
Engineering a Compressed Suffix Tree

Implementation

N. VÄLIMÄKI

and

V. MÄKINEN

University of Helsinki,

W. GERLACH

Bielefeld University

and

K. DIXIT

IIT Kanpur

N. V. and V. M. were funded by the Academy of Finland under grant 119815.
The work of W. G. and K. D. was conducted while visiting University of Helsinki.

Addresses:
Niko Välimäki, P. O. Box 68 (Gustaf Hällströmin katu 2 b), 00014 Helsinki, Finland. Email:
nvalimak@cs.helsinki.fi. Web: http://www.cs.helsinki.fi/u/nvalimak.
Veli Mäkinen, P. O. Box 68 (Gustaf Hällströmin katu 2 b), 00014 Helsinki, Finland. Email:
vmakinen@cs.helsinki.fi. Web: http://www.cs.helsinki.fi/u/vmakinen.
Wolfgang Gerlach, Universität Bielefeld, AG Genominformatik, 33594

Bielefeld. Email: wolfgang.gerlach@cebitec.uni-bielefeld.de. Web:
http://www.cebitec.uni-bielefeld.de/~wgerlach.
Kashyap Dixit, Department of Computer Science and Engineering, Indian Institute of Technology,
Kanpur, India. Email: kdixit@iitk.ac.in.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2007 ACM 0000-0000/2007/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, September 2007, Pages 1–22.

2 · Niko Välimäki et al.

Suffix tree is one of the most important data structures in string algorithms and biological sequence

analysis. Unfortunately, when it comes to implementing those algorithms and applying them to
real genomic sequences, often the main memory size becomes the bottleneck. This is easily
explained by the fact that while a DNA sequence of length n from alphabet Σ = {A, C, G, T}
can be stored in n log |Σ| = 2n bits, its suffix tree occupies O(n log n) bits. In practice, the size
difference easily reaches factor 50.

We report on an implementation of the compressed suffix tree very recently proposed by
Sadakane (Theory of Computing Systems, in press). The compressed suffix tree occupies space
proportional to the text size, i.e. O(n log |Σ|) bits, and supports all typical suffix tree operations
with at most log n factor slowdown. Our experiments show that, e.g. on a 10 MB DNA sequence,
the compressed suffix tree takes 10% of the space of the normal suffix tree. At the same time, a
representative algorithm is slowed down by factor 30.

Our implementation follows the original proposal in spirit, but some internal parts are tai-
lored towards practical implementation. Our construction algorithm has time requirement
O(n log n log |Σ|) and uses closely the same space as the final structure while constructing it:
on the 10 MB DNA sequence, the maximum space usage during construction is only 1.5 times the
final product size. As by-products, we develop a method to create Succinct Suffix Array directly
from Burrows-Wheeler transform and a space-efficient version of suffixes-insertion algorithm to
build balanced parentheses representation of suffix tree from LCP information.

Categories and Subject Descriptors: E.1 [Data structures]: ; E.2 [Data storage represen-

tations]: ; E.4 [Coding and information theory]: Data compaction and compression; F.2.2
[Analysis of algorithms and problem complexity]: Nonnumerical algorithms and prob-
lems—Pattern matching, Computations on discrete structures, Sorting and searching; H.3.2 [In-

formation storage and retrieval]: Information storage; H.3.3 [Information storage and

retrieval]: Information search and retrieval—Search process

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Algorithm engineering, biological sequence analysis, text
indexing, text compression, Burrows-Wheeler transform, wavelet tree, lcp values, balanced paran-
theses, lowest common ancestor

1. INTRODUCTION

Myriad non-trivial combinatorial questions concerning strings turn out to have
efficient solutions via extensive use of suffix trees [Apostolico 1985]. As a theoretical
tool, suffix trees have a fundamental role in plethora of algorithmic results in the
area of string matching and sequence analysis. This is no surprise, since suffix trees
summarize the whole substring content of a text string in an economic way; suffix
trees contain a root to leaf path for each suffix of the text such that each substring
of the text can be read as a prefix of some path. Edges of the tree are labeled
with text substrings, and can be represented just by pointers to the text. The tree
has n leaves and at most n − 1 internal nodes, and hence representing pointers in
the tree and pointers into the text take overall O(n) computer words, n being the
text length. The linear size requirement has made suffix trees attractive for many
applications. After all, representing the O(n2) substrings of a text in O(n) space
is a remarkably powerfull tool. Even more advantageous is that suffix trees can be
constructed in linear time [Weiner 1973; McCreight 1976; Ukkonen 1995].

Bioinformatics is a field where suffix trees would seem to have the strongest
practical potential; unlike the natural language texts formed by words and delim-
iters (enabling specialized data structures like inverted files), biological sequences

ACM Journal Name, Vol. V, No. N, September 2007.

Engineering a Compressed Suffix Tree Implementation · 3

are streams of symbols without any predefined word boundaries. Suffix trees treat
any substring equally, regardless of it being a word or not. This perfect synergy
has created a vast literature describing suffix tree -based algorithms for sequence
analysis problems, see e.g. [Gusfield 1997]. Several implementations exist as well,
like STRMAT, WOTD, LIBSTREE, and MUMMER 1, to name a few.

Unfortunately, the theoretically attractive properties of suffix trees do not always
meet the practical realm. For example, the problem of searching approximate
occurrences of a pattern in a long text could be solved using suffix tree -like data
structures (see e.g. a recent development in this area [Cole et al. 2004]). In practice,
the highly popular software tools like BLAST [Altschul et al. 1990] are based on
quite different techniques.

The main reason why suffix trees have remained mainly as theoretical tools is
their immense space consumption. Even for a reasonable size genomic sequence of
100 MB, its suffix tree may require 5 GB of main memory. This phenomenon is
not just a consequence of constant factors in the implementation of the structure,
but rather an asymptotic effect. When examined more carefully, one notices that
a sequence of length n from an alphabet Σ requires only n log |Σ| bits of space,
whereas its suffix tree requires O(n log n) bits. Hence, the space requirement is by
no means linear when measured in bit-level.

The size bottleneck of suffix trees has made the research turn into looking for
more space-economic variants of suffix trees. One popular alternative is the suffix
array [Manber and Myers 1993]. It basically removes the constant factor of suffix
trees to 1, as what remains from suffix trees is a lexicographically ordered array of
starting positions of suffixes in the text that occupies n log n bits. Many tasks on
suffix trees can be simulated by log n factor slowdown using suffix arrays. With
three additional tables, suffix arrays can be enhanced to support typical suffix tree
operations without any slowdown [Abouelhoda et al. 2004].

A recent twist in the development of full-text indexes is the use of abstract data
structures ; the operations supported by a data structure are identified and the best
possible implementation is sought for that supports those operations. This line of
development has led to compressed suffix arrays [Grossi and Vitter 2006; Ferragina
and Manzini 2005] (see [Navarro and Mäkinen 2007] for more references). These
data structures take, in essence, n log |Σ|(1 + o(1)) bits of space, being asymptot-
ically space-optimal. For compressible sequences they take even less space. More
importantly, they simulate suffix array operations with logarithmic slowdowns, and
support some operations (like pattern search) even faster than plain suffix arrays
or suffix trees. These structures are also called self-indexes as they do not need the
text to function; the text is actually represented compressed within the index.

