
Department of Computer S
ien
eSeries of Publi
ations CReport C-2006-37

Engineering a Compressed Su�x TreeImplementation

Kashyap Dixit, Wolfgang Gerla
h, Veli Mäkinen, and NikoVälimäki

University of HelsinkiFinland

Engineering a Compressed Su�x Tree ImplementationKashyap Dixit, Wolfgang Gerla
h, Veli Mäkinen, and Niko VälimäkiDepartment of Computer S
ien
eP.O. Box 68, FIN-00014 University of Helsinki, Finlandkdixit�iitk.a
.in, wgerla
h�
ebite
.uni-bielefeld.de,{vmakinen,nvalimak}�
s.helsinki.�Te
hni
al report, Series of Publi
ations C, Report C-2006-37Helsinki, September 2006, 18 pagesAbstra
tSu�x tree is one of the most important data stru
tures in string algorithms.Espe
ially in biologi
al sequen
e analysis literature, su�x tree has a
entralrole. Unfortunately, when it
omes to implementing those algorithms and ap-plying them to real genomi
 sequen
es, often the main memory size be
omes thebottlene
k. This is easily explained by the fa
t that while a DNA sequen
e oflength n from alphabet Σ = {A,C,G, T}
an be stored in n log |Σ| = 2n bits, itssu�x tree o

upies O(n log n) bits. In pra
ti
e, the size di�eren
e easily rea
hesfa
tor 50.We report on an implementation of the
ompressed su�x tree very re
ently pro-posed by Sadakane (Theory of Computing Systems, in press). The
ompressedsu�x tree o

upies spa
e proportional to the text size, i.e., O(n log |Σ|) bits, andsupports all typi
al su�x tree operations with at most log n fa
tor slowdown.We followed the original proposal in spirit, but tailored some internal parts to-wards pra
ti
al implementation. Our
onstru
tion algorithm has time require-ment O(n log n log |Σ|) and uses
losely the same spa
e as the �nal stru
turewhile
onstru
ting it. As by-produ
ts, we develop a method to
reate Su

in
tSu�x Arrays (Mäkinen & Navarro, CPM 2005) dire
tly from Burrows-Wheelertransform and a spa
e-e�
ient version of su�xes-insertion algorithm to buildbalan
ed parantheses representation of su�x tree from LCP information.Computing Reviews (1998) Categories and Subje
t Des
riptors:E.1,E.4,F.2.2 Data: Data Stru
tures � treesCoding and Information Theory � data
ompa
tion and
ompressionAnalysis of Algorithms and Problem Complexity: Nonnumeri
al Algo-rithms and Problems � pattern mat
hing, sorting and sear
hingGeneral Terms:Algorithms, Data stru
tures

iiAdditional Key Words and Phrases:Combinatorial pattern mat
hing, Data
ompression, Full-text indexing, Algo-rithm engineering

1 Introdu
tionMyriad non-trivial
ombinatorial questions
on
erning strings turn out to havee�
ient solutions via extensive use of su�x trees [2℄. This is no surprise, sin
esu�x trees summarize the whole substring
ontent of a text string in an e
onomi
way; su�x trees
ontain a root to leaf path for ea
h su�x of the text su
h thatea
h substring of the text
an be read as a pre�x of some path. Edges of thetree are labeled with text substrings, and
an be represented just by pointersto the text. The tree has n leaves and at most n − 1 internal nodes, and hen
erepresenting pointers in the tree and pointers into the text take overall O(n)
omputer words, n being the text length. The linear size requirement has madesu�x trees attra
tive for many appli
ations. After all, representing the O(n2)substrings of a text in O(n) spa
e is a remarkably powerfull tool. Even moreadvantageous is that su�x trees
an be
onstru
ted in linear time [35, 27, 34℄.Bioinformati
s is a �eld where su�x trees would seem to have the strongestpotential; unlike the natural language texts formed by words and delimiters, bi-ologi
al sequen
es are streams of symbols without any prede�ned word bound-aries. Su�x trees treat any substring equally, regardless of it being a word ornot. This perfe
t synergy has
reated a vast literature des
ribing su�x tree-based algorithms for sequen
e analysis problems (see e.g. [15℄).Unfortunately, the theoreti
ally attra
tive properties of su�x trees do notalways meet the pra
ti
al realm. For example, the problem of sear
hing approx-imate o

urren
es of a pattern in a long text
ould be solved using su�x tree-like data stru
tures (see e.g. a re
ent development in this area [6℄). In pra
ti
e,the highly popular software tools like BLAST [1℄ are based on quite di�erentte
hniques.The main reason why su�x trees have remained mainly as theoreti
al tools istheir immense spa
e
onsumption. Even for a reasonable size genomi
 sequen
eof 100MB, its su�x tree may require 5GB of main memory. This phenomenon isnot just a
onsequen
e of
onstant fa
tors in the implementation of the stru
ture,but rather an asymptoti
 e�e
t. When examined more
arefully, one noti
es thata sequen
e of length n from an alphabet Σ requires only n log |Σ| bits of spa
e,whereas its su�x tree requires O(n log n) bits. Hen
e, the spa
e requirement isby no means linear when measured in bit-level. In the sequel, we express allspa
e requirements in bits.The size bottlene
k of su�x trees has made the resear
h turn into lookingfor more spa
e-e
onomi
 variants of su�x trees. One popular alternative is thesu�x array [26℄. It basi
ally removes the
onstant fa
tor of su�x trees to 1, aswhat remains from su�x trees is a lexi
ographi
ally ordered array of startingpositions of su�xes in the text. That o

upies n log n bits. Many tasks on su�xtrees
an be simulated by log n fa
tor slowdown using su�x arrays.A re
ent twist in the development is the rise of abstra
t data stru
tures; theoperations supported by a data stru
ture are identi�ed and the best possibleimplementation is seeked for that supports those operations. This line of de-velopment has led to
ompressed su�x arrays [14, 10, 32, 13, 11℄. These datastru
tures take, in essense, n log |Σ|(1+o(1)) bits of spa
e, being asymptoti
allyspa
e-optimal. For
ompressible sequen
es they take even less spa
e. More im-1

portantly, they simulate su�x array operations with logarithmi
 slowdowns,and support some operations (like pattern sear
h) even faster than plain su�xarrays or su�x trees. These stru
tures are also
alled self-indexes as they donot need the text to fun
tion; the text is a
tually represented
ompressed withinthe index. See [31℄ for a survey on these stru
tures.Very re
ently Sadakane [33℄ extended the abstra
t data stru
ture
on
eptto
over su�x trees, identifying typi
al operations su�x trees are assumed topossess. Some of these operations, like navigating in a tree, were already exten-sively studied by Munro, Raman, and Rao [29℄. In addition to these navigationaloperations, su�x trees have several other useful operations su
h as su�x links,
onstant time lowest
ommon an
estor (l
a) queries, and pattern sear
h
apa-bilites. Sadakane developed a fully fun
tional su�x tree stru
ture by
ombining
ompressed su�x arrays with several other non-trivial new stru
tures. Ea
hoperation was supported by at most log n slowdown, often the slowdown beingonly
onstant. The spa
e requirement was shown to be still asymptoti
ally op-timal, more a

