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Abstract. Given a sequence of n bits with binary zero-order entropy
H0, we present a dynamic data structure that requires nH0 + o(n) bits
of space, which is able of performing rank and select, as well as in-
serting and deleting bits at arbitrary positions, in O(log n) worst-case
time. This extends previous results by Hon et al. [ISAAC 2003] achieving
O(log n/ log log n) time for rank and select but Θ(polylog(n)) amortized
time for inserting and deleting bits, and requiring n + o(n) bits of space;
and by Raman et al. [SODA 2002] which have constant query time but a
static structure. In particular, our result becomes the first entropy-bound
dynamic data structure for rank and select over bit sequences.

We then show how the above result can be used to build a dynamic full-
text self-index for a collection of texts over an alphabet of size σ, of overall
length n and zero-order entropy H0. The index requires nH0 +o(n log σ)
bits of space, and can count the number of occurrences of a pattern of
length m in time O(m log n log σ). Reporting the occ occurrences can
be supported in O(occ log2 n log σ) time, paying O(n) extra space. In-
sertion of text to the collection takes O(log n log σ) time per symbol,
which becomes O(log2 n log σ) for deletions. This improves a previous
result by Chan et al. [CPM 2004]. As a consequence, we obtain an
O(n log n log σ) time construction algorithm for a compressed self-index
requiring nH0 + o(n log σ) bits working space during construction.

1 Introduction and Related Work

The study of compressed data structures aims to represent classical structures
like trees, graphs, text indexes, etc., in the smallest possible space without chal-
lenging the functionality of the structure; the original operations should be sup-
ported efficiently without decompressing the whole structure.

One of the most commonly appearing structures are the rank and select
dictionaries for bit vectors: rank(A, i) gives the number of bits set up to position
i in bit vector A = a1a2 · · · an, ak ∈ {0, 1}; select(A, j) is the inverse, giving the
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position i containing the j-th bit set in A. We study the dynamic version of
these dictionaries, where one can insert or delete a bit at any position.

Dynamic rank and select dictionaries have been studied before [13, 9], as a
special case of so-called Searchable Partial Sums with Indels problem. The best
current result [9] requires n + o(n) bits of space, O(logb n) time for rank and
select, and O(b) amortized time for insert and delete, for b = Ω(polylog(n)).

In this paper we improve some aspects of this result by achieving O(log n)
worst-case time complexity for all the operations, over a data structure that re-
quires nH0+o(n) bits of space, where 0 ≤ H0 ≤ 1 is the binary zero-order entropy
of A. This space has been previously achieved only for static data structures [14],
with constant time for rank and select but no support for updates. Ours is the
first entropy-bound dynamic data structure answering rank and select queries.
Moreover, our result works under weaker assumptions on the RAM model than
the previous results on dynamic settings.

The indexed string matching problem is that of, given a long text T [1, n]
over an alphabet Σ of size σ, building a data structure called full-text index

on it, to solve two types of queries: (a) Given a short pattern P [1, m] over
Σ, count the occurrences of P in T ; (b) locate those occ positions in T . There
are several classical full-text indexes requiring O(n log n) bits of space which
can answer counting queries in O(m log σ) time (like suffix trees [1]) or O(m +
log n) time (like suffix arrays [11]). Both locate each occurrence in constant
time once the counting is done. Similar complexities are obtained with modern
compressed data structures [6, 8, 7], requiring space nHk(T )+o(n logσ) bits (for
some small k), where Hk(T ) ≤ log σ is the k-th order empirical entropy of T .1

These indexes are often called entropy-compressed self-indexes refering to their
space requirement and to their ability to work without the text.

