less than what a su�xarray takes: 40MB, not to talk about a standard su�x tree that takes at least160MB at the same input. Measuring in bits, the DNA sequene ould be storedin 20M bits (2 bits / harater). The ompressed su�x tree takes 256M bits,that is, about 13 times more than the DNA sequene. The theoretial boundof our implementation is n log |Σ| + 8n = 10n plus sublinear terms. Assymp-totially we should then be using about 5 times more spae than a suintlyenoded DNA sequene. This shows that the sublinear strutures take over thehalf of the spae with �les of size 10MB. A major researh question of pratialinterest is thus to improve the onstants in the sublinear strutures.Referenes[1℄ S. F. Altshul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basiloal alignment searh tool. Journal of Moleular Biology, 215(3):403�410,1990.[2℄ A. Apostolio. The myriad virtues of subword trees. In CombinatorialAlgorithms on Words, NATO ISI Series, pages 85�96. Springer-Verlag, 1985.[3℄ M. Burrows and D. Wheeler. A blok sorting lossless data ompression al-gorithm. Tehnial Report Tehnial Report 124, Digital Equipment Cor-poration, 1994.[4℄ W.-L. Chan, W.-K. Hon, and T.-W. Lam. Compressed index for a dynamiolletion of texts. In Pro. CPM'04, LNCS 3109, pages 445�456, 2004.[5℄ D. Clark. Compat Pat Trees. PhD thesis, University of Waterloo, 1996.[6℄ R. Cole, L. A. Gottlieb, and M. Lewenstein. Ditionary mathing and in-dexing with errors and don't ares. In Symposium on Theory of Computing(STOC), pages 91�100, 2004.[7℄ M. Crohemore and W. Rytter. Jewels of Stringology. World Sienti�,2002.[8℄ P. Elias. Universal odeword sets and representation of the integers. IEEETransations on Information Theory, 21(2):194�20, 1975.[9℄ M. Farah-Colton and M. A. Bender. The la problem revisited. InPro. Latin Amerian Theoretial Informatis (LATIN), pages 88�94, 2000.16
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