urately, |CSA| + 6n + o(n) bits, where |CSA| is the size of the
ompressed su�x array used.This paper studies an implementation of Sadakane's
ompressed su�x tree.We implemented the stru
ture following
losely the original proposal [33℄. Sin
ethere are many sub-stru
tures involved, there are many pla
es to
onsider spa
e-time tradeo� issues. For example, some of the sublinear o(n) stru
tures turn outto have inpra
ti
ally large
onstants, and in su
h
ases it is essential to
onsiderwhether some
onstant fa
tor c in spa
e usage
an be turned into O(c) timefa
tor. Our aim was to develop a version that has spa
e-time tradeo� parameterswhenever possible. We managed to engineer a version with reasonable spa
e-e�
ien
y (see Se
t. 8 for some numbers).A problem related to pra
ti
al implementation is how to
onstru
t the
om-pressed su�x tree without using too mu
h extra spa
e at
onstru
tion time.There are many other tasks in
ompressed su�x tree
onstru
tion that need spe-
ial attention: (1) How to
onstru
t the Burrows-Wheeler transform on whi
hthe
ompressed su�x arrays are based on; (2) storing sampled text/su�x arraypositions; (3) dire
t
onstru
tion of
ompressed longest
ommon pre�x infor-mation, and (4)
onstru
tion of balan
ed parantheses representation of su�xtree dire
tly from
ompressed su�x array. Tasks (1), (3) and (4) have been
onsidered in [18℄ and later improved in [19℄ so as to obtain an O(n logǫ n) timealgorithm to
onstru
t
ompressed su�x trees. Task (2) is related to our
hoi
eof implementing
ompressed su�x arrays using stru
tures evolved from FM-index [10℄, and is ta
kled in this paper. Also for task (3) our solution variatesslightly from [18℄ as we build on top of the su�xes-insertion algorithm [7℄ andthey build on top of the post-order traversal algorithm of [22℄. The �nal time-requirement of our implementation is O(n log n log |Σ|), being reasobaly
lose tothe best
urrent theoreti
al result [19℄.The outline of the arti
le is as follows. Se
tion 2 gives the basi
 de�nitionsand a very
ursory overview of Sadakane's stru
ture. 1 Se
tion 3 explains how1Although it is te
hni
ally possible to follow this paper without understanding Sadakane'sstru
ture, we en
ourage the reader to study [33℄ to obtain a deeper understanding of the2

we implemented
ompressed su�x arrays (related to task (1)) and provides asolutions to task (2). Se
tion 4 extrapolates the solution mentioned in [18℄ fortask (3). Se
tion 5 gives an overview of balan
ed parantheses and des
ribesour
onstru
tion algorithm, solving task (4). Se
tion 6 explains how we imple-mented the lowest
ommon an
estor stru
ture by adding a spa
e-time tradeo�parameter. Se
tion 7 explains the software engineering
onventions used. Some�nal remarks are given in Se
t. 8.The software pa
kage is available at http://www.
s.helsinki.fi/group/suds/.2 PreliminariesA string T = t1t2 · · · tn is a sequen
e of
hara
ters from an ordered alphabet
Σ. A substring of T is any string Ti...j = titi+1 · · · tj, where 1 ≤ i ≤ j ≤ n.A su�x of T is any substring Ti...n, where 1 ≤ i ≤ n. A pre�x of T is anysubstring T1...j, where 1 ≤ j ≤ n. A pattern is a short string over the alphabet
Σ. We say that pattern P = p1p2 · · · pk o

urs at position j of text string T i�
p1 = tj , p2 = tj+1, . . . , pk = tj+k−1.De�nition 1 (Adopted from [15℄) The keyword trie for set P of patterns is arooted dire
ted tree K satisfying three
onditions: (1) Ea
h edge is labeled withexa
tly one
hara
ter; (2) any two edges out of the same node have distin
t labels;(3) every pattern P of P maps to some node v of K su
h that the
hara
ters onthe path from the root of K to v spell out P , and every leaf of K is mapped toby some pattern in P.De�nition 2 The su�x trie of text T is a keyword trie for set S, where S isthe set of all su�xes of T .De�nition 3 The su�x tree of text T is the path-
ompressed su�x trie of T ,i.e., a tree that is obtained by representing ea
h maximal non-bran
hing pathof the su�x trie as a single edge labeled by the
atenation of the labels in the
orresponding edges of the su�x trie. The edge labels of su�x tree
orrespondto substrings of T ; ea
h edge
an be represented as a pair (l, r), su
h that Tl...rgives the label.The de�nition for a keyword tree is analogous.De�nition 4 A path label of a node v is the
atenation of edge labels from rootto v. Its length is
alled string depth. The number of edges from root to v is
alled node depth.De�nition 5 The su�x link sl(v) of an internal node v with path label xα,where x denotes a single
hara
ter and α denotes a possibly empty substring, isthe node with path label α.
ontext. 3

A typi
al operation on su�x trees is the lowest
ommon an
estor query,whi
h
an be used to
ompute the longest
ommon extension lce(i, j) of arbitrarytwo su�xes Ti...n and Tj...n: Let v and w be the two leaves of su�x tree havepath labels Ti...n and Tj...n, respe
tively. Then the path label α of the lowest
ommon an
estor node of v and w is the longest pre�x shared by the two su�xes.We have lce(i, j) = |α|.The following abstra
t de�nition
aptures the above mentioned typi
al su�xtree operations.De�nition 6 An abstra
t su�x tree for a text supports the following opera-tions:1. root(): returns the root node.2. isleaf(v): returns Yes if v is a leaf, and No otherwise.3. child(v, c): returns the node w that is a
hild of v and the edge (v,w)begins with
hara
ter c, or returns 0 if no su
h
hild exists.4. sibling(v): returns the next sibling of node v.5. parent(v): returns the parent node of v.6. edge(v, d): returns the d-th
hara
ter of the edge-label of an edge pointingto v.7. depth(v): returns the string depth of node v.8. lca(v,w): returns the lowest
ommon an
estor between nodes v and w.9. sl(v): returns the node w that is pointed to by the su�x link from v.The rest of the paper studies an approa
h to support the abstra
t su�x treeoperations e�
iently, while using less spa
e than the pointer-based
lassi
alsu�x tree implementations.2.1 Overview of Compressed Su�x TreeSadakane [33℄ shows how to implement ea
h operation listed in Def. 6 by meansof a sequen
e of operations on (1)
ompressed su�x array, (2) lcp-array 2, (3)balan
ed parantheses representation of su�x tree hierar
hy, and (4) a stru
turefor lca-queries. In the following se
tions we explain how we implemented thosestru
tures.2Sadakane [33℄ uses name Height-array 4

