DEPARTMENT OF COMPUTER SCIENCE
SERIES OF PuBLICATIONS C
REPORT C-2006-37

Engineering a Compressed Suffix Tree

Implementation

Kashyap Dixit, Wolfgang Gerlach, Veli Makinen, and Niko

Valimaki

UNIVERSITY OF HELSINKI
FINLAND

Engineering a Compressed Suffix Tree Implementation

Kashyap Dixit, Wolfgang Gerlach, Veli Mékinen, and Niko Valimé&ki

Department of Computer Science
P.O. Box 68, FIN-00014 University of Helsinki, Finland

kdixit@iitk.ac.in, wgerlach@cebitec.uni-bielefeld.de,
{vmakinen nvalimak}@cs.helsinki.fi

Technical report, Series of Publications C, Report C-2006-37
Helsinki, September 2006, 18 pages

Abstract

Suffix tree is one of the most important data structures in string algorithms.
Especially in biological sequence analysis literature, suffix tree has a central
role. Unfortunately, when it comes to implementing those algorithms and ap-
plying them to real genomic sequences, often the main memory size becomes the
bottleneck. This is easily explained by the fact that while a DNA sequence of
length n from alphabet ¥ = {4, C, G, T} can be stored in nlog |X| = 2n bits, its
suffix tree occupies O(nlogn) bits. In practice, the size difference easily reaches
factor 50.

We report on an implementation of the compressed suffix tree very recently pro-
posed by Sadakane (Theory of Computing Systems, in press). The compressed
suffix tree occupies space proportional to the text size, i.e., O(nlog|X|) bits, and
supports all typical suffix tree operations with at most logn factor slowdown.
We followed the original proposal in spirit, but tailored some internal parts to-
wards practical implementation. Our construction algorithm has time require-
ment O(nlognlog|X|) and uses closely the same space as the final structure
while constructing it. As by-products, we develop a method to create Succinct
Suffix Arrays (Mékinen & Navarro, CPM 2005) directly from Burrows-Wheeler
transform and a space-efficient version of suffizes-insertion algorithm to build
balanced parantheses representation of suffix tree from LCP information.

Computing Reviews (1998) Categories and Subject Descriptors:

E.1, Data: Data Structures trees

E.4, Coding and Information Theory — data compaction and compression

F.2.2 Analysis of Algorithms and Problem Complexity: Nonnumerical Algo-
rithms and Problems — pattern matching, sorting and searching

General Terms:
Algorithms, Data structures

ii

Additional Key Words and Phrases:

Combinatorial pattern matching, Data compression, Full-text indexing, Algo-
rithm engineering

1 Introduction

Myriad non-trivial combinatorial questions concerning strings turn out to have
efficient solutions via extensive use of suffiz trees [2|. This is no surprise, since
suffix trees summarize the whole substring content of a fezt string in an economic
way; suffix trees contain a root to leaf path for each suffix of the text such that
each substring of the text can be read as a prefix of some path. Edges of the
tree are labeled with text substrings, and can be represented just by pointers
to the text. The tree has n leaves and at most n — 1 internal nodes, and hence
representing pointers in the tree and pointers into the text take overall O(n)
computer words, n being the text length. The linear size requirement has made
suffix trees attractive for many applications. After all, representing the O(n?)
substrings of a text in O(n) space is a remarkably powerfull tool. Even more
advantageous is that suffix trees can be constructed in linear time [35, 27, 34|.

Bioinformatics is a field where suffix trees would seem to have the strongest
potential; unlike the natural language texts formed by words and delimiters, bi-
ological sequences are streams of symbols without any predefined word bound-
aries. Suffix trees treat any substring equally, regardless of it being a word or
not. This perfect synergy has created a vast literature describing suffix tree
-based algorithms for sequence analysis problems (see e.g. [15]).

Unfortunately, the theoretically attractive properties of suffix trees do not
always meet the practical realm. For example, the problem of searching approx-
imate occurrences of a pattern in a long text could be solved using suffix tree
-like data structures (see e.g. a recent development in this area [6]). In practice,
the highly popular software tools like BLAST [1] are based on quite different
techniques.

The main reason why suffix trees have remained mainly as theoretical tools is
their immense space consumption. Even for a reasonable size genomic sequence
of 100M B, its suffix tree may require 5G'B of main memory. This phenomenon is
not just a consequence of constant factors in the implementation of the structure,
but rather an asymptotic effect. When examined more carefully, one notices that
a sequence of length n from an alphabet ¥ requires only nlog |X| bits of space,
whereas its suffix tree requires O(nlogn) bits. Hence, the space requirement is
by no means linear when measured in bit-level. In the sequel, we express all
space requirements in bits.

The size bottleneck of suffix trees has made the research turn into looking
for more space-economic variants of suffix trees. One popular alternative is the
suffix array |26]. It basically removes the constant factor of suffix trees to 1, as
what remains from suffix trees is a lexicographically ordered array of starting
positions of suffixes in the text. That occupies nlogn bits. Many tasks on suffix
trees can be simulated by logn factor slowdown using suffix arrays.

A recent twist in the development is the rise of abstract data structures; the
operations supported by a data structure are identified and the best possible
implementation is seeked for that supports those operations. This line of de-
velopment has led to compressed suffiz arrays |14, 10, 32, 13, 11]. These data
structures take, in essense, nlog |X|(1+40(1)) bits of space, being asymptotically
space-optimal. For compressible sequences they take even less space. More im-

portantly, they simulate suffix array operations with logarithmic slowdowns,
and support some operations (like pattern search) even faster than plain suffix
arrays or suffix trees. These structures are also called self-indezes as they do
not need the text to function; the text is actually represented compressed within
the index. See [31] for a survey on these structures.