The main building block in entropy-compressed self-indexes is function rank,
or more precisely, its generalization to non-binary sequences: rankc(A, i) counts
the number of times symbol c appears in a given sequence A up to position i.
Our dynamic entropy-compressed binary rank structure can be extended into
a dynamic entropy-compressed symbol rank structure using wavelet trees [8].
This dynamic structure takes nH0 + o(n log σ) bits of space, where H0 is the
empirical zero-order entropy of the sequence. It supports the same operations as
binary rank with O(log σ) slowdown in queries. Plugging this structure in the
dynamic self-index of Chan, Hon, and Lam [4], we obtain a dynamic entropy-
compressed self-index occupying nH0 + o(n log σ) bits on a text collection of
overall length n. Our structure can count the number of occurrences of a pat-
tern of length m in time O(m log n log σ). Insertion of a text to the collection
takes O(log n log σ) time per symbol. Deletion takes O(log2 n log σ) time. These
operations are O(log σ) times slower than with the original index of Chan et al.,
but we obtain a significant space saving: Their index takes O(nσ) bits while ours
takes O(n log σ) bits in general.

As a consequence, we obtain an O(n log n log σ) time construction algorithm
for a compressed self-index called succinct suffix array (SSA) [10] requiring

1 In this paper log stands for log
2
.



nH0 + o(n log σ) bits working space during construction (the same as the final
structure). This is the first construction algorithm for a FM-index [6] variant,
whose working space depends on the entropy. For another self-index called LZ-

index [12], there is a recent entropy-bound construction algorithm [2].

2 Definitions

To simplify notation, we ignore roundings. When refering to number of bits, we
use simply log n to refer to b(log n) + 1c. That is, log log n bits means actually
b(logb(log n)+1c)+1c bits. Similarly (log n)/2 is the integer nearest to b(log n)+
1c/2, and so on.

We assume our sequence A = a1 . . . an to be drawn from an alphabet {0, 1, . . .
σ − 1}. Let nc denote the number of occurrences of symbol c in A, i.e., nc =
|{i | ai = c}|. Then the zero-order empirical entropy is defined as H0(A) =
∑

0≤c<σ
nc

n log n
nc

.
We assume a random access machine with word size w; typical arithmetic

operations on w-bit integers are assumed to take constant time. We make the
standard assumption that log n = Θ(w) (in the full version, we show that this
can be weakened to log n = O(w) without changing the results).

We study the following problems:
The Dynamic Sequence with Indels problem is to maintain a (virtual) sequence
A = a1 . . . an, ai ∈ {0, 1, . . . , σ − 1}, supporting the operations:

– rankc(A, i) returns the number of occurrences of symbol c in a1 · · ·ai;
– selectc(A, j) returns the index i containing j-th occurrence of c;
– insert(A, c, i) inserts c ∈ {0, 1, . . . σ − 1} between ai and ai+1; and
– delete(A, i) deletes ai from the sequence.

The Dynamic Bit Vector with Indels problem is a restriction of the above to
alphabet {0, 1}. Then we use short-hand notation rank(A, i) = rank1(A, i) and
select(A, i) = select1(A, i). Notice that rank0(A, i) = i− rank1(A, i), but same
does not apply for select0(A, j); we consider this case separately.

3 Previous Results

3.1 Entropy-Bound Structures for Bit Vectors

Raman et al. [14] proposed a data structure to solve rank and select queries
in constant time over a static bit vector A = a1 . . . an with binary zero-order
entropy H0. The structure requires nH0 + o(n) bits.

The idea is to split A into superblocks S1 . . . Sn/s of s = log2 n bits. Each
superblock Si is in turn divided into 2 log n blocks Bi(j), of t = (log n)/2 bits
each, thus 1 ≤ j ≤ s/t. Each such block Bi is said to belong to class c if it has
exactly c bits set, for 0 ≤ c ≤ t. For each class c, a universal table Gc of

(

t
c

)

entries is precomputed. Each entry corresponds to a possible block belonging to



class c, and it stores all the local rank answers for that block. Overall all the Gc

tables add up 2t =
√

n entries, and O(
√

n polylog(n)) bits.
Each block Bi(j) of the sequence is represented by a pair Di(j) = (c, o),

where c is its class and o is the index of its corresponding entry in table Gc. A
block of class c thus requires log(c+1)+log