3 Compressed Su�x ArraySu�x array is a simpli�ed version of su�x tree; it only lists the su�xes of thetext in lexi
ogaphi
 order. Let SA[1 . . . n] be a table su
h that TSA[i]...n givesthe i-th smallest su�x in lexi
ographi
 order. Noti
e that this table
an be�lled by a depth-�rst traversal on su�x tree following its edges in lexi
ogaphi
order.As the array SA takes n log n bits, there has been
onsiderable e�ort inbuilding
ompressed su�x arrays to redu
e its spa
e requirement, see e.g. [14,10, 32℄. The following
aptures typi
al su�x arrays operations on an abstra
tlevel.De�nition 7 An abstra
t su�x array for a text T supports the following oper-ations:
• lookup(i): returns SA[i],
• inverse(i): returns j = SA−1[i], de�ned su
h that SA[j] = i,
• Ψ(i): returns SA−1[SA[i] + 1], and
• substring(i, l): returns T [SA[i] . . . SA[i] + l − 1].The fun
tion Ψ[i] is de�ned as follows:De�nition 8

Ψ(i) =

{

i′ su
h that SA[i′] = SA[i] + 1 (if SA[i] < n)
1 if SA[i] = n3.1 Our ImplementationWe used Su

in
t Su�x Array (SSA) of [23℄ to implement the abstra
t suf-�x array operations. The base stru
ture is the wavelet tree [13℄ build on theBurrows-Wheeler transform [3℄.3 Let us brie�y revise the stru
ture, as we extendit to support fun
tions Ψ and inverse that are not
onsidered in the originalproposal.The Burrows-Wheeler transform T bwt is de�ned as T bwt[i] = TSA[i]−1 (where

SA[i] − 1 = SA[n] when SA[i] = 1). A property of T bwt used in
ompressedsu�x arrays is so-
alled LF -mapping:De�nition 9
LF (i) =

{

i′ su
h that SA[i′] = SA[i] − 1 (if SA[i] > 1)
n if SA[i] = 1It
an be shown [10℄ that LF -mapping
an
omputed by the means of T bwt:3For ba
kground on these te
hniques, see a re
ent survey [31℄.5

Lemma 1 ([10℄) Let c = T bwt[i]. Then
LF (i) = C[c] + rankc(T

bwt, i), (1)where C[c] is the the number of positions of T bwt
ontaining
hara
ter smallerthan c and rankc(T
bwt, i) tells how many times
hara
ter c o

urs upto position

i in T bwt.Table C[1 . . . |Σ|]
an be stored as is in |Σ| log n bits of spa
e, and spa
e-e�
ient data stru
tures built for storing rankc-fun
tion values. For example, asimpli�ed version of the wavelet tree (see [23, Se
t. 5℄) stores those values in
n log |Σ|(1+ o(1)) bits so that ea
h rankc value (as well as value T bwt[i])
an be
omputed in O(log |Σ|) time.Let us now
onsider how the abstra
t su�x array operations
an be simu-lated using LF -mapping. First, noti
e that LF -mapping lets us browse the textba
kwards starting from any given position. We store for every R-th text posi-tion i′×R its lo
ation in su�x array expli
itly: sampledSAinverse[i′] = j su
hthat SA[j] = i′×R. Now, the substring(i, l)-query
an be supported as follows.We
ompute the smallest integer i′ su
h that i + l ≤ i′ × R. Then substring
Ti...i′×R−1 is retrieved in reverse order by applying LF -mapping repeatedly:
ti′×R−1 = T bwt[j], ti′×R−2 = T bwt[LF [j]], ti′×R−3 = T bwt[LF [LF [j]]], Re-trieving a single
hara
ter takes O(log |Σ|) time, hen
e the total time
omplexityfor substring(i, l) is O((l +R) log |Σ|). Answering inverse(i) is analogous: LF -mapping is applied i′ × R − i times starting from sampledSAinverse[i′]. Theindex j rea
hed in the end has the desidered property S[j] = i. The time neededis O(R log |Σ|).For answering lookup(i) and Ψ(i) we need more stru
tures. We store val-ues B[j] = 1 su
h that SA[i] is divisible by R. That is, we mark the suf-�x array indi
es
ontaining sampled text positions. We store these sampledpositions in the su�x array order into another table sampledSA su
h that
sampledSA[rank1(B, j)] = SA[j] whenever B[j] = 1. Fun
tion lookup(i)
annow be answered by applying j = LF [j] starting with j = i until B[j] = 1.Then lookup(i) = sampledSA[rank1(B, j)] + k, where k is the number of times
LF -mapping was applied. The time needed is still O(R log |Σ|), as the binary
rank1(B, j)-query
an be answered in
onstant time after building o(n) bitsdata stru
tures on top of B [20℄.Finally, to answer Ψ(i), we �rst apply j = lookup(i), then apply LF -mapping starting from sampledSAinverse[j/R + 1] until rea
hing again index
i. Let i′ be the index rea
hed just before applying LF [i′] = i. By de�nition
Ψ(i) = i′. This
omputation also takes O(R log |Σ|) time.In our implementation, we use the Hu�man-tree shape as advised in [23℄,so that the stru
ture takes 2n

R log n + n(H0 + 2)(1 + o(1)) bits of spa
e andsupports all the abstra
t su�x array operations in O(R ∗ H0) average time.(Worst
ase O(R ∗ log n). Use R + l instead of R for substring(i, l) fun
tiontime requirement.) Here H0 is the zeroth order entropy of T . Re
all that
H0 ≤ log |Σ|. Fixing any R = Ω(log n