Very recently Sadakane [33] extended the abstract data structure concept
to cover suffix trees, identifying typical operations suffix trees are assumed to
possess. Some of these operations, like navigating in a tree, were already exten-
sively studied by Munro, Raman, and Rao [29]. In addition to these navigational
operations, suffix trees have several other useful operations such as suffix links,
constant time lowest common ancestor (Ica) queries, and pattern search capa-
bilites. Sadakane developed a fully functional suffix tree structure by combining
compressed suffix arrays with several other non-trivial new structures. Each
operation was supported by at most log n slowdown, often the slowdown being
only constant. The space requirement was shown to be still asymptotically op-
timal, more accurately, |CSA| 4+ 6n + o(n) bits, where |C'SA| is the size of the
compressed suffix array used.

This paper studies an implementation of Sadakane’s compressed suffix tree.
We implemented the structure following closely the original proposal [33]. Since
there are many sub-structures involved, there are many places to consider space-
time tradeoff issues. For example, some of the sublinear o(n) structures turn out
to have inpractically large constants, and in such cases it is essential to consider
whether some constant factor ¢ in space usage can be turned into O(c) time
factor. Our aim was to develop a version that has space-time tradeoff parameters
whenever possible. We managed to engineer a version with reasonable space-
efficiency (see Sect. 8 for some numbers).

A problem related to practical implementation is how to construct the com-
pressed suffix tree without using too much extra space at construction time.
There are many other tasks in compressed suffix tree construction that need spe-
cial attention: (1) How to construct the Burrows-Wheeler transform on which
the compressed suffix arrays are based on; (2) storing sampled text/suffix array
positions; (3) direct construction of compressed longest common prefix infor-
mation, and (4) construction of balanced parantheses representation of suffix
tree directly from compressed suffix array. Tasks (1), (3) and (4) have been
considered in [18] and later improved in [19] so as to obtain an O(nlog®n) time
algorithm to construct compressed suffix trees. Task (2) is related to our choice
of implementing compressed suffix arrays using structures evolved from FM-
index [10], and is tackled in this paper. Also for task (3) our solution variates
slightly from [18] as we build on top of the suffixes-insertion algorithm [7] and
they build on top of the post-order traversal algorithm of [22]. The final time-
requirement of our implementation is O(nlognlog |X|), being reasobaly close to
the best current theoretical result [19].

The outline of the article is as follows. Section 2 gives the basic definitions
and a very cursory overview of Sadakane’s structure. ! Section 3 explains how

! Although it is technically possible to follow this paper without understanding Sadakane’s
structure, we encourage the reader to study [33] to obtain a deeper understanding of the

we implemented compressed suffix arrays (related to task (1)) and provides a
solutions to task (2). Section 4 extrapolates the solution mentioned in [18] for
task (3). Section 5 gives an overview of balanced parantheses and describes
our construction algorithm, solving task (4). Section 6 explains how we imple-
mented the lowest common ancestor structure by adding a space-time tradeoff
parameter. Section 7 explains the software engineering conventions used. Some
final remarks are given in Sect. 8.
The software package is available at http://www.cs.helsinki.fi/group/suds/.

2 Preliminaries

A string T = tits---t, is a sequence of characters from an ordered alphabet
Y. A substring of T is any string T ; = titjp1---t;, where 1 < i < j < n.
A suffiz of T is any substring T; ,,, where 1 < i < n. A prefic of T is any
substring 77, ;, where 1 < j < n. A pattern is a short string over the alphabet
3. We say that pattern P = pips - pr occurs at position j of text string T iff

p1=1t5,p2 =tjt1,.- -, Pk = tjrk—1-

Definition 1 (Adopted from [15]) The keyword trie for set P of patterns is a
rooted directed tree K satisfying three conditions: (1) Each edge is labeled with
exactly one character; (2) any two edges out of the same node have distinct labels;
(8) every pattern P of P maps to some node v of K such that the characters on
the path from the root of IC to v spell out P, and every leaf of IC is mapped to
by some pattern in P.

Definition 2 The suffix trie of text T is a keyword trie for set S, where S is
the set of all suffizes of T .

Definition 3 The suffix tree of text T is the path-compressed suffiz trie of T,
i.e., a tree that is obtained by representing each maximal non-branching path
of the suffir trie as a single edge labeled by the catenation of the labels in the
corresponding edges of the suffix trie. The edge labels of suffiz tree correspond
to substrings of T'; each edge can be represented as a pair (I,7), such that Tj._
gives the label.

The definition for a keyword tree is analogous.

Definition 4 A path label of a node v is the catenation of edge labels from root
to v. Its length is called string depth. The number of edges from root to v is
called node depth.

Definition 5 The suffix link sl(v) of an internal node v with path label za,
where x denotes a single character and o denotes a possibly empty substring, is
the node with path label o.

context.

A typical operation on suffix trees is the lowest common ancestor query,
which can be used to compute the longest common extension lce(i, j) of arbitrary
two suffixes T; , and T} ,: Let v and w be the two leaves of suffix tree have
path labels T; , and T} ., respectively. Then the path label a of the lowest
common ancestor node of v and w is the longest prefix shared by the two suffixes.
We have lce(i, j) = |af.

The following abstract definition captures the above mentioned typical suffix
tree operations.

Definition 6 An abstract suffix tree for a text supports the following opera-
tions:

1. root(): returns the root node.
2. isleaf(v): returns Yes if v is a leaf, and No otherwise.

3. child(v,c): returns the node w that is a child of v and the edge (v, w)
begins with character c, or returns 0 if no such child exists.

4. sibling(v): returns the next sibling of node v.
5. parent(v): returns the parent node of v.

6. edge(v,d): returns the d-th character of the edge-label of an edge pointing
to v.

7. depth(v): returns the string depth of node v.
8. lca(v,w): returns the lowest common ancestor between nodes v and w.

9. sl(v): returns the node w that is pointed to by the suffiz link from v.

The rest of the paper studies an approach to support the abstract suffix tree
operations efficiently, while using less space than the pointer-based classical
suffix tree implementations.

2.1 Overview of Compressed Suffix Tree

Sadakane [33] shows how to implement each operation listed in Def. 6 by means
of a sequence of operations on (1) compressed suffix array, (2) lcp-array 2, (3)
balanced parantheses representation of suffix tree hierarchy, and (4) a structure
for lca-queries. In the following sections we explain how we implemented those
structures.