(

t
c

)

bits. The first term is O(log log n),
whereas all the second terms add up nH0 + O(n/ log n) bits. To see this, note

that log
(

t
c1

)

+ log
(

t
c2

)

≤ log
(

2t
c1+c2

)

, and that nH0 ≥ log
(

t(n/t)
c1+...+cn/t

)

. The pairs

Di(j) are of variable length and are all concatenated into a single sequence.
Each superblock Si stores a pointer Pi to its first block description in the

sequence (that is, the first bit of Di(1)) and the rank value at the beginning
of the superblock, Ri = rank(A, (i − 1)s). P and R add up O(n/ log n) bits. In
addition, Si contains s/t numbers Li(j), giving the initial position of each of its
blocks in the sequence, relative to the beginning of the superblock. That is, Li(j)
is the position of Di(j) minus Pi. Similarly, Si stores s/t numbers Qi(j) giving
the rank value at the beginning of each of its blocks, relative to the beginning
of the superblock. That is, Qi(j) = rank(A, (i − 1)s + (j − 1)t) − Ri. As those
relative values are O(log n), sequences L and Q require O(n log log n/ logn) bits.

To solve rank(A, p), we compute the corresponding superblock i = 1+ bp/sc
and block j = 1 + b(p − (i − 1)s)/tc. Then we add the rank value of the cor-
responding superblock, Ri, the relative rank value of the corresponding block,
Qi(j), and complete the computation by fetching the description (c, o) of the
block where p belongs (from bit position Pi + Li(j)) and performing a (precom-
puted) local rank query in the universal table, rank(Gc(o), p−(i−1)s−(j−1)t).

The overall space requirement is nH0 + O(n log log n/ logn) bits, and rank
is solved in constant time. We do not cover select because it is not necessary to
follow this paper.

3.2 Dynamic Structures for Bit Vectors

Hon et al. [9] show how to handle a bit vector A = a1 . . . an in n + o(n) bits of
space, so that rank and select can be solved in O(logb n) time, while insertions
and deletions to the sequence can be handled in O(b) amortized time, for any
parameter b = Ω(polylog(n)). Hence, they provide a solution to the Dynamic

Bit Vector with Indels problem. Their main structure is a weight-balanced B-tree
(WBB) [5, 13].

Our goal is to obtain nH0 + o(n) bits of space and O(log n) worst-case time
for all the operations above. We build over a simplified version of their structure,
which uses standard balanced trees and achieves O(log n) time and O(n) bits of
space [4]. We assume red-black trees in the following, as we later use the property
of constant number of rotations to rebalance the tree.

Consider a balanced binary tree on A whose left-most leaf contains bits
a1a2 · · · alog n, second left-most leaf contains bits alog n+1alog n+2 · · · a2 log n, and
so on. Each node v contains counters p(v) and r(v) telling the number of posi-
tions stored and the number of bits set in the subtree rooted at v, respectively.
Note that this tree, with all its log n-size pointers and counters, requires O(n)
bits.



To perform rank(A, i), we enter the tree to find the leaf containing position i.
We start with rank ← 0. If p(left(v)) ≥ i we enter the left subtree, otherwise we
enter the right subtree with i← i−p(left(v)) and rank ← rank+r(left(v)). In
O(log n) time we reach the desired leaf and complete the rank query in O(log n)
time by scanning the bit sequence corresponding to that node. For select we
proceed similarly, except that the roles of p() and r() are reversed. For select0
the computation is analogous.

Insertions and deletions are handled by entering to the correct leaf like in
rank, and replacing its bit-sequence with the new content. Then the p(v) and
r(v) counters in the path from the leaf to the root are changed accordingly. To
keep the tree balanced, the leaves can be split and merged on updates: When a
leaf is updated to contain 2 log n bits, it is split into two leaves each containing
log n bits. When a leaf is updated to contain (log n)/2 bits, it is merged with its
sibling. If this merging produces a leaf with more than 2 logn− 1 bits, this leaf
is again split into two equal-size halves. After splitting and merging, the tree
needs to be rebalanced and the counters updated in the nodes on the way to the
root.