log |Σ|), the stru
ture takes O(n log |Σ|) bits.6

3.2 Spa
e-e�
ient Constru
tion via Dynami
 Stru
tureThe
onstru
tion of the stru
ture is done in two phases. First the Burrows-Wheeler transform is
onstru
ted, then the additional stru
tures (wavelet tree,tables C, sampledSA, sampledSAinverse, and B and its rank stru
tures) are
reated.The �rst phase
an be exe
uted in O(n log n log |Σ|) time and using nH0 +
o(n log |Σ|) bits of spa
e by using the dynami
 self-index explained in [24℄. Weimplemented the simpli�ed version that uses O(n log |Σ|) bits: Instead of usingthe more
ompli
ated solution to solve rank-queries on dynami
 bitve
tors, weused the O(n) bits stru
ture of [4℄ (see also [24, Se
t. 3.2℄). Using this inside thedynami
 wavelet trees of [24℄, one obtains the
laimed result (see the paragraphjust before Se
t. 6 in [24℄). The result is a
tually a dynami
 wavelet tree of theBurrows-Wheeler transform supporting rankc-queries in O(log n log |Σ|) time.This is easily
onverted into a stati
 stru
ture of the original SSA (in time linearin the size of the stru
ture) that supports rankc-queries in O(log |Σ|) time. Inour implementation, we use the Hu�man-shaped wavelet tree to improve thespa
e to O(nH0) bits. This
onversion is also easily done by extra
ting theBurrows-Wheeler transform from the dynami
 wavelet tree with a depth-�rsttraversal and
reating the Hu�man-balan
ed stati
 wavelet tree instead as in[23℄.We are left with explaining how to
onstru
t the rest of the stru
tures.Table C is trivial to
onstru
t in O(|Σ| + n) time. Tables sampledSA,
sampledSAinverse and bitve
tor B
an be
onstru
ted as follows. We apply
LF -mapping from the index of the last text position on (whi
h is now possibleas table C and wavelet tree to support rankc-queries of Lemma 1 are ready).That is, we virtually s
an the text ba
kwards by using LF -mapping. Wheneverwe are at a text position divisible by R, say at position i × R, we also knowthe su�x array index, say j. That is, we
an dire
tly mark B[j] = 1 and store
sampledSAinverse[i] = j. After virtually s
anning the text ba
kwards we have�lled B and sampledSAinverse
orrre
tly. To �ll in table sampledSA, we �rstprepro
ess B for rank1(B, i) queries, and then virtually s
an the text ba
kwardsagain. Analogously as before, whenever we are at a text position divisible by
R, say at position i × R, we also know the su�x array index, say j. At thosepositions, we store sampledSA[rank1(B, j)] = i. The spa
e used for the
on-stru
tion is the same as what the resulting stru
tures take. The time needed is
O(n log |Σ|) as ea
h LF -step takes O(log |Σ|) time and we have 2n steps.The bottlene
k in the
onstru
tion time is the
reation of the Burrows-Wheeler transform within O(n log |Σ|) bits of spa
e. Our implementation uses
O(n log n log |Σ|) time for the task. This
an be sped up in theory using e.g. the
O(n log log |Σ|) time algorithm of [17℄ that guarantees the same asymptoti
spa
e.4 lcp-arrayArray lcp[1 . . . n − 1] is used to store the longest
ommon pre�x informationbetween
onse
utive su�xes in the lexi
ographi
 order. That is, lcp[i] =7

|prefix(TSA[i]...n, TSA[i+1]...n)|, where prefix(X,Y) = x1 · · · xj su
h that x1 =
y1, x2 = y2, . . . , xj = yj, but xj+1 6= yj+1. Sadakane [33℄ des
ribes a
leveren
oding of the lcp-array that uses 2n+o(n) bits. The en
oding is based on thefa
t that values i + lcp[i] are in
reasing when listed in the text position order.That is, sequen
e S = s1, . . . , sn−1 = 1+ lcp[SA−1[1]], 2+ lcp[SA−1[2]], . . . , n−
1 + lcp[SAn−1[n − 1]] is in
reasing (see next subse
tion to see why).To en
ode the in
reasing list S, it is enough to en
ode ea
h diff(i) =
si − si−1 in unary: 0diff(i)1, where we assume s0 = 0 and 0d denotes repetitionof 0-bit d-times. This en
oding,
all it H, takes at most 2n bits. We have the
onne
tion diff(k) = select1(H, k)− select1(H, k − 1)− 1, where select1(H, k)gives the position of the k-th 1-bit in H. Bitve
tor H
an be prepro
essedto answer select1(H, k)-queries in
onstant time using o(|H|) bits extra spa
e[28, 5℄.Computing lcp[i]
an now be done as follows. Compute k = SA[i] using
lookup(i) of
ompressed su�x array. Value lcp[i] equals select1(H, k) − k.4.1 Spa
e-e�
ient Constru
tion via Kasai et al. AlgorithmKasai et al. [22℄ gave a linear time algorithm to
onstru
t lcp-array given su�xarray SA. One
ould use it to
onstru
t the en
oding H by applying what isdes
ribed above, but the intermediate lcp-array would take n log n bits. Instead,one
an easily modify Kasai et al. algorithm to dire
tly give en
oding H [18℄.Kasai et al. algorithm is based on the observation that lcp-array valuesfor
onse
utive su�xes in the text order
annot de
rease mu
h. More
on-
retely, it holds lcp[SA−1[i + 1]] ≥ lcp[SA−1[i]] − 1 [22℄. This has the
on-sequen
e that one
an
an
ompute the lcp-values in the text order, at ea
hstep taking advantage of the already
omputed pre�x length in the previ-ous step: Let ℓ = max(0, lcp[SA−1[i]] − 1). Then lcp[SA−1[i + 1]] = ℓ +
|prefix(Ti+1+ℓ...n, TSA[SA−1[i+1]+1]+ℓ...n)|. Fun
tion prefix()
an be
omputedtrivially by s
anning the text; this will take amortized
onstant time per step, asthe
omparison position in the �rst argument will advan
e at ea
h step. Now, toprodu
e H dire
tly, we noti
e that the evaluation order is the same as the orderin whi
h lcp-values are stored in H. A step of the algorithm be
omes simply:Let ℓ = max(0, lcp−1). Then lcp = ℓ+|prefix(Ti+1+ℓ...n, TSA[SA−1[i+1]+1]+ℓ...n)|and append H with 0lcp1. Here lcp = 0 initially and a

esses SA[i] and SA−1[j]
an done by operations lookup(i) and inverse(j) on
ompressed su�x array.After produ
ing H, one
an prepro
ess it for
onstant time select1 queries inlinear time.The
onstru
tion uses no extra memory in addition to text,
ompressed su�xarray, and the out
ome of size 2n+ o(n) bits. Using the
ompressed su�x arrayexplained earlier in this paper, the time requirement is O(n log n).5 Balan
ed ParanthesesThe balan
ed paranthesis representation P of a tree is produ
ed by a preordertraversal printing ′(′ whenever a node is visited the �rst time, and printing ′)′8

whenever a node is visited the last time [29℄. Letting ′(′= 1 and ′)′ = 0, thesequen
e P takes 2u bits on a tree of u nodes. A su�x tree of n leaves
an haveat most n− 1 internal nodes, and hen
e its balan
ed paranthesis representationtakes at most 4n bits.Munro, Raman, and Rao [29℄ explain how to simulate tree traversal by meansof P . After building several stru
tures of sublinear size, one
an go e.g. fromnode to its �rst
hild, from node to its next sibling, and from node to its par-ent, ea
h in
onstant time. Sadakane [33℄ lists many other operations that arerequired in his
ompressed su�x tree. All these navigational operations
an beexpressed as
ombinations of the following fun
tions: rankp, selectp, findclose,and enclose. Here p is a
onstant size bitve
tor pattern, e.g. 10 expresses anopen-
lose paranthesis pair. Fun
tion rankp(P, i) returns the number of o

ur-ren
es of p in P upto position i. Fun
tion selectp(P, j) returns the position ofthe j-th o