Very recently Sadakane [Sadakane 2007] extended the abstract data structure
concept to cover suffix trees, identifying typical operations suffix trees are assumed
to possess. Some of these operations, like navigating in a tree, were already exten-
sively studied by [Munro et al. 2001]. In addition to these navigational operations,

1http://www.cs.ucdavis.edu/˜gusfield/strmat.html,
http://bibiserv.techfak.uni-bielefeld.de/wotd/,
http://www.cl.cam.ac.uk/˜cpk25/libstree/,
http://sourceforge.net/projects/mummer/

ACM Journal Name, Vol. V, No. N, September 2007.

4 · Niko Välimäki et al.

suffix trees have several other useful operations such as suffix links, constant time
lowest common ancestor (lca) queries, and pattern search capabilities. Sadakane
developed a fully functional suffix tree structure by combining compressed suf-
fix arrays with several other non-trivial new structures. Each operation was sup-
ported by at most log n slowdown, often the slowdown being only a constant. The
space requirement was shown to be still asymptotically optimal, more accurately,
|CSA|+6n+o(n) bits, where |CSA| is the size of the compressed suffix array used.

This paper studies an implementation of Sadakane’s compressed suffix tree. We
implemented the structure following closely the original proposal [Sadakane 2007].
Since there are many sub-structures involved, there are many places to consider
space-time tradeoff issues. For example, some of the sublinear o(n) structures turn
out to have inpractically large constants, and in such cases it is essential to consider
whether some constant factor c in space usage can be turned into O(c) time factor.
Our aim was to develop a version that has space-time tradeoff parameters whenever
possible. We managed to engineer a version with a reasonable space-efficiency (see
Sect. 9 for some numbers).

A problem related to the practical implementation is how to construct the com-
pressed suffix tree without using too much extra space at construction time. There
are many tasks in compressed suffix tree construction that need special attention:
(1) How to construct the Burrows-Wheeler transform on which the compressed suf-
fix arrays are based on; (2) storing sampled text/suffix array positions; (3) direct
construction of compressed longest common prefix information, and (4) construc-
tion of balanced parentheses representation of suffix tree directly from compressed
suffix array. Tasks (1), (3) and (4) have been considered in [Hon and Sadakane
2002] and later improved in [Hon et al. 2003a] so as to obtain an O(n logǫ n) time
algorithm to construct compressed suffix trees, where ǫ > 0. Task (2) is related to
our choice of implementing compressed suffix arrays using structures evolved from
FM-index [Ferragina and Manzini 2005], and is tackled in this paper. Also for task
(3) our solution variates slightly from [Hon and Sadakane 2002] as we build on top
of the suffixes-insertion algorithm [Crochemore and Rytter 2002] and they build
on top of the post-order traversal algorithm of [Kasai et al. 2001]. The final time-
requirement of our implementation is O(n log n log |Σ|), being reasonably close to
the best current theoretical result [Hon et al. 2003a].

The outline of the article is as follows. Section 2 gives the basic definitions
and a very cursory overview of Sadakane’s structure. Section 3 explains how we
implemented compressed suffix arrays (related to task (1)) and provides solutions
to task (2). Section 4 describes the solution hinted in [Hon and Sadakane 2002]
for task (3). Section 5 gives an overview of balanced parentheses and describes our
construction algorithm, solving task (4). Section 6 explains how we implemented
the lowest common ancestor structure by adding a space-time tradeoff parameter.
Section 7 explains the software engineering conventions used. We conclude with
some illustrative experimental results in Sect. 8. Some final remarks are given in
Sect. 9.

The software package can be downloaded from
http://www.cs.helsinki.fi/group/suds/cst/.

ACM Journal Name, Vol. V, No. N, September 2007.

Engineering a Compressed Suffix Tree Implementation · 5

2. PRELIMINARIES

A string T = t1t2 · · · tn is a sequence of characters from an ordered alphabet Σ. A
substring of T is any string Ti...j = titi+1 · · · tj , where 1 ≤ i ≤ j ≤ n. A suffix of T
is any substring Ti...n, where 1 ≤ i ≤ n. A prefix of T is any substring T1...j , where
1 ≤ j ≤ n. A pattern is a short string over the alphabet Σ. We say that pattern
P = p1p2 · · · pk occurs at position j of text string T iff p1 = tj , p2 = tj+1, . . . , pk =
tj+k−1.

Definition 2.1. (Adopted from [Gusfield 1997]) The keyword trie for the set P
of strings is a rooted directed tree K satisfying three conditions: (1) Each edge is
labeled with exactly one character; (2) any two edges out of the same node have
distinct labels; (3) every pattern P of P maps to some node v of K such that the
characters on the path from the root of K to v spell out P , and every leaf of K is
mapped to by some string in P .

Definition 2.2. The suffix trie of text T is a keyword trie for set S, where S is
the set of all suffixes of T .

Definition 2.3. The suffix tree of text T is the path-compressed suffix trie of
T , i.e., a tree that is obtained by representing each maximal non-branching path
of the suffix trie as a single edge labeled by the catenation of the labels in the
corresponding edges of the suffix trie. The edge labels of suffix tree correspond to
substrings of T ; each edge can be represented as a pair (l, r), such that Tl...r gives
the label.

A path label of a node v is the catenation of edge labels from root to v. Its length
is called string depth. The number of edges from root to v is called node depth. The
suffix link sl(v) of an internal node v with path label xα, where x denotes a single
character and α denotes a possibly empty substring, is the node with path label α.

A typical operation on suffix trees is the lowest common ancestor query, which
can be used to compute the longest common extension lce(i, j) of two arbitrary
suffixes Ti...n and Tj...n: Let v and w be the two leaves of a suffix tree having path
labels Ti...n and Tj...n, respectively. Then the path label α of the lowest common
ancestor node of v and w is the longest prefix shared by the two suffixes. We have
lce(i, j) = |α|.

The following abstract definition captures the above mentioned typical suffix tree
operations.

Definition 2.4. An abstract suffix tree for a text supports the following opera-
tions:

(1) root(): returns the root node.

(2) isleaf(v): returns Yes if v is a leaf, and No otherwise.

(3) child(v, c): returns the node w that is a child of v and the edge (v, w) begins
with character c, or returns 0 if no such child exists.

(4) sibling(v): returns the next sibling of node v.

(5) parent(v): returns the parent node of v.

(6) edge(v, d): returns the d-th character of the edge-label of an edge pointing to
v.

ACM Journal Name, Vol. V, No. N, September 2007.

6 · Niko Välimäki et al.

(7) depth(v): returns the string depth of node v.

(8) lca(v, w): returns the lowest common ancestor between nodes v and w.

(9) sl(v): returns the node w that is pointed to by the suffix link from v.

The rest of the paper studies an approach to support the abstract suffix tree
operations efficiently, while using less space than the pointer-based classical suffix
tree implementations.

2.1 Overview of Compressed Suffix Tree

[Sadakane 2007] shows how to implement each operation listed in Def. 2.4 by means
of a sequence of operations on (1) compressed suffix array, (2) lcp-array 2, (3)
balanced parentheses representation of suffix tree hierarchy, and (4) a structure
for lca-queries. In the following sections we explain how we implemented those
structures.

3. COMPRESSED SUFFIX ARRAY

Suffix array is a simplified version of suffix tree; it only lists the suffixes of the
text in lexicogaphic order. Let SA[1 . . . n] be a table such that TSA[i]...n gives the
i-th smallest suffix in lexicographic order. Notice that this table can be filled by a
depth-first traversal on a suffix tree following its edges in the lexicogaphic order.