?Sadakane [33] uses name Height-array

3 Compressed Suffix Array

Suffix array is a simplified version of suffix tree; it only lists the suffixes of the
text in lexicogaphic order. Let SA[l...n] be a table such that T ;.. gives
the i-th smallest suffix in lexicographic order. Notice that this table can be
filled by a depth-first traversal on suffix tree following its edges in lexicogaphic
order.

As the array SA takes nlogn bits, there has been considerable effort in
building compressed suffix arrays to reduce its space requirement, see e.g. [14,
10, 32]. The following captures typical suffix arrays operations on an abstract
level.

Definition 7 An abstract suffix array for a text T supports the following oper-
ations:

o lookup(i): returns SA[il,
o inverse(i): returns j = SA™1[i], defined such that SA[j] = i,
o U(i): returns SATYSA[i] + 1], and

o substring(i,l): returns T[SA[]...SA[{] +1—1].

The function V[i] is defined as follows:

Definition 8

~ | 1 such that SA[i'] = SA[i]+1 (if SA[i] <n)
v ={ if SAL] = n

3.1 Our Implementation

We used Succinct Suffiz Array (SSA) of [23] to implement the abstract suf-
fix array operations. The base structure is the wavelet tree [13] build on the
Burrows-Wheeler transform [3].> Let us briefly revise the structure, as we extend
it to support functions ¥ and inverse that are not considered in the original
proposal.

The Burrows-Wheeler transform 7% is defined as T""[i] = Tsapi)—1 (Where
SA[i] —1 = SA[n] when SA[i] = 1). A property of T®"* used in compressed
suffix arrays is so-called LF-mapping:

Definition 9

~ | @ such that SA[(') = SA[{] —1 (if SA[i] > 1)
LE@) = { n if SA[i] = 1

It can be shown [10] that LF-mapping can computed by the means of Tt

3For background on these techniques, see a recent survey [31].

Lemma 1 ([10]) Let ¢ = T*[i]. Then
LF(i) = Clc] + rank.(T", 1), (1)

where C|c| is the the number of positions of Tt containing character smaller

than c and rankc(wat,i) tells how many times character ¢ occurs upto position
i in T

Table C[1...|X|] can be stored as is in |¥|logn bits of space, and space-
efficient data structures built for storing rank.-function values. For example, a
simplified version of the wavelet tree (see [23, Sect. 5|) stores those values in
nlog |X|(1+ o(1)) bits so that each rank,. value (as well as value T**[i]) can be
computed in O(log |X]|) time.

Let us now consider how the abstract suffix array operations can be simu-
lated using LF-mapping. First, notice that LF-mapping lets us browse the text
backwards starting from any given position. We store for every R-th text posi-
tion i’ x R its location in suffix array explicitly: sampledSAinverse[i'] = j such
that SA[j] = ¢’ x R. Now, the substring(i,l)-query can be supported as follows.
We compute the smallest integer i’ such that i + 1 < i’ x R. Then substring
T; ixr—1 is retrieved in reverse order by applying LF-mapping repeatedly:
tixp_1 = T"Uj), tuxr_o = T"LF[j]], tyxp_3 = T°“'[LF[LF[j]]], Re-
trieving a single character takes O(log|X|) time, hence the total time complexity
for substring(i,l) is O((l+ R)log |X|). Answering inverse(i) is analogous: LF-
mapping is applied ¢/ x R — i times starting from sampledSAinverseli’|. The
index j reached in the end has the desidered property S[j] = i. The time needed
is O(Rlog |X|).

For answering lookup(i) and V(i) we need more structures. We store val-
ues B[j] = 1 such that SA[i] is divisible by R. That is, we mark the suf-
fix array indices containing sampled text positions. We store these sampled
positions in the suffix array order into another table sampledSA such that
sampledSA[rank, (B, j)] = SA[j] whenever B[j] = 1. Function lookup(i) can
now be answered by applying j = LF[j] starting with j = ¢ until B[j] = 1.
Then lookup(i) = sampledSA[rank; (B, j)|] + k, where k is the number of times
LF-mapping was applied. The time needed is still O(Rlog |X]|), as the binary
ranki (B, j)-query can be answered in constant time after building o(n) bits
data structures on top of B [20].

Finally, to answer W(i), we first apply j = lookup(i), then apply LF-
mapping starting from sampledSAinverse[j/R + 1] until reaching again index
i. Let ¢ be the index reached just before applying LF[i'] = i. By definition
U (i) = ¢'. This computation also takes O(Rlog |X|) time.

In our implementation, we use the Huffman-tree shape as advised in [23],
so that the structure takes 22logn + n(Hy + 2)(1 + o(1)) bits of space and
supports all the abstract suffix array operations in O(R * Hj) average time.
(Worst case O(R * logn). Use R + [instead of R for substring(i,l) function
time requirement.) Here Hy is the zeroth order entropy of T. Recall that

Hy <log |¥|. Fixing any R = Q(l(l)ogf‘f"g‘), the structure takes O(nlog [X|) bits.

3.2 Space-efficient Construction via Dynamic Structure

The construction of the structure is done in two phases. First the Burrows-
Wheeler transform is constructed, then the additional structures (wavelet tree,
tables C, sampledSA, sampledSAinverse, and B and its rank structures) are
created.

The first phase can be executed in O(nlognlog|X|) time and using nHy +
o(nlog|X|) bits of space by using the dynamic self-index explained in [24]. We
implemented the simplified version that uses O(nlog |3]|) bits: Instead of using
the more complicated solution to solve rank-queries on dynamic bitvectors, we
used the O(n) bits structure of [4] (see also [24, Sect. 3.2|). Using this inside the
dynamic wavelet trees of [24], one obtains the claimed result (see the paragraph
just before Sect. 6 in [24]). The result is actually a dynamic wavelet tree of the
Burrows-Wheeler transform supporting rank.-queries in O(lognlog|X]) time.
This is easily converted into a static structure of the original SSA (in time linear
in the size of the structure) that supports rank.queries in O(log|X|) time. In
our implementation, we use the Huffman-shaped wavelet tree to improve the
space to O(nHy) bits. This conversion is also easily done by extracting the
Burrows-Wheeler transform from the dynamic wavelet tree with a depth-first
traversal and creating the Huffman-balanced static wavelet tree instead as in
[23].