To obtain n + o(n) bits of space instead of O(n), we can use the superblock-
block hierarchy from the previous section: The tree is built on the superblocks,
i.e., each leaf corresponds to a log2 n-length superblock of A. A precomputed
table G is used to answer rank queries for each (log n)/2-length bit-sequence.
Then one can scan through the log2 n-length superblock summing up rank an-
swers to each (log n)/2-length block in constant time until reaching the block
containing the query position. The remaining bits can be read one-by-one to
complete the rank query inside a superblock in O(log n) time. Answering select
is similar. The problem, however, is that we cannot allocate 2 log2 n space for a
superblock that will hold only log2 n bits, as otherwise we could spend as much
as 2n bits for the blocks. To obtain n + o(n) space one must force very tight
usage of the leaf space: spending (1 + ε) log2 n bits, for any constant ε > 0, is
forbidden. This is problematic because bit insertions on a leaf would cause an
overflow propagation to the next leaves that cannot be fixed with a constant
number of block splits. The complete solution is quite involved, and we present
it in the next sections, already coupled with the technique to achieve nH0 +o(n)
bits (the reader can easily simplify it to obtain the n + o(n) bits solution that
already improves [9] in some aspects). We must also pay attention to the case
where log n changes.

4 Dynamic Entropy-Bound Structures for Bit Vectors

We design a data structure to represent a bit sequence A = a1 . . . an of binary
zero-order entropy H0, using nH0 +o(n) bits of space and performing operations
rank, select, insert and delete all in O(log n) time. Hence, we show that the
Dynamic Bit Vector with Indels problem can be solved using less than Θ(n)
space on compressible sequences, without sacrificing the logarithmic time bound
on the operations.



4.1 High-level hierarchy

We maintain the universal tables Gc as in Section 3.1, but this time they store
only the explicit content of the blocks. This still requires O(

√
n polylog(n)) bits

of space.
We also divide A into blocks and superblocks, except that this time su-

perblocks do not span a constant amount of bits of A, but of its (compressed)
representation. That is, each superblock S will maintain s = f(n) log n bits (for
some f(n) = O(polylog(n)) to be determined later), and this will correspond to
as many (complete) blocks as can be represented with s bits considering their
D, L, and Q entries. Blocks are still of t = (log n)/2 bits. Since each L and Q
value requires O(log log n) bits, and a D entry may require up to t+O(log log n)
bits, a superblock may handle from O(f(n)) to O(f(n) log n/ log log n) blocks.
Similarly, a block can have up to O(log n) unused space, because the next block
does not fit in it. This unused space adds up O(n/f(n)) bits overall. Otherwise
the space usage is the same as in the static case.

4.2 Operations inside a superblock

A rank(Si, p) query inside a superblock is handled in O(log n) time by adding
the corresponding Qi(j) entry to rank(Gc(o), p

′), where j = 1 + bp/tc, p′ =
p − (j − 1)t, and (c, o) is found at position Li(j) in the memory area of the
superblock. Here, rank(Gc(o), p

′) is computed in O(log n) time by a bitwise scan
over Gc(o). A select(Si, p) query is solved in time O(log n) by binary searching
Qi for the largest rank value not exceeding p, and then a bitwise scan for query
select(Gc(o), p

′). Computation for select0 is analogous.
To insert a bit q at position p of Si, we essentially recompute the superblock

by brute force. However, we must be careful so as to work only O(f(n)) time per
superblock. For example, we cannot decompress, modify, and then recompress
the superblock because that way we could work O(f(n) log n/ log log n) time (as
the uncompressed superblock can be up to O(f(n) log2 n/ log log n) bits long).