urren
es of p in P . Fun
tion findclose(P, i) returns the position ofthe mat
hing
losing paranthesis for the open paranthesis at position i. Fun
-tion enclose(P, i) returns the open paranthesis position of the parent of the nodewhose open paranthesis is at position i.To get an idea of the power of the above navigational operations, let us
onsider how to
ompute the subtree size for a given node v. Let v be the j-thnode in the preorder of the tree. Then i = select1(P, j) gives its lo
ation in P .Its subtree is en
oded in the subrange P [i+1 . . . k−1], where k = findclose(P, i).As ea
h node in the subtree of v is en
oded by two bits, the number of nodesin the subtree of v is simply (i − k − 1)/2. Also the number of
hildren in thesubtree of v is easily
al
ulated: As pattern p = 10 represents an open-
loseparanthesis pair, i.e. a
hild node, the amount of
hildren in the subtree of v is
rankp(P, k) − rank(P, i).5.1 Our ImplementationWe used the existing rank and select implementations that are explained andexperimented in [12℄. There rank is the
onstant time solution of Clark [5℄,but select is implemented by binary sear
h on rank values (the
onstant timesolution [5℄ is inferior to this on pra
ti
al inputs [12℄). Se
tion 7 explains howthese solutions are modi�ed to the
ase of short patterns p, as the originalimplementations assume p = 1. For findclose and enclose we used Navarro'simplementations explained in [30℄ that are based on [29℄; these are faster inpra
ti
e than the original, but worst
ase is raised from
onstant to O(log log n).5.2 Spa
e-e�
ient Constru
tion via LCP InformationTo build balan
ed parantheses sequen
e of su�x tree spa
e-e�
iently one
annot pro
eed naively; doing preorder traversal on a pointer-based su�x tree re-quires O(n log n) bits of extra memory. We
onsider a new approa
h that buildsthe parantheses sequen
e in
rementally. Very similar algorithm is given in [18℄;we will
onsider the di�eren
es in the end of the se
tion.Re
all from [7, Theorem 7.5, p. 97℄ the su�xes-insertion algorithmto
onstru
t su�x tree from LCP information: The algorithm adds suf-9

�xes in lexi
ographi
 order into a tree, having the keyword tree of su�xes
TSA[1]...n, TSA[2]...n, . . . , TSA[i]...n ready after i-th step. Su�x TSA[i+1]...n is thenadded after �nding bottom-up from the rightmost path of the tree the
orre
tinsertion point. That is, the split node v
losest to the rightmost leaf (
or-responding to su�x TSA[i]...n) whose string depth is smaller or equal to lcp[i]is seeked for. If the depth is equal, then a new leaf (
orresponding to su�x
TSA[i+1]...n) is
reated as its
hild. Otherwise, its outgoing rightmost edge issplitted, a new internal node is inserted in between, and the leaf
orrespond-ing to su�x TSA[i+1]...n is added as its rightmost
hild. It is easy to see by anamortizement argument that this algorithm takes linear time.The problem of the su�xes-insertion algorithm for our purposes is that thetree stru
ture takes O(n log n) bits. For this reason, we develop a new version ofthis algorithm that represents the ne
essary parts of this dynami
ally
hangingtree stru
ture by spa
e-e�
ient data stru
tures.The idea is that at ea
h step of the algorithm we have the balan
ed paran-theses representation of the
urrent tree ready. Unfortunately, the paranthesesstru
ture does not
hange sequentially, so we need to maintain it using a dy-nami
 bitve
tor allowing insertions of bits (open/
lose parantheses) inside it.Su
h bitve
tor
an be maintained using O(n) bits of spa
e so that a

essingthe bits and inserting/deleting takes O(log n) time [4, 24℄. In addition to thebalan
ed parantheses to store the tree hierar
hy, we need more operations onthe rightmost path; we need to be able to virtually browse the rightmost pathfrom leaf to root as well as to
ompute the the string depth of ea
h node visited.Let us �rst study string depths. Consider sequen
e E(i) = e1, e2, . . . , ek ofegde label lengths from leaf to root in the righmost path after i-th step of thealgorithm. Naturally ∑k

j=1 ej = n, as the string depth of the leaf is n. To �ndthe split node v of the (i+1)-th step, we just need to
ompute the smallest j su
hthat sdepth(j) = n −
∑j

j′=1 ej′ ≤ lcp[i], as this tells us to skip j edges before(virtually) rea
hing the split node v. To update the sequen
e e1, e2, . . . , ek to
orrespond the new rightmost path, it is enough to delete values e1, . . . , ej from
E(i), insert value esplit = lcp[i]−sdepth(j) as the �rst element in E(i), and then�nally insert eleaf = n − lcp[i] as the �rst element in E(i). These two values
orrespond to the lengths of the edge labels of the two new edges on the path; if
esplit = 0, i.e. the new leaf is inserted dire
tly as the
hild of v, then only value
eleaf is inserted. After these modi�
ations, we have
reated the sequen
e E(i+1)of edge label lengths from leaf to root in the righmost path after (i + 1)-th stepof the algorithm. We will later
onsider how to maintain sequen
es E(i) duringthe algorithm in su

in
t form su
h that the modi�
ations to the beginning arepossible.In addition to the string depths, we need to maintain information to �ndthe insertion position in the balan
ed parantheses representation P of the tree.This is analogous to the maintainan
e of string depths. Consider again the i-thstep of the algorithm. Ea
h node in the rightmost path of the
urrent tree isrepresented by an open paranthesis in P . Moreover, these parantheses o

urin the same order as the nodes in the path. Hen
e, we
an list the distan
esbetween these nodes with a sequen
e similar to E(i). Let this sequen
e be
D(i) = d1, d2, . . . dk, where dk′ gives the distan
e between open parantheses10

of k′-th and (k′ + 1)-th node
omputed bottom-up from leaf to root in therightmost path. Sin
e P is at most of length 2n, we have that ∑k
j=1 dj ≤ 2n atea
h step. To modify P from step i to step i + 1, we do the following. First,we assume that P is not
ompleted with respe
t to the rightmost path, i.e., itdoes not
ontain the k
losing parantheses in the end to
lose the nodes on therightmost path (ex
ept the leaf). These
losing parantheses will be added on
ethe
orresponding subtrees be
ome ready (when no more updates are possible).Let p = |P | − 1 after step i (position of the last open paranthesis), and again

j the smallest value su
h that sdepth(j) ≤ lcp[i]. Hen
e, we may append Pby j − 1
lose parantheses, as this is the amount of nodes on the rightmostpath whose subtrees be
ome ready. The open paranthesis of the split node
v is at position pos(j) = p −