We are left with explaining how to construct the rest of the structures.
Table C is trivial to construct in O(|X| + n) time. Tables sampledSA,
sampledSAinverse and bitvector B can be constructed as follows. We apply
LF-mapping from the index of the last text position on (which is now possible
as table C' and wavelet tree to support rank.-queries of Lemma 1 are ready).
That is, we virtually scan the text backwards by using LF-mapping. Whenever
we are at a text position divisible by R, say at position ¢ X R, we also know
the suffix array index, say j. That is, we can directly mark B[j] = 1 and store
sampledSAinverse[i] = j. After virtually scanning the text backwards we have
filled B and sampledSAinverse corrrectly. To fill in table sampledSA, we first
preprocess B for ranki (B, 1) queries, and then virtually scan the text backwards
again. Analogously as before, whenever we are at a text position divisible by
R, say at position ¢ X R, we also know the suffix array index, say j. At those
positions, we store sampledSA[rank;(B,j)] = i. The space used for the con-
struction is the same as what the resulting structures take. The time needed is
O(nlog |X]) as each LF-step takes O(log|X|) time and we have 2n steps.

The bottleneck in the construction time is the creation of the Burrows-
Wheeler transform within O(nlog|X|) bits of space. Our implementation uses
O(nlognlog|X¥]|) time for the task. This can be sped up in theory using e.g. the
O(nloglog|X|) time algorithm of [17| that guarantees the same asymptotic
space.

4 [cp-array

Array lep[l...n — 1] is used to store the longest common prefix information
between consecutive suffixes in the lexicographic order. That is, lep[i] =

Iprefiz(Tsap..ns Tsajit1)..n)|, Where prefiz(X,Y) = x1---x; such that z; =
Y1, T3 = Y2, ..., Tj = yj, but xj41 # yj41. Sadakane [33] describes a clever
encoding of the lcp-array that uses 2n+ o(n) bits. The encoding is based on the
fact that values i + lcp[i] are increasing when listed in the text position order.
That is, sequence S = s1,...,8,_1 = 1 +1lep[SATI1]],2 +lep[SA7L]2]],...,n—
1+ lep[SA™ 1[n — 1]] is increasing (see next subsection to see why).

To encode the increasing list S, it is enough to encode each diff(i) =
$; — s;_1 in unary: 0901 where we assume so = 0 and 0% denotes repetition
of 0-bit d-times. This encoding, call it H, takes at most 2n bits. We have the
connection diff(k) = select1(H, k) — select1(H,k — 1) — 1, where select;(H, k)
gives the position of the k-th 1-bit in H. Bitvector H can be preprocessed
to answer selecty (H, k)-queries in constant time using o(|H|) bits extra space
128, 5.

Computing lcp[i] can now be done as follows. Compute k = SA[i] using
lookup(i) of compressed suffix array. Value lcp[i] equals select, (H, k) — k.

4.1 Space-efficient Construction via Kasai et al. Algorithm

Kasai et al. [22]| gave a linear time algorithm to construct lcp-array given suffix
array SA. One could use it to construct the encoding H by applying what is
described above, but the intermediate [cp-array would take nlogn bits. Instead,
one can easily modify Kasai et al. algorithm to directly give encoding H [18].

Kasai et al. algorithm is based on the observation that lcp-array values
for consecutive suffixes in the text order cannot decrease much. More con-
cretely, it holds lep[SA™1[i + 1]] > lep[SAT[i]] — 1 [22]. This has the con-
sequence that one can can compute the lcp-values in the text order, at each
step taking advantage of the already computed prefix length in the previ-
ous step: Let ¢ = max(0,lep[SATi]] — 1). Then lcp[SA™[i +1]] = ¢+
Iprefix(Tiy14e..n, TsA[sA-1[i+1]+1]+¢..n)|- Function prefiz() can be computed
trivially by scanning the text; this will take amortized constant time per step, as
the comparison position in the first argument will advance at each step. Now, to
produce H directly, we notice that the evaluation order is the same as the order
in which [cp-values are stored in H. A step of the algorithm becomes simply:
Let £ = max(0,lcp—1). Then lep = €+ |prefiz(Tiy14e.ns TsalsA-1[i+1)4+1)+£..0) |
and append H with 0/P1. Here lcp = 0 initially and accesses SA[i] and SA~![j]
can done by operations lookup(i) and inverse(j) on compressed suffix array.
After producing H, one can preprocess it for constant time select; queries in
linear time.

The construction uses no extra memory in addition to text, compressed suffix
array, and the outcome of size 2n+ o(n) bits. Using the compressed suffix array
explained earlier in this paper, the time requirement is O(nlogn).

5 Balanced Parantheses

The balanced paranthesis representation P of a tree is produced by a preorder
traversal printing /(" whenever a node is visited the first time, and printing ')’

whenever a node is visited the last time [29]. Letting '('= 1 and /)’ = 0, the
sequence P takes 2u bits on a tree of u nodes. A suffix tree of n leaves can have
at most n — 1 internal nodes, and hence its balanced paranthesis representation
takes at most 4n bits.

Munro, Raman, and Rao [29] explain how to simulate tree traversal by means
of P. After building several structures of sublinear size, one can go e.g. from
node to its first child, from node to its next sibling, and from node to its par-
ent, each in constant time. Sadakane [33] lists many other operations that are
required in his compressed suffix tree. All these navigational operations can be
expressed as combinations of the following functions: rank,, select,, findclose,
and enclose. Here p is a constant size bitvector pattern, e.g. 10 expresses an
open-close paranthesis pair. Function rank,(P,4) returns the number of occur-
rences of p in P upto position i. Function select, (P, j) returns the position of
the j-th occurrences of p in P. Function findclose(P, i) returns the position of
the matching closing paranthesis for the open paranthesis at position 7. Func-
tion enclose(P, i) returns the open paranthesis position of the parent of the node
whose open paranthesis is at position i.