As the array SA takes n log n bits, there has been considerable effort in building
compressed suffix arrays to reduce its space requirement, see [Navarro and Mäkinen
2007]. The following captures typical suffix array operations on an abstract level.

Definition 3.1. An abstract suffix array for a text T supports the following op-
erations:

—lookup(i): returns SA[i],

—inverse(i): returns j = SA−1[i], defined such that SA[j] = i,

—Ψ(i): returns SA−1[SA[i] + 1], and

—substring(i, l): returns T [SA[i] . . . SA[i] + l − 1].

The function Ψ[i] is defined as follows:

Definition 3.2.

Ψ(i) =

{

i′ such that SA[i′] = SA[i] + 1 (if SA[i] < n)
1 if SA[i] = n

3.1 Our Implementation

We used Succinct Suffix Array (SSA) of [Mäkinen and Navarro 2005] to implement
the abstract suffix array operations. The base structure is the wavelet tree [Grossi
et al. 2003] build on the Burrows-Wheeler transform [Burrows and Wheeler 1994]. 3

Let us briefly revise the structure, as we extend it to support functions Ψ and
inverse that are not considered in the original proposal.

2[Sadakane 2007] uses name Height-array.
3For background on these techniques, see a recent survey [Navarro and Mäkinen 2007].

ACM Journal Name, Vol. V, No. N, September 2007.

Engineering a Compressed Suffix Tree Implementation · 7

The Burrows-Wheeler transform T bwt is defined as T bwt[i] = TSA[i]−1 (where

SA[i] − 1 = SA[n] when SA[i] = 1). A property of T bwt used in compressed suffix
arrays is so-called LF -mapping:

Definition 3.3.

LF (i) =

{

i′ such that SA[i′] = SA[i] − 1 (if SA[i] > 1)
n if SA[i] = 1

It can be shown [Ferragina and Manzini 2005] that LF -mapping can computed
by the means of T bwt:

Lemma 3.4 [Ferragina and Manzini 2005]. Let c = T bwt[i]. Then

LF (i) = C[c] + rankc(T
bwt, i), (1)

where C[c] is the the number of positions of T bwt containing a character smaller
than c and rankc(T

bwt, i) tells how many times character c occurs upto position i
in T bwt.

Table C[1 . . . |Σ|] can be stored as is in |Σ| log n bits of space, and space-efficient
data structures built for storing rankc-function values. For example, a simplified
version of the wavelet tree (see [Mäkinen and Navarro 2005, Sect. 5]) stores those
values in n log |Σ|(1 + o(1)) bits so that each rankc value (as well as value T bwt[i])
can be computed in O(log |Σ|) time.

Let us now consider how the abstract suffix array operations can be simulated
using LF -mapping. First, notice that LF -mapping lets us browse the text back-
wards starting from any given position. We store for every R-th text position
i′ · R its location in suffix array explicitly: sampledSAinverse[i′] = j such that
SA[j] = i′ · R. Now, the substring(i, l)-query can be supported as follows. We
compute the smallest integer i′ such that i + l ≤ i′ ·R. Then substring Ti...i′·R−1 is
retrieved in reverse order by applying LF -mapping repeatedly: ti′·R−1 = T bwt[j],
ti′·R−2 = T bwt[LF [j]], ti′·R−3 = T bwt[LF [LF [j]]], Retrieving a single char-
acter takes O(log |Σ|) time, hence the total time complexity for substring(i, l) is
O((l+R) log |Σ|). Answering inverse(i) is analogous: LF -mapping is applied i′·R−i
times starting from sampledSAinverse[i′]. The index j reached in the end has the
desired property S[j] = i. The time needed is O(R log |Σ|).

For answering lookup(i) and Ψ(i) we need more structures. We store values
B[j] = 1 such that SA[i] is divisible by R. That is, we mark the suffix array indices
containing sampled text positions. We store these sampled positions in the suffix ar-
ray order into another table sampledSA such that sampledSA[rank1(B, j)] = SA[j]
whenever B[j] = 1. Function lookup(i) can now be answered by applying j = LF [j]
starting with j = i until B[j] = 1. Then lookup(i) = sampledSA[rank1(B, j)] + k,
where k is the number of times LF -mapping was applied. The time needed is still
O(R log |Σ|), as the binary rank1(B, j)-query can be answered in constant time
after building o(n) bits data structures on top of B [Jacobson 1989].

Finally, to answer Ψ(i), we first apply j = lookup(i), then apply LF -mapping
starting from sampledSAinverse[j/R + 1] until reaching again index i. Let i′ be
the index reached just before applying LF [i′] = i. By definition Ψ(i) = i′. This
computation also takes O(R log |Σ|) time.

ACM Journal Name, Vol. V, No. N, September 2007.

8 · Niko Välimäki et al.

In our implementation, we use the Huffman-tree shape as advised in [Mäkinen
and Navarro 2005], so that the structure takes overall 2n

R log n+n(H0 +2)(1+o(1))
bits of space and supports all the abstract suffix array operations in O(R · H0)
average time. (Worst case O(R · log n). Use R + l instead of R for substring(i, l)
function time requirement.) Here Hk is the k-th order entropy of T [Manzini 2001].
Recall that Hk ≤ Hk−1 ≤ · · · ≤ H0 ≤ log |Σ|. Fixing any R = Ω(log n

log |Σ|), the

structure takes O(n log |Σ|) bits.

3.1.1 Space-efficient Construction via Dynamic Structure. The construction of
the structure is done in two phases. First the Burrows-Wheeler transform is
constructed, then the additional structures. (wavelet tree, tables C, sampledSA,
sampledSAinverse, and B and its rank structures) are created.

The first phase can be executed in O(n log n log |Σ|) time and using nHk +
o(n log |Σ|) bits of space by using the dynamic self-index explained in [Mäkinen
and Navarro 2006; 2007a]. We implemented the simplified version that uses
O(n log |Σ|) bits: Instead of using the more complicated solution to solve rank-
queries on dynamic bitvectors, we used the O(n) bits structure of [Chan et al.
2004] (see also [Mäkinen and Navarro 2006, Sect. 3.2]). Using this inside dynamic
wavelet trees one obtains the claimed result (see the paragraph just before Sect. 6
in [Mäkinen and Navarro 2006]). The result is actually a dynamic wavelet tree of
the Burrows-Wheeler transform supporting rankc-queries in O(log n log |Σ|) time.
This is easily converted into a static structure of the original SSA (in time linear
in the size of the structure) that supports rankc-queries in O(log |Σ|) time. In our
implementation, we use the Huffman-shaped wavelet tree to improve the space to
O(nH0) bits. This conversion is also easily done by extracting the Burrows-Wheeler
transform from the dynamic wavelet tree with a depth-first traversal and creating
the Huffman-balanced static wavelet tree instead as in [Mäkinen and Navarro 2005].

We are left with explaining how to construct the rest of the structures. Table C
is trivial to construct in O(|Σ| + n) time. Tables sampledSA, sampledSAinverse
and bitvector B can be constructed as follows. We apply LF -mapping from the
index of the last text position on (which is now possible as table C and wavelet tree
to support rankc-queries of Lemma 3.4 are ready). That is, we virtually scan the
text backwards by using LF -mapping. Whenever we are at a text position divisible
by R, say at position i · R, we also know the suffix array index, say j. That is,
we can directly mark B[j] = 1 and store sampledSAinverse[i] = j. After virtually
scanning the text backwards we have filled B and sampledSAinverse correctly.
To fill in table sampledSA, we first preprocess B for rank1(B, i) queries, and then
virtually scan the text backwards again. Analogously as before, whenever we are
at a text position divisible by R, say at position i ·R, we also know the suffix array
index, say j. At those positions, we store sampledSA[rank1(B, j)] = i. The space
used for the construction is the same as what the resulting structures take. The
time needed is O(n log |Σ|) as each LF -step takes O(log |Σ|) time and we have 2n
steps.