∑j
j′=1 dj′ in P . If a new internal node is to beinserted (in
ase sdepth(j) < lcp[i]), we insert a new open paranthesis just before

r = pos(j−1); to see why, noti
e that P [pos(j)+1 . . . r−1]
ontains the balan
edparanthesis representation of the subtree of v ex
ept the subtree of its rightmost
hild starting at P [r]. In
ase sdepth(j) = lcp[i] P stays internally un
hanged,as the new leaf will be added dire
tly under v. In both
ases we append P with anew leaf node (appending open-
lose paranthesis pair). Finally, we must updatesequen
e D(i) to
orrespond to the
urrent state of P . In
ase sdepth(j) < lcp[i]we noti
e that dj
an be reused as the distan
e between v and its new rightmost
hild node (new internal node). Hen
e, it is enough to delete values d1, . . . ,
dj−1 from D(i) and insert in the beginning value dleaf = p + j + 2− r (distan
ebetween new internal node and new leaf). In
ase sdepth(j) = lcp[i], we deletevalues d1, . . . , dj from D(i) and insert in the beginning dleaf = p+j+1−pos(j).After these modi�
ations, we have updated P to
orrespond to step i+1 as wellas
reated sequen
es E(i + 1) and D(i + 1). By indu
tion, after adding the lastsu�x (and after
losing the rightmost path by adding
losing parantheses asmany as there are elements in E(n)) we have P
orresponding to the su�x treeof the text. The pseudo
ode of the algorithm is given in Fig. 1.Handling sequen
e of variable length integers. We still need to
onsiderhow to manipulate sequen
es E and D spa
e-e�
iently (noti
e that a triviallinked list approa
h would take O(n log n) bits spa
e, being no improvement tothe original algorithm). We en
ode the values using variable length pre�x
odes.Let us �x Elias δ en
oding [8℄. It has the property that for any integer x, it holds
|δ(x)| = log x + o(log x) bits. More importantly, a sequen
e δ(x1)δ(x2) · · · δ(xk)
an be uniquely de
oded into x1, x2, . . . , x2. This
an be done in
onstant timeper
ode, assuming a pre
omputed table of size o(N), where N =

∑k
i=1 xi (Seee.g. [25℄). Noti
e also that ∑k

i=1 |δ(xi)| ≤ k log n
k (1 + o(1)) = O(n) by the
onvexity of logarithm. Hen
e, we
an store E and D using O(n) bits.The only remaining problem is how to support insertions and deletions fromthe beginning of δ-en
oded sequen
es. This
an be done e.g. as follows: Reserve

cn bits of spa
e, where c is a
onstant in the O(n) spa
e limit for the en
odedsequen
e. Store the en
oded sequen
e aligned to the end of the memory area,and remember the starting position. A deletion from the beginning is done byreading by de
oding the �rst
ode in
onstant time and shifting the starting11

Algorithm Balan
edParanthesesViaLCP(l
p, n):
P.Append((()); { Add root and �rst leaf }
p = 2; {Position of the last open paranthesis }
D.Push(1); E.Push(n); {Initialize sta
ks storing node/string depth information on rightmost path}for i = 1 to n − 1 do {Add the su�xes in the lexi
ographi
 order}

lcp = lcp[i]; {lcp value
an also be
omputed from its
ompressed representation}Find smallest j su
h that sdepth = n − E.Sum(j) ≤ lcp; {E.Sum(j) =
Pj

j′=1
ej′ }Append P with j − 1
losing parentheses;if sdepth < lcp then {Add new internal node and a leaf}

r = p − D.Sum(j − 1); {Position in P}
P.Insert((, r);do j times E.Pop();
E.Push(lcp − sdepth); E.Push(n − lcp);do j − 1 times D.Pop();
D.Push(p + j + 2 − r);else {Add new leaf}
r = p − D.Sum(j);do j times E.Pop();
E.Push(n − lcp);do j times D.Pop();
D.Push(p + j + 1 − r);end if

P.Append(());
p = |P | − 1;end forAppend P with |E|
losing parentheses;Figure 1: Constru
tion of balan
ed parantheses representation of su�x tree bya spa
e-e�
ient version of su�xes-insertion algorithm.

12

position to the right a

ordingly. Identi
ally an insertion is done by shifting thestarting position to the left to make room for the new
ode.We
an
onlude that given the lcp-array, we
an
onstru
t the balan
edparantheses sequen
e in O(n log n) time using O(n) bits working spa
e.Improving running time to linear. Finally, the time requirement
an beimproved to linear by repla
ing the dynami
 bit ve
tor by a pat
hing te
hnique[21℄: The idea is to postpone the updates until a bu�er of length n bits isfull. Then sort the n/ log n insertions positions stored in the bu�er using Radixsort in O(n/ log n) time, and merge the insertion positions with the already
onstru
ted P in O(n/ log n) time under RAM. The bu�er
an be
ome full only
O(log n) times, and hen
e the total time used for operations on P is linear.Comparison to Hon and Sadakane solution. Hon and Sadakane [18℄ de-s
ribe a very similar algorithm. They build on top of an algorithm in [22℄ thatsimulates the post-order traversal of su�x tree given the lcp-values (Kasai etal. des
ribe the algorithm for ordinary trees, but it
an easily be spe
ialized tosu�x trees). The string depths (values E) are handled identi
ally to our algo-rithm. The di�eren
e is in handling node depths (values D). We use values Dto tra
k the insertion position in P . Hon and Sadakane represent P as a forestof trees su
h that ea
h root
orresponds to a node in the rightmost path. Thesenodes partition
urrent P into pie
es that do not
hange during the latter stepsof the algorithm. The tree of a pie
e is su
h that when preorder traversed oneobtains the pie
e by
on
atenating the bits stored at ea
h node. Spa
e-e�
ien
yis obtained by
reating
hildren only when O(log n) bits are stored at a node.This means that there are overall O(n/ log n) pointers, needing overall O(n)bits. Handling the bu�ers of O(log n) bits is easy, sin
e insertions of (to thebeginning or of) to the end
an be done in
onstant time under RAM model.The insertion operations take pla
e during the algorithm when new internalnodes are visited in postorder.There is, however, a problem with texts of type an#, where #<a: Postordertraversal will visit all the leaf nodes �rst,
reating n trees ea
h
ontaining twobits
orresponding to (). Keeping pointers to those trees take O(n log n) bits.These pointers are ne
essary in order to �nd out whi
h trees are merged whena new internal node is visited. In fa
t, these pointers also need to be insertedto a sta
k, sin
e they will be merged in their reverse
reation order. The solvethis problem, one
an pro
eed as follows. Merge the small trees (bu�ers) so thatea
h remaining tree (bu�er) has size Θ(log n) bits. Use δ-en
oding to store thedistan
es of merge-boundaries. This guarantees that there are only O(n/ log n)trees, and the pointers to those trees (and inside them) take overall O(n) bits.Similarly as before, the δ-en
oded values o

upy O(n) bits.In fa
t, these latter δ-values are analogous to the node-depth values D weare using. The di�eren
e between the approa
hes remains the handling of P .Hon [16, page 59℄ o�ers a more elegant solution to the problem; instead oftrying to form P on the �y, one
onstru
ts only a version of P that
ontainsleaves () and
losing parantheses). That is, remove line P.Insert((, r) from the13

algorithm of Fig. 1. Then run the algorithm reversed reading lcp-values fromright to left. This
reates a version of P that only
ontains leaves () and openparantheses (. These two sequen
es are easy to merge to form P as the leaves() o