To get an idea of the power of the above navigational operations, let us
consider how to compute the subtree size for a given node v. Let v be the j-th
node in the preorder of the tree. Then ¢ = select;(P,j) gives its location in P.
Its subtree is encoded in the subrange P[i+1 ... k—1], where k = findclose(P,1).
As each node in the subtree of v is encoded by two bits, the number of nodes
in the subtree of v is simply (i — k — 1)/2. Also the number of children in the
subtree of v is easily calculated: As pattern p = 10 represents an open-close
paranthesis pair, i.e. a child node, the amount of children in the subtree of v is

rank,(P, k) — rank(P,1).

5.1 Owur Implementation

We used the existing rank and select implementations that are explained and
experimented in [12]. There rank is the constant time solution of Clark [5],
but select is implemented by binary search on rank values (the constant time
solution [5] is inferior to this on practical inputs [12]). Section 7 explains how
these solutions are modified to the case of short patterns p, as the original
implementations assume p = 1. For findclose and enclose we used Navarro’s
implementations explained in [30] that are based on [29]; these are faster in
practice than the original, but worst case is raised from constant to O(loglogn).

5.2 Space-efficient Construction via LCP Information

To build balanced parantheses sequence of suffix tree space-efficiently one can
not proceed naively; doing preorder traversal on a pointer-based suffix tree re-
quires O(n logn) bits of extra memory. We consider a new approach that builds
the parantheses sequence incrementally. Very similar algorithm is given in [18];
we will consider the differences in the end of the section.

Recall from |7, Theorem 7.5, p. 97| the suffizes-insertion algorithm
to construct suffix tree from LCP information: The algorithm adds suf-

fixes in lexicographic order into a tree, having the keyword tree of suffixes
Tsa)..ms Tsaf)..ns - - Lsaji..n ready after i-th step. Suffix T4[;11)...n is then
added after finding bottom-up from the rightmost path of the tree the correct
insertion point. That is, the split node v closest to the rightmost leaf (cor-
responding to suffix T 4. ,) whose string depth is smaller or equal to lcpl[i]
is seeked for. If the depth is equal, then a new leaf (corresponding to suffix
TSA[i+1]...n) is created as its child. Otherwise, its outgoing rightmost edge is
splitted, a new internal node is inserted in between, and the leaf correspond-
ing to suffix Tg4[;11)..n is added as its rightmost child. It is easy to see by an
amortizement argument that this algorithm takes linear time.

The problem of the suffixes-insertion algorithm for our purposes is that the
tree structure takes O(nlogn) bits. For this reason, we develop a new version of
this algorithm that represents the necessary parts of this dynamically changing
tree structure by space-efficient data structures.

The idea is that at each step of the algorithm we have the balanced paran-
theses representation of the current tree ready. Unfortunately, the parantheses
structure does not change sequentially, so we need to maintain it using a dy-
namic bitvector allowing insertions of bits (open/close parantheses) inside it.
Such bitvector can be maintained using O(n) bits of space so that accessing
the bits and inserting/deleting takes O(logn) time [4, 24]. In addition to the
balanced parantheses to store the tree hierarchy, we need more operations on
the rightmost path; we need to be able to virtually browse the rightmost path
from leaf to root as well as to compute the the string depth of each node visited.

Let us first study string depths. Consider sequence E(i) = ey, ea, ..., e, of
egde label lengths from leaf to root in the righmost path after ¢-th step of the
algorithm. Naturally Z?Zl ej = n, as the string depth of the leaf is n. To find
the split node v of the (i4-1)-th step, we just need to compute the smallest j such
that sdepth(j) = n — Z;/:l ejr < lepli], as this tells us to skip j edges before
(virtually) reaching the split node v. To update the sequence ey, es,..., ek to
correspond the new rightmost path, it is enough to delete values e, ..., e; from
E(7), insert value egp;s = lepli] — sdepth(j) as the first element in E(7), and then
finally insert ejeqr = n — lcpli] as the first element in F(i). These two values
correspond to the lengths of the edge labels of the two new edges on the path; if
esplit = 0, i.e. the new leaf is inserted directly as the child of v, then only value
€leaf is inserted. After these modifications, we have created the sequence E(i+1)
of edge label lengths from leaf to root in the righmost path after (i + 1)-th step
of the algorithm. We will later consider how to maintain sequences E(i) during
the algorithm in succinct form such that the modifications to the beginning are
possible.

In addition to the string depths, we need to maintain information to find
the insertion position in the balanced parantheses representation P of the tree.
This is analogous to the maintainance of string depths. Consider again the i-th
step of the algorithm. Each node in the rightmost path of the current tree is
represented by an open paranthesis in P. Moreover, these parantheses occur
in the same order as the nodes in the path. Hence, we can list the distances
between these nodes with a sequence similar to E(i). Let this sequence be
D(i) = di,ds,...dy, where di gives the distance between open parantheses