The bottleneck in the construction time is the creation of the Burrows-
Wheeler transform within O(n log |Σ|) bits of space. Our implementation uses
O(n log n log |Σ|) time for the task. This can be sped up in theory using e.g. the
O(n log log |Σ|) time algorithm of [Hon et al. 2003b] that guarantees the same

ACM Journal Name, Vol. V, No. N, September 2007.

Engineering a Compressed Suffix Tree Implementation · 9

asymptotic space.

4. LCP -ARRAY

Array lcp[1 . . . n − 1] is used to store the longest common prefix information
between consecutive suffixes in the lexicographic order. That is, lcp[i] =
|prefix(TSA[i]...n, TSA[i+1]...n)|, where prefix(X, Y) = x1 · · ·xj such that x1 = y1,
x2 = y2, . . . , xj = yj, but xj+1 6= yj+1. [Sadakane 2007] describes a clever encod-
ing of the lcp-array that uses 2n + o(n) bits. The encoding is based on the fact
that values i + lcp[i] are increasing when listed in the text position order; sequence
S = s1, . . . , sn−1 = 1 + lcp[SA−1[1]], 2 + lcp[SA−1[2]], . . . , n− 1 + lcp[SAn−1[n− 1]]
is increasing (see next subsection to see why).

To encode the increasing list S, it is enough to encode each diff(i) = si − si−1

in unary: 0diff(i)1, where we assume s0 = 0 and 0d denotes repetition of 0-bit
d-times. This encoding, call it H , takes at most 2n bits. We have the connection
diff(k) = select1(H, k)−select1(H, k−1)−1, where select1(H, k) gives the position
of the k-th 1-bit in H . Bitvector H can be preprocessed to answer select1(H, k)-
queries in constant time using o(|H |) bits of extra space [Munro 1996].

Computing lcp[i] can now be done as follows. Compute k = SA[i] using lookup(i).
The value lcp[i] equals select1(H, k) − k.

4.1 Space-efficient Construction via Kasai et al. Algorithm

[Kasai et al. 2001] gave a linear time algorithm to construct the lcp-array given
SA. One could use it to construct the encoding H by applying what is described
above, but the intermediate lcp-array would take n log n bits. Instead, one can
easily modify Kasai et al. algorithm to directly give the encoding H [Hon and
Sadakane 2002].

Kasai et al. algorithm is based on the observation that lcp-array values
for consecutive suffixes in the text order cannot decrease much. More con-
cretely, it holds lcp[SA−1[i + 1]] ≥ lcp[SA−1[i]] − 1 [Kasai et al. 2001]. This
has the consequence that one can can compute the lcp-values in the text or-
der, at each step taking advantage of the already computed prefix length in
the previous step: Let ℓ = max(0, lcp[SA−1[i]] − 1). Then lcp[SA−1[i + 1]] =
ℓ + |prefix(Ti+1+ℓ...n, TSA[SA−1[i+1]+1]+ℓ...n)|. Function prefix() can be computed
trivially by scanning the text; this will take amortized constant time per step, as
the comparison position in the first argument will advance at each step. Now, to
produce H directly, we notice that the evaluation order is the same as the order
in which lcp-values are stored in H . A step of the algorithm becomes simply: Let
ℓ = max(0, lcp − 1). Then lcp = ℓ + |prefix(Ti+1+ℓ...n, TSA[SA−1[i+1]+1]+ℓ...n)| and

append H with 0lcp1. Here lcp = 0 initially and accesses SA[i] and SA−1[j] can
done by operations lookup(i) and inverse(j) on the compressed suffix array. After
producing H , one can preprocess it for constant time select1 queries in linear time.

The construction uses no extra memory in addition to the text, the compressed
suffix array, and the outcome of size 2n + o(n) bits. Using the compressed suffix
array explained earlier in this paper, the time requirement is O(n log n).

ACM Journal Name, Vol. V, No. N, September 2007.

10 · Niko Välimäki et al.

5. BALANCED PARENTHESES

The balanced parenthesis representation P of a tree is produced by a preorder
traversal printing ′(′ whenever a node is visited the first time, and printing ′)′

whenever a node is visited the last time [Munro et al. 2001]. Letting ′(′= 1 and
′)′ = 0, the sequence P takes 2u bits on a tree of u nodes. A suffix tree of n
leaves can have at most n − 1 internal nodes, and hence its balanced parenthesis
representation takes at most 4n bits.

[Munro et al. 2001] explain how to simulate tree traversal by means of P . Af-
ter building several structures of sublinear size, one can go e.g. from a node to its
first child, from a node to its next sibling, and from a node to its parent, each in
constant time. [Sadakane 2007] lists many other operations that are required in his
compressed suffix tree. All these navigational operations can be expressed as com-
binations of the following functions: rankp, selectp, findclose, and enclose. Here p
is a constant size bitvector pattern, e.g. 10 expresses an open-close parenthesis pair.
Function rankp(P, i) returns the number of occurrences of p in P upto position i.
Function selectp(P, j) returns the position of the j-th occurrences of p in P . Func-
tion findclose(P, i) returns the position of the matching closing parenthesis for the
open parenthesis at position i. Function enclose(P, i) returns the open parenthesis
position of the parent of the node whose open parenthesis is at position i.

To get an idea of the power of the above navigational operations, let us consider
how to compute the subtree size for a given node v. Let v be the j-th node in the
preorder of the tree. Then i = select1(P, j) gives its location in P . Its subtree is
encoded in the subrange P [i+1 . . . k− 1], where k = findclose(P, i). As each node
in the subtree of v is encoded by two bits, the number of nodes in the subtree of
v is simply (i − k − 1)/2. Also the number of leaves in the subtree of v is easily
calculated: As pattern p = 10 represents an open-close paranthesis pair, i.e. a leaf
node, the number of leaves in the subtree of v is rankp(P, k) − rank(P, i).

5.1 Our Implementation

We used the existing rank and select implementations that are explained and
experimented in [González et al. 2005]. There rank is the constant time solution
of [Clark 1996], but select is implemented by binary search on rank values. (the
constant time solution [Clark 1996] is inferior to this on practical inputs [González
et al. 2005]). Section 7 explains how these solutions are modified to the case of
short patterns p, as the original implementations assume p = 1. For findclose and
enclose we used Navarro’s implementations explained in [Navarro 2004] that are
based on [Munro et al. 2001]; these are faster in practice than the original, but the
worst case is raised from a constant to O(log log n).

5.2 Space-efficient Construction via LCP Information

To build balanced parentheses sequence of suffix tree space-efficiently one cannot
proceed naively; doing preorder traversal on a pointer-based suffix tree requires
O(n log n) bits of extra memory. We consider a new approach that builds the paren-
theses sequence incrementally. A very similar algorithm is already given in [Hon
and Sadakane 2002]; we will consider the differences in the end of the section.

Recall from [Crochemore and Rytter 2002, Theorem 7.5, p. 97] the suffixes-

ACM Journal Name, Vol. V, No. N, September 2007.