We first determine the block j where the insertion is to take place, that is,
j = 1+bp/tc. All the Di(1 . . . j−1), Li(1 . . . j), and Qi(1 . . . j) entries are direcly
copied into a new memory area where the updated representation of Si is to be
built. On a RAM machine this copying can be done in O(f(n)) time.

Modifying each block in constant time. The block Di(j) = (c, o) to mod-
ify starts at position Li(j) within the superblock. We use Gc(o) to obtain the
uncompressed content of this block. Let B = b1 . . . bt be the bits of this block,
and let p′ = p − (j − 1)t be the position to insert the bit q within B. Thus we
compute B′ = b1 . . . bp′−1qbp′+1 . . . bt−1 and save bt for later. To compress B′ in
constant time we use another universal table H , which is indexed by numbers
of t bits and stores, at each entry, the c and o value of the corresponding binary
vector. H requires O(

√
n polylog(n)) bits, and gives H(B′) = (c′, o′) in constant

time. This description Di(j)
′ = (c′, o′) is appended at the updated copy of Si

we are constructing.



We must now take care of the remaining blocks to the right. We have a bit
bt that fell off B. In addition we must shift the values Li to the right by |o′|− |o|
and Qi by q − bt. To perform all this propagation in O(f(n)) time, we use yet
another universal table J(b, l, q, x), where b is a bit to insert at the beginning
of the next block, l = O(polylog(n)) is the next Li value, q = O(polylog(n)) is
the next Qi value, and x is the sequence of the first t bits of Di(j + 1 . . .). If
J(b, l, q, x) = (D′, L′, Q′, b′, l′, q′), this means that, if we decode from x as many
integral blocks as we can, append bit b at the beginning, and recode them, we
obtain sequence D′. Their corresponding positions, starting in l, are encoded in
L′, and their corresponding ranks, starting at q, are encoded in Q′. Furthermore,
bit b′ falls off at the end of D′, the next Li value should be l′, and the next Qi

value should be q′. Another table V (x) = r′ tells us how many bits we could use
from x, so we can advance in the processing of sequence Di by r′ bits.

Therefore, after having modified the j-th block, we start by assigning r =
Li(j) and obtain J(bt, Li(j)+ |o′|− |o|, Qi(j)+ q− bt, Di[r . . .]) and V (Di[r . . .]).
Then we copy D′, L′, and Q′ to the updated version of Si we are building, and
continue with J(b′, l′, q′, Di[r + r′ . . .]) and V (Di[r + r′ . . .]), until processing the
whole superblock. At the end, we rewrite S with its updated version. Note that
we still have one overflown bit.

Tables J and V require O(
√

n polylog(n)) bits, and they process Θ(log n)
bits of the superblock in constant time (each two applications it must be possible
to process at least t bits of Di), plus the time necessary to write the modified
superblock. As there are O(f(n) log n) bits in the superblock, we can process
the whole superblock in O(f(n)) time using J and V , plus the size of the new
superblock measured in Θ(log n)-size chunks.

Let us consider how much can the superblock grow by the insertion of a
single bit. If a new block is started, we need O(log log n) more bits. In addition,
the D entry of a block may grow because its (c, o) descriptor changes. The
maximum value of log

(

t
c+1

)

− log
(

t
c

)

is log t, achieved when c = 0. Propagated
over O(f(n) log n/ log log n) blocks, the sequence of D values might be increased
by O(f(n) log n) bits. This is as large as a whole superblock, and means that
a single bit insertion might double the size of the superblock in some extreme
cases. For example, if the sequence is (0t1t)r, all the c values will be 0 or t,
and the o indexes will be empty, thus we will store f(n) log n/ log log n blocks
in the superblock. If we now insert a 1 at the beginning of the sequence, each o
descriptor becomes log t = O(log log n) bits wide, which adds up f(n) log n extra
bits. Still, the new superblock is also O(f(n) log n) size and can be output using
J and V in O(f(n)) time.