ur in the same order, and between two leaves all the
losing paranthesesappear before the open parantheses. For example, let P ′ = ()())()())) and
P ′′ = ((()()(()() be the two sequen
es
onstru
ted after forward and ba
k-ward s
anning of lcp-values. Then after mat
hing the leaves (), the pla
ement ofopen and
lose parantheses are uniquely de�ned, that is, P = ((()())(()())).Setting the parantheses in the other order between the se
ond and third leafwould yield another leaf, whi
h is not allowed.Our implementation. In our implementation, we do not yet use any of theabove three di�erent ways to a
hieve linear time. Our implementation fol-lows the pseudo
ode given in Fig. 1. Moreover, sin
e we use the
ompressed
lcp-values, the time requirement of balan
ed parantheses
onstru
tion remains
O(n log n) even after applying one of the speed ups.6 Lowest Common An
estor Stru
tureFara
h-Colton and Bender [9℄ des
ribe a O(n log n) bits stru
ture that
an beprepro
essed for a tree in O(n) time to support
onstant time lowest
ommonan
estor (l
a) queries. Sadakane [33℄ modi�ed this stru
ture to take O(n) bitsof spa
e without a�e
ting the time requirements. We implemented Sadakane'sproposal that builds on top of the balan
ed parantheses representation of pre-vious se
tion, adding lookup tables taking o(n) bits.While implementing Sadakane's proposal, we fa
ed a pra
ti
al problem; oneof the sublinear stru
tures for l
a-queries takes spa
e n(log log n)2/ log n bits,whi
h on pra
ti
al inputs is
onsiderable amount: This lookup table was takinghalf the size of the
omplete
ompressed su�x tree on some inputs. To go aroundthis bottlene
k, we added a spa
e-time tradeo� parameter K su
h that usingspa
e n(log log n)2/(K log n) bits for this stru
ture, one
an answer l
a-queriesin time O(K).7 Implementation DesignWe used obje
t oriented programming using C++-language to
reate an easily us-able and maintainable software pa
kage. Ea
h abstra
t data stru
ture explainedabove is its own
lass, making it easy to
hange the underlying implementationsat any phase. For example, one
an easily swit
h to another
ompressed su�xarray implementation just by writing a new
lass with the same name and sameoperations supported.We used to some extend generi
 programming in order to avoid writing sim-ilar
ode segments. A novel example of its use is our rankp(P, i) / selectp(P, j)fun
tion implementations (see Se
t. 5 for de�nitions). These operations areneeded in Sadakane's
ompressed su�x tree for many di�erent short patterns
p like 0, 1, 10, 01. It is known how to build o(n) bits stru
tures for ea
h �xed p14

so that rankp and selectp queries
an be answered in
onstant time. Instead of
opy-pasting those
odes and
hanging some details depending on the pattern
p, we used one generi
 implementation that only assumes that short substringsof a virtual indi
ator ve
tor of P
an be a

essed in
onstant time. A virtual in-di
ator ve
tor of P with respe
t to a pattern p is I(P, p) = I[1 . . . |P |] su
h that
I[i] = 1 i� pattern p o

urs at position i in P , otherwise I[i] = 0. Now, afterbuilding a table storing for ea
h (log |P |)/2 length substring α of P the mappingto its indi
ator ve
tor I(α, p) = I[1 . . . |α|], one
an a

ess any O(log |P |)-lengthsubstring of I(P, p) in
onstant time. This a

ess is enough to guarantee
on-stant time rankp and selectp operations: Complete I(P, p) is only needed in
on-stru
tion time to build the lookup tables of [20, 28, 5℄. Later on the rankp and
selectp fun
tions
onsult the lookup tables and need only a

ess to short frag-ments of I(P, p). These a

esses are independent of p. Only the pointer to thelookup table to map substrings α of P to the indi
ator ve
tor I(α, p) depends on
p. Noti
e that the alternative approa
h of keeping the indi
ator ve
tors I(P, p)stored in memory for ea
h of the k values of p would require k|P | bits of mem-ory. Now we are only using k2(log |P |)/2(log |P |)/2 = (k/2)

√

|P | log |P | = o(|P |)bits. Thus, our approa
h is just as time/spa
e-e�
ient as the trivial approa
hof using tailored
ode. What we gain is the generality as the
ode works forany p without any
hanges to the
ode (the generation of the lookup table for
reating the mapping is parameterized by p as well).7.1 Corre
tness.The most di�
ult goal to a
hieve in the implementation (in general) is the
orre
tness. We wanted to avoid the typi
al setting of doing one month imple-mentation and three months bug �xing. We adopted a strategy often asso
iatedwith Extreme Programming, namely, we produ
ed ea
h week a working release.In this parti
ular
ase this strategy suited our purposes perfe
tly.We started the proje
t by taking an already existing implementation of a suf-�x tree. We implemented the �rst version of the abstra
t su�x tree (Def. 6) bysupporting the fun
tions via the
lassi
al su�x tree. Fun
tions su
h as lca were�rst implemented by trivial s
anning. This was our �rst release. The work
on-tinued by
onverting the su�x tree hierar
hy into balan
ed parantheses form,and implementing the required traversal operations by trivial s
anning. Ab-stra
t su�x array was implemented �rst by normal su�x array. This re�nement
ontinued gradually, so that ea
h week we had a new release whose
orre
tness
ould be
ompared to the previous release. After two months, we had a fullyworking implementation of
ompressed su�x tree ready. One more month wasused in implementing the spa
e-e�
ient
onstru
tion algorithms. The
ompletework required equals about three months from two undergraduate students.8 Final remarksAs one
an see, our implementation of
ompressed su�x tree follows very
loselythe theoreti
al proposals. We made only
ouple of
hoi
es towards pra
ti
al ef-�
ien
y and very few towards redu
ing the implementation work. The former is15

mainly be
ause we do not yet have exe
uted extensive experimentation to guidethe
hoi
e of pra
ti
al alternatives. For the latter matter, we used previousimplementations as basis as mu
h as possible. Many of these are also imple-mentations of the best algorithms for the parti
ular tasks. Yet there exists somealgorithms that
ould be used to speed up our
onstru
tion algorithm. Pluggingin those algorithms is left for future work.The most important future task is to experiment the new spa
e/time trade-o�s a
hieved with respe
t to
lassi
al su�x trees. Preliminary experimentsshow that the spa
e-e�
ien
y is very appealing: The
ompressed su�x tree fora 10MB DNA sequen
e requires 32MB. This is already less than what a su�xarray takes: 40MB, not to talk about a standard su�x tree that takes at least160MB at the same input. Measuring in bits, the DNA sequen
e
ould be storedin 20M bits (2 bits /
hara
ter). The
ompressed su�x tree takes 256M bits,that is, about 13 times more than the DNA sequen
e. The theoreti
al boundof our implementation is n log |Σ| + 8n = 10n plus sublinear terms. Assymp-toti
ally we should then be using about 5 times more spa
e than a su