Engineering a Compressed Suffix Tree Implementation · 11

insertion algorithm to construct a suffix tree from LCP information: The algorithm
adds suffixes in lexicographic order into a tree, having the keyword tree of suffixes
TSA[1]...n, TSA[2]...n, . . . , TSA[i]...n ready after i-th step. Suffix TSA[i+1]...n is then
added after finding bottom-up from the rightmost path of the tree the correct
insertion point. That is, the split node v closest to the rightmost leaf (corresponding
to suffix TSA[i]...n) whose string depth is smaller or equal to lcp[i] is sought for. If
the depth is equal, then a new leaf (corresponding to suffix TSA[i+1]...n) is created
as its child. Otherwise, its outgoing rightmost edge is split, a new internal node is
inserted in between, and the leaf corresponding to suffix TSA[i+1]...n is added as its
rightmost child. It is easy to see by an amortizement argument that this algorithm
takes linear time.

The problem of the suffixes-insertion algorithm for our purposes is that the tree
structure takes O(n log n) bits. For this reason, we develop a new version of this
algorithm that represents the necessary parts of this dynamically changing tree
structure by space-efficient data structures.

To obtain a space-efficient version of the algorithm, we maintain the balanced
parentheses representation of the tree at each step. Unfortunately, the parentheses
structure does not change sequentially, so we need to maintain it using a dynamic
bitvector allowing insertions of bits (open/close parentheses) inside it. Such bitvec-
tor can be maintained using O(n) bits of space so that accessing the bits and in-
serting/deleting takes O(log n) time [Chan et al. 2004]. In addition to the balanced
parentheses to store the tree hierarchy, we need more operations on the rightmost
path; we need to be able to virtually browse the rightmost path from leaf to root
as well as to compute the the string depth of each node visited.

Let us first study string depths. Consider sequence E(i) = e1, e2, . . . , ek of egde
label lengths from leaf to root in the righmost path after i-th step of the algorithm.
Naturally

∑k
j=1 ej = n, as the string depth of the leaf is n. To find the split

node v of the (i + 1)-th step, we just need to compute the smallest j such that

sdepth(j) = n−
∑j

j′=1 ej′ ≤ lcp[i], as this tells us to skip j edges before (virtually)
reaching the split node v. To update the sequence e1, e2, . . . , ek to correspond the
new rightmost path, it is enough to delete values e1, . . . , ej from E(i), insert
value esplit = lcp[i]− sdepth(j) as the first element in E(i), and then finally insert
eleaf = n − lcp[i] as the first element in E(i). These two values correspond to the
lengths of the edge labels of the two new edges on the path; if esplit = 0, i.e. the
new leaf is inserted directly as the child of v, then only value eleaf is inserted. After
these modifications, we have created the sequence E(i + 1) of edge label lengths
from leaf to root in the righmost path after (i+1)-th step of the algorithm. We will
later consider how to maintain sequence E(i) during the algorithm in a succinct
form such that the modifications to the beginning are possible.

In addition to the string depths, we need to maintain information to find the
insertion position in the balanced parantheses representation P of the tree. This
is analogous to the maintainance of string depths. Consider again the i-th step of
the algorithm. Each node in the rightmost path of the current tree is represented
by an open paranthesis in P . Moreover, these parantheses occur in the same order
as the nodes in the path. Hence, we can list the distances between these nodes
with a sequence similar to E(i). Let this sequence be D(i) = d1, d2, . . . dk, where

ACM Journal Name, Vol. V, No. N, September 2007.

12 · Niko Välimäki et al.

dk′ gives the distance between the open parantheses of k′-th and (k′ + 1)-th node
computed bottom-up from leaf to root in the rightmost path. Since P is at most
of length 2n, we have that

∑k
j=1 dj ≤ 2n at each step. To modify P from step i

to step i + 1, we do the following. First, we assume that P is not completed with
respect to the rightmost path, i.e., it does not contain the k closing parantheses in
the end to close the nodes on the rightmost path (except the leaf). These closing
parantheses will be added once the corresponding subtrees become ready (when no
more updates are possible). Let p = |P | − 1 after step i (position of the last open
paranthesis), and again j the smallest value such that sdepth(j) ≤ lcp[i]. Hence,
we may append P by j − 1 close parantheses, as this is the amount of nodes on
the rightmost path whose subtrees become ready. The open paranthesis of the split
node v is at position pos(j) = p −

∑j
j′=1 dj′ in P . If a new internal node is to be

inserted (in case sdepth(j) < lcp[i]), we insert a new open paranthesis just before
r = pos(j − 1); to see why, notice that P [pos(j) + 1 . . . r − 1] contains the balanced
paranthesis representation of the subtree of v except the subtree of its rightmost
child starting at P [r]. In case sdepth(j) = lcp[i] P stays internally unchanged, as
the new leaf will be added directly under v. In both cases we append P with a
new leaf node (appending a open-close paranthesis pair). Finally, we must update
sequence D(i) to correspond to the current state of P . In case sdepth(j) < lcp[i]
we notice that dj can be reused as the distance between v and its new rightmost
child node (a new internal node). Hence, it is enough to delete values d1, . . . , dj−1

from D(i) and insert in the beginning value dleaf = p+ j +2− r (distance between
the new internal node and the new leaf). In case sdepth(j) = lcp[i], we delete
values d1, . . . , dj from D(i) and insert in the beginning dleaf = p + j + 1− pos(j).
After these modifications, we have updated P to correspond to step i + 1 as well
as created sequences E(i + 1) and D(i + 1). By induction, after adding the last
suffix (and after closing the rightmost path by adding closing parantheses as many
as there are elements in E(n)) we have P corresponding to the suffix tree of the
text. The pseudocode of the algorithm is given in Fig. 1.

5.2.1 Handling sequence of variable length integers. We still need to consider
how to manipulate sequences E and D space-efficiently (notice that a trivial linked
list approach would take O(n log n) bits space, being no improvement to the original
algorithm). We encode the values using variable length prefix codes. Let us fix
Elias δ encoding [Elias 1975]. It has the property that for any integer x, it holds
|δ(x)| = log x+o(log x) bits. More importantly, a sequence δ(x1)δ(x2) · · · δ(xk) can
be uniquely decoded into x1, x2, . . . , x2. This can be done in constant time per code,
assuming a precomputed table of size o(N), where N =

∑k
i=1 xi (See e.g. [Mäkinen

and Navarro 2007b]). Notice also that
∑k

i=1 |δ(xi)| ≤ k log n
k (1 + o(1)) = O(n) by

the convexity of logarithm. Hence, we can store E and D using O(n) bits.
The only remaining problem is how to support insertions and deletions from the

beginning of δ-encoded sequences. This can be done e.g. as follows: Reserve cn
bits of space, where c is a constant in the O(n) space limit for the encoded sequence.
Store the encoded sequence aligned to the end of the memory area, and remember
the starting position. A deletion from the beginning is done by decoding the first
code in constant time and shifting the starting position to the right accordingly.
Identically an insertion is done by shifting the starting position to the left to make

ACM Journal Name, Vol. V, No. N, September 2007.