Overflow to the next superblock. At the end of the operation, it might be
that the new sequence does not fit within the s bits allocated to the superblock.
If so, we take out as many blocks as necessary from the end of the superblock,
so as to move them to the beginning of the next superblock. We have seen that
we might have to move up to O(f(n) log n) bits. In addition we must insert the
excess bit at the next superblock (after the blocks we are moving, if any).



The process completely rewrites the next superblock S ′. We move the over-
flowing D, L and Q entries to the beginning of S ′, but the L and Q values moved
must be shifted. This has to be done by chunks of Θ(log n) bits using a universal
table to ensure O(f(n)) overall time. Then we must insert the carry bit at the be-
ginning of the original entries of S ′, which in addition must be shifted to account
for the blocks moved from the overflowing superblock. This can be carried out in
O(f(n)) time using tables J and V . Yet, this bit insertion may produce another
O(f(n) log n)-bits overflow, in addition to the original O(f(n) log n) bits. The
exponential growth is avoided because we can create a new superblock as soon
as we have enough overflown bits. The propagation can thus be carried out in
O(f(n)) time per superblock rewritten/created. Yet, we still need a mechanism
to prevent that the propagation continues too far.

Limiting the propagation of overflows. Every f(n) superblocks we permit
the formation of a partial superblock, which reserves f(n) log n bits but might
be partially full, and in addition permits having at the end an underfilled block
(with less than t bits). This partial block needs some care to be correctly handled,
such as padding it with dummy bits to obtain a representation in G, taking care
of its real length, and so on. Partial superblocks waste O(n/f(n)) bits overall,
and ensure that we never traverse more than f(n) superblocks in the overflow
process. Thus the overall insertion work is O(f(n)2).

To ensure the desired density of partial superblocks, we first check whether
there is a partial superblock among the next 2f(n) superblocks. If there is one,
we carry out the propagation up to it. Otherwise, we propagate f(n) superblocks
and create a new partial superblock. In both cases we work over O(f(n)) su-
perblocks, and guarantee that every partial superblock is f(n) superblocks away
from any other. We note that partial superblocks may end up overflowing, at
which point they are not considered partial anymore. We can create a new par-
tial superblock immediately following it, as it is already ensured that the new
partial superblock is far away from others.

Note that, when a partial superblock overflows, its last block can still be
partial. This is not a real problem, because we are creating next a new partial
superblock containing that partial block at the end, plus sufficient complete
blocks from the end of the overflowing superblock.

Controlling the underflow. For deletions we proceed similarly, using a table
J ′ very similar to J : J ′ deletes the first bit of the blocks represented by x and
adds bit b at their end. The bit b we give to J ′ is obtained in constant time using
G, as the first bit of Di[r + V (x)...]. Also, we ensure that superblocks are as
full as possible. If some space is left at the end of the superblock, we check that
the first blocks from the next superblock can be moved back, and propagate the
underflow similarly as the overflows. If we reach a partial superblock, no further
propagation of underflows is necessary. If after 2f(n) attempts we do not reach
a partial superblock, we permit the underflow at the f(n)-th superblock and



declare it partial. On the other hand, a partial superblock that gets empty must
be deleted.

Note that, because of the changes in |o| widths, an insertion can actually
produce an underflow and a deletion can produce an overflow. This is not prob-
lematic. Overall (still not considering how to manage superblocks), we have
O(n/f(n)) extra space and O(f(n)2) insertion/deletion time. We can choose,
for example, f(n) =

√
log n to obtain O(log n) time and O(n/

√
log n) space.

4.3 Global rank and select

We have seen how to perform rank and select inside a superblock in O(log n)
time. To perform the global rank and select we can use the balanced tree on
the superblocks as explained in Section 3.2. Finding the correct superblock takes
O(log n) time, hence the whole query takes O(log n) time.