in
tlyen
oded DNA sequen
e. This shows that the sublinear stru
tures take over thehalf of the spa
e with �les of size 10MB. A major resear
h question of pra
ti
alinterest is thus to improve the
onstants in the sublinear stru
tures.Referen
es[1℄ S. F. Alts
hul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basi
lo
al alignment sear
h tool. Journal of Mole
ular Biology, 215(3):403�410,1990.[2℄ A. Apostoli
o. The myriad virtues of subword trees. In CombinatorialAlgorithms on Words, NATO ISI Series, pages 85�96. Springer-Verlag, 1985.[3℄ M. Burrows and D. Wheeler. A blo
k sorting lossless data
ompression al-gorithm. Te
hni
al Report Te
hni
al Report 124, Digital Equipment Cor-poration, 1994.[4℄ W.-L. Chan, W.-K. Hon, and T.-W. Lam. Compressed index for a dynami

olle
tion of texts. In Pro
. CPM'04, LNCS 3109, pages 445�456, 2004.[5℄ D. Clark. Compa
t Pat Trees. PhD thesis, University of Waterloo, 1996.[6℄ R. Cole, L. A. Gottlieb, and M. Lewenstein. Di
tionary mat
hing and in-dexing with errors and don't
ares. In Symposium on Theory of Computing(STOC), pages 91�100, 2004.[7℄ M. Cro
hemore and W. Rytter. Jewels of Stringology. World S
ienti�
,2002.[8℄ P. Elias. Universal
odeword sets and representation of the integers. IEEETransa
tions on Information Theory, 21(2):194�20, 1975.[9℄ M. Fara
h-Colton and M. A. Bender. The l
a problem revisited. InPro
. Latin Ameri
an Theoreti
al Informati
s (LATIN), pages 88�94, 2000.16

[10℄ P. Ferragina and G. Manzini. Indexing
ompressed texts. Journal of theACM, 52(4):552�581, 2005.[11℄ P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed rep-resentation of sequen
es and full-text indexes. ACM Transa
tions on Al-gorithms, 2006. To appear. Preliminary versions in Pro
. SPIRE 2004 andTe
h. Rep. TR/DCC-2004-5, Dept. of Computer S
ien
e Univ. of Chile,ftp://ftp.d

.u
hile.
l/pub/users/gnavarro/sequen
es.ps.gz.[12℄ Rodrigo González, Szymon Grabowski, Veli Mäkinen, and GonzaloNavarro. Pra
ti
al implementation of rank and sele
t queries. In PosterPro
eedings Volume of 4th Workshop on E�
ient and Experimental Al-gorithms (WEA'05), pages 27�38, Gree
e, 2005. CTI Press and EllinikaGrammata.[13℄ R. Grossi, A. Gupta, and J. Vitter. High-order entropy-
ompressed textindexes. In Pro
. SODA'03, pages 841�850, 2003.[14℄ R. Grossi and J. Vitter. Compressed su�x arrays and su�x trees withappli
ations to text indexing and string mat
hing. SIAM Journal on Com-puting, 35(2):378�407, 2006.[15℄ D. Gus�eld. Algorithms on Strings, Trees and Sequen
es: Computer S
ien
eand Computational Biology. Cambridge University Press, 1997.[16℄ W.-K. Hon. On the Constru
tion and Appli
ation of Compressed Text In-dexes. PhD thesis, University of Hong Kong, 2004.[17℄ W.-K. Hon, K. Sadakane, and W.-K. Sung. Su

in
t data stru
tures forsear
hable partial sums. In Pro
. ISAAC'03, LNCS 2906, pages 505�516,2003.[18℄ Wing-Kai Hon and Kunihiko Sadakane. Spa
e-e
onomi
al algorithms for�nding maximal unique mat
hes. In Alberto Apostoli
o and MasayukiTakeda, editors, CPM, volume 2373 of Le
ture Notes in Computer S
ien
e,pages 144�152. Springer, 2002.[19℄ Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. Breaking a time-and-spa
e barrier in
onstru
ting full-text indi
es. In FOCS '03: Pro
eed-ings of the 44th Annual IEEE Symposium on Foundations of ComputerS
ien
e, page 251, Washington, DC, USA, 2003. IEEE Computer So
iety.[20℄ G. Ja
obson. Spa
e-e�
ient stati
 trees and graphs. In Pro
. 30th IEEESymp. Foundations of Computer S
ien
e (FOCS'89), pages 549�554, 1989.[21℄ J. Kärkkäinen. personal
ommuni
ation, 2006.[22℄ T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-timelongest-
ommon-pre�x
omputation in su�x arrays and its appli
ations.In Pro
. Annual Symposium on Combinatorial Pattern Mat
hing (CPM),Springer Verlag LNCS 2089, pages 181�192, 2001.17

[23℄ V. Mäkinen and G. Navarro. Su

in
t su�x arrays based on run-lengthen
oding. Nordi
 Journal of Computing, 12(1):40�66, 2005.[24℄ V. Mäkinen and G. Navarro. Dynami
 entropy
ompressed sequen
es andfull-text indexes. In Pro
. Annual Symposium on Combinatorial PatternMat
hing (CPM), Springer Verlag LNCS 4009, pages 306�317, 2006.[25℄ V. Mäkinen and G. Navarro. Rank and sele
t revisited and extended.Theoreti
al Computer S
ien
e, 2006. To appear.[26℄ U. Manber and G. Myers. Su�x arrays: a new method for on-line stringsear
hes. SIAM Journal on Computing, pages 935�948, 1993.[27℄ E. M
Creight. A spa
e-e
onomi
al su�x tree
onstru
tion algorithm. Jour-nal of the ACM, 23(2):262�272, 1976.[28℄ I. Munro. Tables. In Pro
. 16th Foundations of Software Te
hnology andTheoreti
al Computer S
ien
e (FSTTCS'96), LNCS 1180, pages 37�42,1996.[29℄ I. Munro, V. Raman, and S. Rao. Spa
e e�
ient su�x trees. Journal ofAlgorithms, 39(2):205�222, 2001.[30℄ G. Navarro. Indexing text using the Ziv-Lempel trie. Journal of Dis
reteAlgorithms (JDA), 2(1):87�114, 2004.[31℄ G. Navarro and V. Mäkinen. Compressed full-text in-dexes. Te
hni
al Report TR/DCC-2006-6, Department ofComputer S
ien
e, University of Chile, Chile, April 2006.ftp://ftp.d

.u
hile.
l/pub/users/gnavarro/surv
ompr2.ps.gz.Submitted to a journal.[32℄ K. Sadakane. New text indexing fun
tionalities of the
ompressed su�xarrays. Journal of Algorithms, 48(2):294�313, 2003.[33℄ K. Sadakane. Compressed su�x trees with full fun
tionality. Theory ofComputing Systems, 2006. To appear, preliminary version available athttp://t
slab.
s
e.kyushu-u.a
.jp/�sada/papers/
st.ps.[34℄ E. Ukkonen. On-line
onstru
tion of su�x trees. Algorithmi
a, 14(3):249�260, 1995.[35℄ P. Weiner. Linear pattern mat
hing algorithms. In 14th IEEE AnnualSymp. on Swit
hing and Automata Theory, pages 1�11, 1973.
18