Engineering a Compressed Suffix Tree Implementation · 13

Algorithm BalancedParanthesesViaLCP(lcp, n):
P.Append((()); { Add root and first leaf }
p = 2; {Position of the last open paranthesis }
D.Push(1); E.Push(n); {Initialize stacks storing node/string depth information on rightmost path}
for i = 1 to n − 1 do {Add the suffixes in the lexicographic order}

lcp = lcp[i]; {lcp value can also be computed from its compressed representation}

Find smallest j such that sdepth = n − E.Sum(j) ≤ lcp; {E.Sum(j) =
∑j

j′=1
ej′ }

Append P with j − 1 closing parentheses;
if sdepth < lcp then {Add new internal node and a leaf}

r = p − D.Sum(j − 1); {Position in P}
P.Insert((, r);
do j times E.Pop();
E.Push(lcp− sdepth); E.Push(n − lcp);
do j − 1 times D.Pop();
D.Push(p + j + 2 − r);

else {Add a new leaf}
r = p − D.Sum(j);
do j times E.Pop();
E.Push(n − lcp);
do j times D.Pop();
D.Push(p + j + 1 − r);

end if

P.Append(());
p = |P | − 1;

end for

Append P with |E| closing parentheses;

Fig. 1. Construction of balanced parantheses representation of suffix tree by a space-efficient
version of suffixes-insertion algorithm.

room for the new code.
We can conlude that given the lcp-array, we can construct the balanced paran-

theses sequence in O(n log n) time using O(n) bits of working space.

5.2.2 Improving running time to linear. Finally, the time requirement can
be improved to linear by replacing the dynamic bit vector by a patching tech-
nique [Kärkkäinen 2006]: The idea is to postpone the updates until a buffer of
length n bits is full. Then sort the n/ logn insertions positions stored in the buffer
using Radix sort in O(n/ log n) time, and merge the insertion positions with the
already constructed P in O(n/ log n) time under RAM. The buffer can become full
only O(log n) times, and hence the total time used for operations on P is linear.

5.2.3 Comparison to Hon and Sadakane solution. [Hon and Sadakane 2002] de-
scribe a very similar algorithm. They build on top of an algorithm in [Kasai et al.
2001] that simulates the post-order traversal of suffix tree given the lcp-values (Ka-
sai et al. describe the algorithm for ordinary trees, but it can easily be specialized
to suffix trees). The string depths (values E) are handled identically to our algo-
rithm. The difference is in handling node depths (values D). We use values D to
track the insertion position in P . Hon and Sadakane represent P as a forest of
trees such that each root corresponds to a node in the rightmost path. These nodes

ACM Journal Name, Vol. V, No. N, September 2007.

14 · Niko Välimäki et al.

partition current P into pieces that do not change during the latter steps of the
algorithm. The tree of a piece is such that when preorder traversed one obtains the
piece by concatenating the bits stored at each node. Space-efficiency is obtained
by creating children only when O(log n) bits are stored at a node. This means
that there are overall O(n/ log n) pointers, needing overall O(n) bits. Handling the
buffers of O(log n) bits is easy, since insertions of (to the beginning or of) to the
end can be done in constant time under the RAM model. The insertion operations
take place during the algorithm when new internal nodes are visited in postorder.

There is, however, a problem with texts of type an#, where #<a: Postorder
traversal will visit all the leaf nodes first, creating n trees each containing two bits
corresponding to (). Keeping pointers to those trees takes O(n log n) bits. These
pointers are necessary in order to find out which trees are merged when a new
internal node is visited. In fact, these pointers also need to be inserted to a stack,
since they will be merged in their reverse creation order. To solve this problem,
one can proceed as follows. Merge the small trees (buffers) so that each remaining
tree (buffer) has size Θ(logn) bits. Use δ-encoding to store the distances of merge-
boundaries. This guarantees that there are only O(n/ log n) trees, and the pointers
to those trees (and inside them) take overall O(n) bits. Similarly as before, the
δ-encoded values occupy O(n) bits.

In fact, these latter δ-values are analogous to the node-depth values D we are
using. The difference between the approaches remains the handling of P .

[Hon 2004, page 59] offers a more elegant solution to the problem; instead of
trying to form P on the fly, one constructs only a version of P that contains leaves
() and closing parantheses). That is, remove line P.Insert((, r) from the algorithm
of Fig. 1. Then run the algorithm reversed reading lcp-values from right to left.
This creates a version of P that only contains leaves () and open parantheses (.
These two sequences are easy to merge to form P as the leaves () occur in the
same order, and between two leaves all the closing parantheses appear before the
open parantheses. For example, let P ′ = ()())()())) and P ′′ = ((()()(()() be
the two sequences constructed after forward and backward scanning of lcp-values.
Then after matching the leaves (), the placement of open and close parantheses
are uniquely defined, that is, P = ((()())(()())). Setting the parantheses in the
other order between the second and third leaf would yield another leaf, which is
not allowed.

5.2.4 Our implementation. In our implementation, we do not use any of the
above three different ways to achieve linear time. Our implementation follows the
pseudocode given in Fig. 1. Moreover, since we use the compressed lcp-values, the
time requirement of the balanced parantheses construction remains O(n log n) even
after applying one of the speed-ups. On the other hand, our current implementation
follows the theoretically most space-efficient of the options: the dynamic bit-vector
implemententation could be improved to n + o(n) bits from the current O(n) to
achieve optimal space in handling P .

A practical bottleneck found when running experiments on the first versions of
the construction above was the space reserved for Elias codes. The estimated worst
case space is O(n) bits but this rarely happens on practical inputs. We chose to
reserve initially o(n) bits and double the space if necessary. The parameters were

ACM Journal Name, Vol. V, No. N, September 2007.

Engineering a Compressed Suffix Tree Implementation · 15

chosen so that the doubling does not affect the overall O(n log n) worst case time
requirement. This reduced the maximum space usage during the construction on
common inputs significantly.

6. LOWEST COMMON ANCESTOR STRUCTURE

[Farach-Colton and Bender 2000] describe a O(n log n) bits structure that can be
preprocessed for a tree in O(n) time to support constant time lowest common
ancestor (lca) queries. [Sadakane 2007] modified this structure to take O(n) bits
of space without affecting the time requirements. We implemented Sadakane’s
proposal that builds on top of the balanced parentheses representation of previous
section, adding lookup tables taking o(n) bits.

6.0.5 Implementation remark.. While implementing Sadakane’s proposal, we
faced a practical problem; one of the sublinear structures for lca-queries takes
space n(log log n)2/ logn bits, which on practical inputs is considerable amount:
This lookup table was taking half the size of the complete compressed suffix tree
on some inputs. To go around this bottleneck, we added a space-time tradeoff pa-
rameter K such that using space n(log log n)2/(K log n) bits for this structure, one
can answer lca-queries in time O(K).

7. IMPLEMENTATION DESIGN

We used object oriented programming (C++-language) to create an easily usable
and maintainable software package. Each abstract data structure explained above
is its own class, making it easy to change the underlying implementations at any
phase. For example, one can easily switch to another compressed suffix array im-
plementation just by writing a new class with the same name and same operations
supported.

We used to some extend generic programming in order to avoid writing simi-
lar code segments. An example of its use is our rankp(P, i) / selectp(P, j) func-
tion implementations (see Sect. 5 for definitions). These operations are needed in
Sadakane’s compressed suffix tree for many different short patterns p like 0, 1, 10, 01.
It is known how to build o(n) bits structures for each fixed p so that rankp and
selectp queries can be answered in constant time. Instead of copy-pasting those
codes and changing some details depending on the pattern p, we used one generic
implementation that only assumes that short substrings of a virtual indicator vector
of P can be accessed in constant time. A virtual indicator vector of P with respect to
a pattern p is I(P, p) = I[1 . . . |P |] such that I[i] = 1 iff pattern p occurs at position
i in P , otherwise I[i] = 0. Now, after building a table storing for each (log |P |)/2
length substring α of P the mapping to its indicator vector I(α, p) = I[1 . . . |α|],
one can access any O(log |P |)-length substring of I(P, p) in constant time. This ac-
cess is enough to guarantee constant time rankp and selectp operations: Complete
I(P, p) is only needed in construction time to build the lookup tables. Later on the
rankp and selectp functions consult the lookup tables and need only access to short
fragments of I(P, p). These accesses are independent of p. Only the pointer to the
lookup table to map substrings α of P to the indicator vector I(α, p) depends on p.
Notice that the alternative approach of keeping the indicator vectors I(P, p) stored
in memory for each of the k values of p would require k|P | bits of memory. Now

ACM Journal Name, Vol. V, No. N, September 2007.