Inserting and deleting bits from this tree requires rewriting the p() and r()
values from the affected superblock(s) through the root. Creation and deletion
of superblocks and internal tree nodes is easily handled together with the main-
tenance of r() and p(). We note, however, that we permit that a single update
affects O(f(n)) superblocks. Once the leaf to be inserted or deleted is located,
the red-black tree needs constant time to rebalance, so this adds up O(f(n))
time per insertion. As for propagating the red-black coloring and updating the
r() and p() values through the root, note that those O(f(n)) superblocks are
contiguous in the tree and therefore their total number of ancestors do not ex-
ceed f(n) + O(log n) = O(log n). It is not hard to organize the updates to work
O(log n) time overall.

4.4 Changing log n

Our result so far assumes that log n stays constant during the operations. This
value fixes the superblock/block hierarchy and the global preprocessed tables.
This assumption can be removed in two ways: (1) performing a global rebuild
whenever log n changes; (2) maintaining partial structures ready for values (log n)
−1, log n, and (log n) + 1 (which we call the previous, current, and next).

Approach (1) is easy to implement. We can rebuild all structures in O(n)
time when necessary to accommodate the new value of log n. Amortized over all
insertions and deletions, this costs only O(1) time per operation.

Approach (2) is more complex but is inspired on a standard mechanism to
convert amortized complexity into worst-case complexity. The idea is to split the
current elements among the previous, current, and next structures, so that the
first elements are in previous, the last are in next, and current holds the middle
elements. It is trivial to run rank and select queries on this split structure.
Initially, all the elements are in current, and the other two are empty. Upon an
insertion, the size of next must grow by 2 and previous must shrink by 1 unless
it is already empty; a deletion must cause the opposite effect; and current acts
as a variable-size buffer.



To achieve this, let us denote x→ y or x← y the movement of one element
among structures, for x, y ∈ {p, c, n}, e.g. p← c means moving the first element
of current to previous. If the source structure is empty, the movement is just
ignored. Then, we insert (delete) in the proper structure and then, depending
on where the insertion (deletion) point lies, we move elements as follows:

– previous: p→ c, p→ c, c→ n, c→ n (c← n, c← n, p← c, p← c).
– current: p→ c, c→ n, c→ n (c← n, c← n, p← c).
– next: p→ c, c→ n (c← n, p← c).

It is easy to see that, after n net insertions, next will hold all the 2n elements,
and that after n/2 net deletions, prev will hold all the n/2 remaining elements.
This is true even if the insertions and deletions are intermixed. When next holds
all the elements, it becomes current and the new previous and next structures are
empty; similarly when previous holds all the elements. At those points, precisely,
log n has changed its value. The space requirement is still nH0 + o(n).

The only remaining problem is that we do not have time to build the new G,
J , etc. tables, as we would need them immediately available to handle the new
next or previous structure. For this sake, we maintain all the time 5 versions of
those tables, for (log n) − 2 . . . (log n) + 2. As we move to (log n) + 1, we have
immediately available the required tables for (log n), (log n) + 1 and (log n) + 2.
The construction of the tables for (log n) + 3 is easily spread during the next
O(
√

n polylog n) insertions, building just a new cell at the time. These insertions
are much less than the necessary to make log n grow again. If, instead, log n
shrinks back, we just abandon the partial table construction. Thus we achieve
the following result:

Theorem 1. The Dynamic Bit Vector with Indels problem can be solved using

nH0 + O(n/
√

log n) bits of space supporting the operations rank, select, insert,
and delete in O(log n) worst-case time.

5 Extensions and Applications

5.1 General alphabets

Theorem 1 can be extended to the Dynamic Sequence with Indels problem using
wavelet trees [8]. The wavelet tree is a balanced binary tree built on the alphabet
symbols, containing bit vectors in its internal nodes. When these node bit vectors
are preprocessed for the Dynamic Bit Vector with Indels problem (taking some
care on the sub-linear terms [7]), we obtain the following result.