10

of k'-th and (k' + 1)-th node computed bottom-up from leaf to root in the
rightmost path. Since P is at most of length 2n, we have that Z§:1 d; < 2n at
each step. To modify P from step 4 to step ¢ + 1, we do the following. First,
we assume that P is not completed with respect to the rightmost path, i.e., it
does not contain the k£ closing parantheses in the end to close the nodes on the
rightmost path (except the leaf). These closing parantheses will be added once
the corresponding subtrees become ready (when no more updates are possible).
Let p = |P| — 1 after step i (position of the last open paranthesis), and again
j the smallest value such that sdepth(j) < lepli]. Hence, we may append P
by 7 — 1 close parantheses, as this is the amount of nodes on the rightmost
path whose subtrees become ready. The open paranthesis of the split node
v is at position pos(j) = p — Z;,:l dy in P. If a new internal node is to be
inserted (in case sdepth(j) < lcp[i]), we insert a new open paranthesis just before
r = pos(j—1); to see why, notice that P[pos(j)+1...r—1] contains the balanced
paranthesis representation of the subtree of v except the subtree of its rightmost
child starting at P[r]. In case sdepth(j) = lcp[i] P stays internally unchanged,
as the new leaf will be added directly under v. In both cases we append P with a
new leaf node (appending open-close paranthesis pair). Finally, we must update
sequence D(7) to correspond to the current state of P. In case sdepth(j) < lcpli]
we notice that d; can be reused as the distance between v and its new rightmost
child node (new internal node). Hence, it is enough to delete values di, ...,
dj—1 from D(i) and insert in the beginning value djeqr = p+j +2 —r (distance
between new internal node and new leaf). In case sdepth(j) = lepli], we delete
values dy, ..., d; from D(i) and insert in the beginning djeqr = p+j+1—pos(j).
After these modifications, we have updated P to correspond to step ¢+ 1 as well
as created sequences E(i + 1) and D(i + 1). By induction, after adding the last
suffix (and after closing the rightmost path by adding closing parantheses as
many as there are elements in F(n)) we have P corresponding to the suffix tree
of the text. The pseudocode of the algorithm is given in Fig. 1.

Handling sequence of variable length integers. We still need to consider
how to manipulate sequences E and D space-efficiently (notice that a trivial
linked list approach would take O(nlogn) bits space, being no improvement to
the original algorithm). We encode the values using variable length prefix codes.
Let us fix Elias § encoding [8]. It has the property that for any integer x, it holds
|0(z)| = log x + o(log z) bits. More importantly, a sequence d(x1)d(x2) - - d(xg)
can be uniquely decoded into x1,x9,...,x2. This can be done in constant time
per code, assuming a precomputed table of size o(N), where N = Zle x; (See
e.g. [25]). Notice also that Zle 16(z;)] < klog 2(1 + o(1)) = O(n) by the
convexity of logarithm. Hence, we can store E and D using O(n) bits.

The only remaining problem is how to support insertions and deletions from
the beginning of J-encoded sequences. This can be done e.g. as follows: Reserve
cn bits of space, where ¢ is a constant in the O(n) space limit for the encoded
sequence. Store the encoded sequence aligned to the end of the memory area,
and remember the starting position. A deletion from the beginning is done by
reading by decoding the first code in constant time and shifting the starting

11

Algorithm BalancedParanthesesViaLCP(lcp, n):
P.Append((Q)); { Add root and first leaf }
p = 2; {Position of the last open paranthesis }
D.Push(1); E.Push(n); {Initialize stacks storing node/string depth information on rightmost path}
for i =1 to n — 1 do {Add the suffixes in the lexicographic order}
lep = lepli]; {lep value can also be computed from its compressed representation}
Find smallest j such that sdepth = n — E.Sum(j) < lcp; {E.Sum(j) = Z§/=1 e }
Append P with j — 1 closing parentheses;
if sdepth < lcp then {Add new internal node and a leaf}
r=p— D.Sum(j —1); {Position in P}
P.Insert((,r);
do j times E.Pop();
E.Push(lcp — sdepth); E.Push(n — lcp);
do j — 1 times D.Pop();
D.Push(p+j+2—r);
else {Add new leaf}
r=p— D.Sum(j);
do j times E.Pop();
E.Push(n — lcp);
do j times D.Pop();
D.Push(p+j+1—r);

end if

P.Append(Q));

p=IP -1
end for

Append P with |E| closing parentheses;

Figure 1: Construction of balanced parantheses representation of suffix tree by
a space-efficient version of suffizes-insertion algorithm.

12

position to the right accordingly. Identically an insertion is done by shifting the
starting position to the left to make room for the new code.

We can conlude that given the lcp-array, we can construct the balanced
parantheses sequence in O(nlogn) time using O(n) bits working space.

Improving running time to linear. Finally, the time requirement can be
improved to linear by replacing the dynamic bit vector by a patching technique
[21]: The idea is to postpone the updates until a buffer of length n bits is
full. Then sort the n/logn insertions positions stored in the buffer using Radix
sort in O(n/logn) time, and merge the insertion positions with the already
constructed P in O(n/logn) time under RAM. The buffer can become full only
O(logn) times, and hence the total time used for operations on P is linear.

Comparison to Hon and Sadakane solution. Hon and Sadakane [18] de-
scribe a very similar algorithm. They build on top of an algorithm in [22] that
simulates the post-order traversal of suffix tree given the lcp-values (Kasai et
al. describe the algorithm for ordinary trees, but it can easily be specialized to
suffix trees). The string depths (values E) are handled identically to our algo-
rithm. The difference is in handling node depths (values D). We use values D
to track the insertion position in P. Hon and Sadakane represent P as a forest
of trees such that each root corresponds to a node in the rightmost path. These
nodes partition current P into pieces that do not change during the latter steps
of the algorithm. The tree of a piece is such that when preorder traversed one
obtains the piece by concatenating the bits stored at each node. Space-efficiency
is obtained by creating children only when O(logn) bits are stored at a node.
This means that there are overall O(n/logn) pointers, needing overall O(n)
bits. Handling the buffers of O(logn) bits is easy, since insertions of (to the
beginning or of) to the end can be done in constant time under RAM model.
The insertion operations take place during the algorithm when new internal
nodes are visited in postorder.

There is, however, a problem with texts of type a"™#, where #<a: Postorder
traversal will visit all the leaf nodes first, creating n trees each containing two
bits corresponding to (). Keeping pointers to those trees take O(nlogn) bits.
These pointers are necessary in order to find out which trees are merged when
a new internal node is visited. In fact, these pointers also need to be inserted
to a stack, since they will be merged in their reverse creation order. The solve
this problem, one can proceed as follows. Merge the small trees (buffers) so that
each remaining tree (buffer) has size ©(logn) bits. Use d-encoding to store the
distances of merge-boundaries. This guarantees that there are only O(n/logn)
trees, and the pointers to those trees (and inside them) take overall O(n) bits.
Similarly as before, the §-encoded values occupy O(n) bits.