16 · Niko Välimäki et al.

we are only using k2(log |P |)/2(log |P |)/2 = (k/2)
√

|P | log |P | = o(|P |) bits. Thus,
our approach is just as time/space-efficient as the trivial approach of using tailored
code. What we gain is the generality as the code works for any p without any
changes to the code (the generation of the lookup table for creating the mapping
is parameterized by p as well).

8. EXPERIMENTAL RESULTS

We report experimental results on a 50 MB DNA sequence 4, on a 50 MB collec-
tion of English text 5, and on randomly generated texts varying the alphabet size.
We used a version of the compressed suffix tree CST whose theoretical space re-
quirement is nH0 + 10n + o(n log |Σ|) bits; other variants are possible by adjusting
the space/time tradeoff parameters. Here n(H0 + 1)(1 + o(1)) + 3n comes from
the compressed suffix array CSA, and 6n + o(n) from the other structures. The
maximum average slowdown on suffix tree operations is O(log n log |Σ|) under this
tradeoff. The experiments were run on a 2.6GHz Pentium 4 machine with 1GB of
main memory. Programs were compiled using g++ (GCC) compiler version 4.1.1
20060525 (Red Hat 4.1.1-1) and -O3 optimization parameters.

We compared the space usage against classical text indexes: a standard pointer-
based implementation of suffix trees ST, and a standard suffix array SA were used.
We also compared to the enhanced suffix array ESA [Abouelhoda et al. 2004]; we
used the implementation that is plugged into the Vmatch software package 6. For
suffix array construction, we used the bpr algorithm [Schürmann and Stoye 2005]
that is the currently the fastest construction algorithm in practice.

Figures 2 and 3 report the space requirements on varying length prefixes of the
texts. One can see that the achieved space-requirement is attractive; CST takes less
space than a plain suffix array.

We also measured the maximum space usage for CSA and CST during the construc-
tion. These values (CSA, max and CST, max) are quite satisfactory; the maximum
space needed during the construction is only 1.5 times larger than the final space
both on DNA and on English text.

For the time requirement comparison, we measured both the construction time
and the usage time (see Figs. 4 and 5). For the latter, we implemented a well-known
solution to the longest common substring (LCSS) problem using both the classical
suffix tree and the compressed suffix tree. For sanity check, we also implemented
an O(n3) (O(n2) expected case) brute-force algorithm.

The LCSS problem asks to find the longest substring C shared by two given input
strings A and B. The solution using suffix tree is evident: Construct the suffix tree
of the concatenation A$B, search for the node whose string depth is largest and its
subtree contains both a suffix from A and from B. Notice, that no efficient solution
without using suffix tree -alike data structures is known.

To get an idea how much different types of algorithms will slow down when
using the CST instead of ST, we measured the average execution times of some key
operations. We used the DNA sequence prefix of length 5 million for the experiment

4http://pizzachili.dcc.uchile.cl/texts/dna/dna.50MB.gz
5http://pizzachili.dcc.uchile.cl/texts/english/english.50MB.gz
6http://www.vmatch.de

ACM Journal Name, Vol. V, No. N, September 2007.

Engineering a Compressed Suffix Tree Implementation · 17

Fig. 2. Comparison of space requirements. We have added the text size to the SA and ST sizes, as
they need the text to function as indexes, whereas CSA and CST work without. Here ST-heapadmin

is the space used by suffix tree without the overhead of heap; this large overhead is caused due to

the allocation of many small memory fragments. For other indexes, the heap overhead is negligible.
Three last values on the right report the maximum space usage during the construction (for ESA

and ST the maximum is the same as the final space requirement).

Fig. 3. See Fig. 2 for explanation.

Table I. Average running times (in microseconds) for operations of ST and CST.
tree operation isleaf() parent() sibling() edge(*,1) sl() lca() depth()

ST 0, 092 0, 085 0, 085 0, 14 0, 085 - -
CST 0, 047 0, 11 0, 22 13, 12 11, 07 6, 66 4, 56

and ran each operation repeatedly over the nodes of ST and CST, respectively, to
obtain reliable average running time per operation. The results are shown in Table I.

Notice that ST does not support parent(), depth(), and lca() functions. Such
functionalities are often assumed in algorithms based on suffix trees. They could
be be added to the classical suffix tree as well (two first easily), but this would again
increase the space requirement considerably. That is, the space reduction may in
practical settings be even more than what is shown in Fig. 2.

ACM Journal Name, Vol. V, No. N, September 2007.

18 · Niko Välimäki et al.

Fig. 4. Comparison of time requirements. For LCSS, we treated the first half of the sequence as
A, the second as B. We plotted the expected behaviour, 2n log n, for reference. Due to lack of
space in the plot, the absolute values belonging to CST are shown on top of expected behaviour
curve. The more dense sampling of x-values is to illustrate the brute-force algorithm behaviour.
After 30MB, suffix tree did not fit into main memory. This constitutes a huge slowdown because

of swapping to disk; see the two separate dots in the right-most corners of the plots.

Fig. 5. See Fig. 4. A notable difference to the DNA case is that ESA construction seems to have a
linear dependency on the alphabet size.

The behaviour of the space requirement and the construction time of CSA and
CST on varying alphabet size is illustrated in Fig. 6.

Finally, both the space and the time requirements of CST are heavily dependent
on the sample rate used in the underlying compressed suffix array implementation.
This effect is illustrated in Fig. 7.

9. FINAL REMARKS

As one can see, our implementation of the compressed suffix tree follows very closely
the theoretical proposals. We made only couple of choices towards practical effi-
ciency and very few towards reducing the implementation work; we used previous

ACM Journal Name, Vol. V, No. N, September 2007.

Engineering a Compressed Suffix Tree Implementation · 19

Fig. 6. (Top) Space requirement (final and maximum) of CST and CSA on randomly generated
10MB files with varying alphabet size. Interestingly, all the other space requirements follow
the expected logarithmic dependency of the alphabet size, but the final size of CST. A possible
explanation is that the number of nodes in the suffix tree varies irregularly on the alphabet size.
(Bottom) Time requirement of construction algorithm for CST on randomly generated 10MB files
with varying alphabet size. One can clearly see that the dependency is logarithmic as stated.

implementations as basis as much as possible. Many of these are also implementa-
tions of the best algorithms for the particular tasks.

We are currently working on a finetuned 64-bit version of the compressed suffix
tree that can hold the human genome indexed in main memory. Preliminary ex-
periments show that this is possible using a computer with 32 GB main memory
(which is a significant saving, as for classical suffix tree one would need at least 200
GB main memory). The construction takes currently about 4 days, the final index

ACM Journal Name, Vol. V, No. N, September 2007.

20 · Niko Välimäki et al.