Theorem 2. The Dynamic Sequence with Indels problem can be solved using

nH0 + o(n log σ) bits of space supporting the operations rank, select, insert,
and delete, in O(log n logσ) worst-case time. Here H0 is the zero-order entropy

of the sequence and σ its alphabet size.



5.2 Dynamic Full-Text Indexes

Chan, Hon, and Lam [4] show how to use a solution to Dynamic Sequence with

Indels problem to obtain a dynamic full-text index. The idea is to simulate the
backward search algorithm of Ferragina and Manzini [6]: After preprocessing a
text T , the backward search algorithm finds the number of occurrences of a given
pattern P in T in O(|P |) steps. One step essentially makes two rank queries to
the Burrows-Wheeler transform [3] of T , A = bwt(T ). We note H0(A) = H0(T )
as the transform is a permutation.

They [4] show that one can dynamically maintain a collection of texts, by
keeping a data structure supporting rank, insert and delete on the Burrows-
Wheeler transform of the concatenation of the texts in the collection (symbol 0
is reserved for separating two texts). We can as a black box replace their COUNT
structure (that takes O(nσ) bits, supporting the operations in O(log n) time)
with the structure in Theorem 2 to obtain the following result.

Theorem 3. A dynamic collection of texts C = {T1, T2, . . . , Tm}, where each

Ti ∈ {1, 2, . . . σ − 1}∗, can be maintained in nH0(C) + o(n log σ) bits supporting

counting of occurrences of a pattern P in O(|P | log n log σ) time, inserting a text

T in O(|T | log n logσ) time, and deleting a text T in O(|T | log2 n log σ) time.

Here n is the length of concatenation C = 0T10T2 · · · 0Tm of C, and H0(C) =
H0(C). We assume that C starts initially empty.

The index can be extended to support reporting the occurrences using the
MARK structure of [4]. This structure takes O(n) bits, and with our rank structure
can be used to report each occurrence in O(log2 n log σ) time.

As a consequence, we obtain an O(n log n log σ) time construction algorithm
for a compressed self-index requiring nH0 + o(n log σ) bits working space during
construction: This is obtained by just inserting text T to the empty collection.
This index can be converted to a more efficient static self-index, like a succinct

suffix array [10], within the same time bound. The static structure requires the
same nH0 + o(n log σ) bits, but the counting of pattern occurrences can then be
done in O(|P |) time if σ = O(polylog(n)), and O(|P | log σ/ log log n) in general.

6 Conclusions

We have introduced the first entropy-bound dynamic data structure answering
rank and select queries on bit arrays. We can represent a vector of n bits with
zero-order entropy H0 using nH0 + o(n) bits of space, so that we can answer
rank and select queries, as well as inserting and deleting bits, in O(log n) worst-
case time. This improves in several aspects the best existing solution to the
Searchable Partial Sums with Indels Problem [9] for the case of bit sequences:
we achieve logarithmic worst-case bounds for insertions and deletions (previous
solution achieved Θ(polylog(n)) amortized time) and require less than n bits
on compressible sequences. We apply these results to compressed full-text self-
indexing, achieving the first FM-index-like structure that can be built within



zero-order entropy space. This index permits insertion and deletion of texts with
better bounds than previous solutions [4].

Our result works under weaker assumptions on the RAM model than the
previous results on dynamic settings. We assumed log n = Θ(w) to simplify
matters; in the full version, this assumption will be loosened to log n = O(w).
This complicates the memory allocation, as we can not e.g. represent tree point-
ers in O(log n) bits, when log n = o(w). However, our results remain unchanged
under the weaker model.

The succinct suffix array (SSA) constructed using the dynamic index can
currently only count the pattern occurrences, unless paying O(n) bits extra
space for the MARK structure of [4]. We plan to study whether this could be
improved to o(n) bits. We plan also to study general searchable partial sums,
and larger alphabets with multiary wavelet trees [7] to improve the time bounds
in Theorem 2 by a log log n factor.
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