In fact, these latter d-values are analogous to the node-depth values D we
are using. The difference between the approaches remains the handling of P.

Hon [16, page 59| offers a more elegant solution to the problem; instead of
trying to form P on the fly, one constructs only a version of P that contains
leaves () and closing parantheses). That is, remove line P.Insert((,r) from the

13

algorithm of Fig. 1. Then run the algorithm reversed reading lcp-values from
right to left. This creates a version of P that only contains leaves () and open
parantheses (. These two sequences are easy to merge to form P as the leaves
() occur in the same order, and between two leaves all the closing parantheses
appear before the open parantheses. For example, let P/ = ()0 ()) () ())) and
P" = ((OOCOO be the two sequences constructed after forward and back-
ward scanning of [cp-values. Then after matching the leaves (), the placement of
open and close parantheses are uniquely defined, that is, P = ((O)) (O).
Setting the parantheses in the other order between the second and third leaf
would yield another leaf, which is not allowed.

Our implementation. In our implementation, we do not yet use any of the
above three different ways to achieve linear time. Our implementation fol-
lows the pseudocode given in Fig. 1. Moreover, since we use the compressed
lcp-values, the time requirement of balanced parantheses construction remains
O(nlogn) even after applying one of the speed ups.

6 Lowest Common Ancestor Structure

Farach-Colton and Bender [9] describe a O(nlogn) bits structure that can be
preprocessed for a tree in O(n) time to support constant time lowest common
ancestor (Ica) queries. Sadakane [33] modified this structure to take O(n) bits
of space without affecting the time requirements. We implemented Sadakane’s
proposal that builds on top of the balanced parantheses representation of pre-
vious section, adding lookup tables taking o(n) bits.

While implementing Sadakane’s proposal, we faced a practical problem; one
of the sublinear structures for lca-queries takes space n(loglogn)?/logn bits,
which on practical inputs is considerable amount: This lookup table was taking
half the size of the complete compressed suffix tree on some inputs. To go around
this bottleneck, we added a space-time tradeoff parameter K such that using
space n(loglogn)?/(K logn) bits for this structure, one can answer lca-queries
in time O(K).

7 Implementation Design

We used object oriented programming using C++-language to create an easily us-
able and maintainable software package. Each abstract data structure explained
above is its own class, making it easy to change the underlying implementations
at any phase. For example, one can easily switch to another compressed suffix
array implementation just by writing a new class with the same name and same
operations supported.

We used to some extend generic programming in order to avoid writing sim-
ilar code segments. A novel example of its use is our ranky(P, 1) / select,(P, j)
function implementations (see Sect. 5 for definitions). These operations are
needed in Sadakane’s compressed suffix tree for many different short patterns
p like 0,1,10,01. It is known how to build o(n) bits structures for each fized p

14

so that rank, and select, queries can be answered in constant time. Instead of
copy-pasting those codes and changing some details depending on the pattern
p, we used one generic implementation that only assumes that short substrings
of a virtual indicator vector of P can be accessed in constant time. A virtual in-
dicator vector of P with respect to a pattern p is I(P,p) = I[1...|P|] such that
I[i] = 1 iff pattern p occurs at position ¢ in P, otherwise I[i] = 0. Now, after
building a table storing for each (log |P])/2 length substring « of P the mapping
to its indicator vector I(a,p) = I[1...|a|], one can access any O(log |P|)-length
substring of I(P,p) in constant time. This access is enough to guarantee con-
stant time rank, and select), operations: Complete I (P, p) is only needed in con-
struction time to build the lookup tables of [20, 28, 5|. Later on the rank, and
select, functions consult the lookup tables and need only access to short frag-
ments of I(P,p). These accesses are independent of p. Only the pointer to the
lookup table to map substrings « of P to the indicator vector I(«,p) depends on
p. Notice that the alternative approach of keeping the indicator vectors I(P,p)
stored in memory for each of the k values of p would require k|P| bits of mem-
ory. Now we are only using k21°817)/2(log | P|)/2 = (k/2)+/]P|log |P| = o(|P))
bits. Thus, our approach is just as time/space-efficient as the trivial approach
of using tailored code. What we gain is the generality as the code works for
any p without any changes to the code (the generation of the lookup table for
creating the mapping is parameterized by p as well).

7.1 Correctness.

The most difficult goal to achieve in the implementation (in general) is the
correctness. We wanted to avoid the typical setting of doing one month imple-
mentation and three months bug fixing. We adopted a strategy often associated
with Eztreme Programming, namely, we produced each week a working release.
In this particular case this strategy suited our purposes perfectly.

We started the project by taking an already existing implementation of a suf-
fix tree. We implemented the first version of the abstract suffix tree (Def. 6) by
supporting the functions via the classical suffix tree. Functions such as lca were
first implemented by trivial scanning. This was our first release. The work con-
tinued by converting the suffix tree hierarchy into balanced parantheses form,
and implementing the required traversal operations by trivial scanning. Ab-
stract suffix array was implemented first by normal suffix array. This refinement
continued gradually, so that each week we had a new release whose correctness
could be compared to the previous release. After two months, we had a fully
working implementation of compressed suffix tree ready. One more month was
used in implementing the space-efficient construction algorithms. The complete
work required equals about three months from two undergraduate students.

8 Final remarks

As one can see, our implementation of compressed suffix tree follows very closely
the theoretical proposals. We made only couple of choices towards practical ef-
ficiency and very few towards reducing the implementation work. The former is

15

mainly because we do not yet have executed extensive experimentation to guide
the choice of practical alternatives. For the latter matter, we used previous
implementations as basis as much as possible. Many of these are also imple-
mentations of the best algorithms for the particular tasks. Yet there exists some
algorithms that could be used to speed up our construction algorithm. Plugging
in those algorithms is left for future work.