Fig. 7. Space requirement and time requirement of construction of CST on varying sample rates
used for the underlying compressed suffix array. One can see that with a little compromise in
space requirement one can achieve a considerable speed-up in construction algorithm.

occupies about 8.5 GB, and the peak memory usage is 24 GB. We plan to extend
the functionalities of the implementation to cover the many useful sequence anal-
ysis algorithms developed for suffix trees over the years. We expect to be able to
speed up the construction by plugging in some new faster construction algorithms
and by taking use of the multiple processor environment. However, a more feasible
approach is probably to store the index to disk and recover it back to main mem-
ory once accessed (which currently takes about 15 minutes for human genome); this
makes possible the maintainance of a genome database, on which more complicated
analyses can be executed than what is nowadays possible.

The idea of storing the index to disk leads to the appealing alternative approach;
the disk space is not that limited as main memory space, so once can think of storing
and using suffix trees on disk. Although our experiments have shown that a typical
pointer-based suffix tree is hopelessly slow when running out of main memory, there
are ways to adjust the tree to work better on disk, see e.g. [Cheung et al. 2005;
Ko and Aluru 2006]. Comparison to these secondary memory suffix trees is left for
future work.

REFERENCES

Abouelhoda, M., Kurtz, S., and Ohlebusch, E. 2004. Replacing suffix trees with enhanced
suffix arrays. Journal of Discrete Algorithms 2, 53–86.

ACM Journal Name, Vol. V, No. N, September 2007.

Engineering a Compressed Suffix Tree Implementation · 21

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. 1990. Basic local

alignment search tool. Journal of Molecular Biology 215, 3, 403–410.

Apostolico, A. 1985. The myriad virtues of subword trees. In Combinatorial Algorithms on
Words. NATO ISI Series. Springer-Verlag, 85–96.

Burrows, M. and Wheeler, D. 1994. A block sorting lossless data compression algorithm. Tech.
Rep. Technical Report 124, Digital Equipment Corporation.

Chan, W.-L., Hon, W.-K., and Lam, T.-W. 2004. Compressed index for a dynamic collection
of texts. In Proc. CPM’04. LNCS 3109. 445–456.

Cheung, C.-F., Yu, J. X., and Lu, H. 2005. Constructing suffix tree for gigabyte sequences with
megabyte memory. IEEE Transactions on Knowledge and Data Engineering 17, 1, 90–105.

Clark, D. 1996. Compact pat trees. Ph.D. thesis, University of Waterloo.

Cole, R., Gottlieb, L. A., and Lewenstein, M. 2004. Dictionary matching and indexing with
errors and don’t cares. In Symposium on Theory of Computing (STOC). 91–100.

Crochemore, M. and Rytter, W. 2002. Jewels of Stringology. World Scientific.

Elias, P. 1975. Universal codeword sets and representation of the integers. IEEE Transactions
on Information Theory 21, 2, 194–20.

Farach-Colton, M. and Bender, M. A. 2000. The lca problem revisited. In Proc. LATIN’00.
88–94.

Ferragina, P. and Manzini, G. 2005. Indexing compressed texts. Journal of the ACM 52, 4,
552–581.

González, R., Grabowski, S., Mäkinen, V., and Navarro, G. 2005. Practical implementation
of rank and select queries. In Poster Proceedings Volume of 4th Workshop on Efficient and
Experimental Algorithms (WEA’05). CTI Press and Ellinika Grammata, Greece, 27–38.

Grossi, R., Gupta, A., and Vitter, J. 2003. High-order entropy-compressed text indexes. In
Proc. SODA’03. 841–850.

Grossi, R. and Vitter, J. 2006. Compressed suffix arrays and suffix trees with applications to
text indexing and string matching. SIAM Journal on Computing 35, 2, 378–407.

Gusfield, D. 1997. Algorithms on Strings, Trees and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press.

Hon, W.-K. 2004. On the construction and application of compressed text indexes. Ph.D. thesis,
University of Hong Kong.

Hon, W.-K. and Sadakane, K. 2002. Space-economical algorithms for finding maximal unique
matches. In Proc. CPM’02. 144–152.

Hon, W.-K., Sadakane, K., and Sung, W.-K. 2003a. Breaking a time-and-space barrier in
constructing full-text indices. In Proc. FOCS’03. 251.

Hon, W.-K., Sadakane, K., and Sung, W.-K. 2003b. Succinct data structures for searchable
partial sums. In Proc. ISAAC’03. LNCS 2906. 505–516.

Jacobson, G. 1989. Space-efficient static trees and graphs. In Proc. 30th IEEE Symp. Founda-
tions of Computer Science (FOCS’89). 549–554.

Kärkkäinen, J. 2006. personal communication.

Kasai, T., Lee, G., Arimura, H., Arikawa, S., and Park, K. 2001. Linear-time longest-common-
prefix computation in suffix arrays and its applications. In Proc. CPM’01. Springer Verlag
LNCS 2089. 181–192.

Ko, P. and Aluru, S. 2006. Obtaining provably good performance from suffix trees in secondary
storage. In CPM, M. Lewenstein and G. Valiente, Eds. Lecture Notes in Computer Science,
vol. 4009. Springer, 72–83.

Mäkinen, V. and Navarro, G. 2005. Succinct suffix arrays based on run-length encoding. Nordic
Journal of Computing 12, 1, 40–66.

Mäkinen, V. and Navarro, G. 2006. Dynamic entropy compressed sequences and full-text
indexes. In Proc. CPM’06. LNCS 4009. 306–317.

Mäkinen, V. and Navarro, G. 2007a. Implicit compression boosting with applications to self-
indexing. In Proc. SPIRE’07. LNCS. To appear.

ACM Journal Name, Vol. V, No. N, September 2007.

22 · Niko Välimäki et al.

Mäkinen, V. and Navarro, G. 2007b. Rank and select revisited and extended. Theoretical

Computer Science. To appear.

Manber, U. and Myers, G. 1993. Suffix arrays: a new method for on-line string searches. SIAM
Journal on Computing , 935–948.

Manzini, G. 2001. An analysis of the Burrows-Wheeler transform. Journal of the ACM 48, 3,
407–430.

McCreight, E. 1976. A space-economical suffix tree construction algorithm. Journal of the
ACM 23, 2, 262–272.

Munro, I. 1996. Tables. In Proc. 16th Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’96). LNCS 1180. 37–42.

Munro, I., Raman, V., and Rao, S. 2001. Space efficient suffix trees. Journal of Algorithms 39, 2,
205–222.

Navarro, G. 2004. Indexing text using the Ziv-Lempel trie. Journal of Discrete Algorithms
(JDA) 2, 1, 87–114.

Navarro, G. and Mäkinen, V. 2007. Compressed full-text indexes. ACM Computing Sur-
veys 39, 1, Article 2.

Sadakane, K. 2007. Compressed suffix trees with full functionality. The-
ory of Computing Systems. In press, preliminary version available at
http://tcslab.csce.kyushu-u.ac.jp/~sada/papers/cst.ps.

Schürmann, K.-B. and Stoye, J. 2005. An incomplex algorithm for fast suffix array construction.
In Proc. ALENEX/ANALCO. 77–85.

Ukkonen, E. 1995. On-line construction of suffix trees. Algorithmica 14, 3, 249–260.

Weiner, P. 1973. Linear pattern matching algorithms. In 14th IEEE Annual Symp. on Switching
and Automata Theory. 1–11.

...

ACM Journal Name, Vol. V, No. N, September 2007.