The most important future task is to experiment the new space/time trade-
offs achieved with respect to classical suffix trees. Preliminary experiments
show that the space-efficiency is very appealing: The compressed suffix tree for
a 10MB DNA sequence requires 32MB. This is already less than what a suffix
array takes: 40MB, not to talk about a standard suffix tree that takes at least
160MB at the same input. Measuring in bits, the DNA sequence could be stored
in 20M bits (2 bits / character). The compressed suffix tree takes 256M bits,
that is, about 13 times more than the DNA sequence. The theoretical bound
of our implementation is nlog|X| + 8n = 10n plus sublinear terms. Assymp-
totically we should then be using about 5 times more space than a succinctly
encoded DNA sequence. This shows that the sublinear structures take over the
half of the space with files of size 10MB. A major research question of practical
interest is thus to improve the constants in the sublinear structures.

References

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic
local alignment search tool. Journal of Molecular Biology, 215(3):403-410,
1990.

[2] A. Apostolico. The myriad virtues of subword trees. In Combinatorial
Algorithms on Words, NATO ISI Series, pages 85 96. Springer-Verlag, 1985.

[3] M. Burrows and D. Wheeler. A block sorting lossless data compression al-
gorithm. Technical Report Technical Report 124, Digital Equipment Cor-
poration, 1994.

[4] W.-L. Chan, W.-K. Hon, and T.-W. Lam. Compressed index for a dynamic
collection of texts. In Proc. CPM’04, LNCS 3109, pages 445 456, 2004.

[5] D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1996.

[6] R. Cole, L. A. Gottlieb, and M. Lewenstein. Dictionary matching and in-
dexing with errors and don’t cares. In Symposium on Theory of Computing
(STOC), pages 91 100, 2004.

[7] M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific,
2002.

[8] P. Elias. Universal codeword sets and representation of the integers. IEEE
Transactions on Information Theory, 21(2):194 20, 1975.

[9] M. Farach-Colton and M. A. Bender. The lca problem revisited. In
Proc. Latin American Theoretical Informatics (LATIN), pages 88-94, 2000.

16

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

P. Ferragina and G. Manzini. Indexing compressed texts. Journal of the
ACM, 52(4):552 581, 2005.

P. Ferragina, G. Manzini, V. M#kinen, and G. Navarro. Compressed rep-
resentation of sequences and full-text indexes. ACM Transactions on Al-
gorithms, 2006. To appear. Preliminary versions in Proc. SPIRE 2004 and
Tech. Rep. TR/DCC-2004-5, Dept. of Computer Science Univ. of Chile,

ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/sequences.ps.gz.

Rodrigo Gonzélez, Szymon Grabowski, Veli Mikinen, and Gonzalo
Navarro. Practical implementation of rank and select queries. In Poster
Proceedings Volume of 4th Workshop on Efficient and Experimental Al-

gorithms (WEA’05), pages 27 38, Greece, 2005. CTI Press and Ellinika
Grammata.

R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text
indexes. In Proc. SODA’03, pages 841 850, 2003.

R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM Journal on Com-
puting, 35(2):378 407, 2006.

D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science
and Computational Biology. Cambridge University Press, 1997.

W.-K. Hon. On the Construction and Application of Compressed Text In-
dexes. PhD thesis, University of Hong Kong, 2004.

W.-K. Hon, K. Sadakane, and W.-K. Sung. Succinct data structures for
searchable partial sums. In Proc. ISAAC’03, LNCS 2906, pages 505 516,
2003.

Wing-Kai Hon and Kunihiko Sadakane. Space-economical algorithms for
finding maximal unique matches. In Alberto Apostolico and Masayuki
Takeda, editors, CPM, volume 2373 of Lecture Notes in Computer Science,
pages 144-152. Springer, 2002.

Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. Breaking a time-
and-space barrier in constructing full-text indices. In FOCS ’03: Proceed-
ings of the 44th Annual IEEE Symposium on Foundations of Computer
Science, page 251, Washington, DC, USA, 2003. IEEE Computer Society.

G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th IEEE
Symp. Foundations of Computer Science (FOCS’89), pages 549-554, 1989.

J. Kérkkiinen. personal communication, 2006.

T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time
longest-common-prefix computation in suffix arrays and its applications.
In Proc. Annual Symposium on Combinatorial Pattern Matching (CPM),
Springer Verlag LNCS 2089, pages 181-192, 2001.

17

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

V. Mikinen and G. Navarro. Succinct suffix arrays based on run-length
encoding. Nordic Journal of Computing, 12(1):40 66, 2005.

V. Mikinen and G. Navarro. Dynamic entropy compressed sequences and
full-text indexes. In Proc. Annual Symposium on Combinatorial Pattern
Matching (CPM), Springer Verlag LNCS 4009, pages 306-317, 2006.

V. Mikinen and G. Navarro. Rank and select revisited and extended.
Theoretical Computer Science, 2006. To appear.

U. Manber and G. Myers. Suffix arrays: a new method for on-line string
searches. SIAM Journal on Computing, pages 935 948, 1993.

E. McCreight. A space-economical suffix tree construction algorithm. Jour-
nal of the ACM, 23(2):262-272, 1976.

I. Munro. Tables. In Proc. 16th Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’96), LNCS 1180, pages 3742,
1996.

I. Munro, V. Raman, and S. Rao. Space efficient suffix trees. Journal of
Algorithms, 39(2):205-222, 2001.

G. Navarro. Indexing text using the Ziv-Lempel trie. Journal of Discrete
Algorithms (JDA), 2(1):87-114, 2004.

G. Navarro and V. Maikinen. Compressed full-text in-
dexes. Technical Report TR/DCC-2006-6, Department of
Computer Science, University of Chile, Chile, April 2006.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/survcompr2.ps.gz.
Submitted to a journal.

K. Sadakane. New text indexing functionalities of the compressed suffix
arrays. Journal of Algorithms, 48(2):294-313, 2003.

K. Sadakane. Compressed suffix trees with full functionality. Theory of
Computing Systems, 2006. To appear, preliminary version available at
http://tcslab.csce.kyushu-u.ac.jp/ sada/papers/cst.ps.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249
260, 1995.

P. Weiner. Linear pattern matching algorithms. In 14th IEEE Annual
Symp. on Switching and Automata Theory, pages 1 11, 1973.

18

