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Abstract. Given a sequence S = s1s2 . . . sn of integers smaller than r = O(polylog(n)), we show
how S can be represented using nH0(S) + o(n) bits, so that we can know any sq , as well as answer
rank and select queries on S, in constant time. H0(S) is the zero-order empirical entropy of S and
nH0(S) provides an Information Theoretic lower bound to the bit storage of any sequence S via a fixed
encoding of its symbols. This extends previous results on binary sequences, and improves previous
results on general sequences where those queries are answered in O(log r) time. For larger r, we can
still represent S in nH0(S) + o(n log r) bits and answer queries in O(log r/ log log n) time.
Another contribution of this paper is to show how to combine our compressed representation of integer
sequences with an existing compression boosting technique to design compressed full-text indexes that
scale well with the size of the input alphabet Σ. Namely, we design a variant of the FM-index that
indexes a string T [1, n] within nHk(T ) + o(n) bits of storage, where Hk(T ) is the k-th order empirical
entropy of T . This space bound holds simultaneously for all k ≤ α log|Σ| n, constant 0 < α < 1, and
|Σ| = O(polylog(n)). This index counts the occurrences of an arbitrary pattern P [1, p] as a substring
of T in O(p) time; it locates each pattern occurrence in O(log1+ε n) time, for any constant 0 < ε < 1;
and it reports a text substring of length ` in O(` + log1+ε n) time.
Compared to all previous works, our index is the first one that removes the alphabet-size dependance
from all query times, in particular counting time is linear in the pattern length. Still, our index uses
essentially the same space of the k-th order entropy of the text T , which is the best space obtained in
previous work. We can also handle larger alphabets of size |Σ| = O(nβ), for any 0 < β < 1, by paying
o(n log |Σ|) extra space and by multiplying all query times by O(log |Σ|/ log log n).

1 Introduction

Recent years have witnessed an increasing interest on succinct data structures. Their aim is to
represent the data using as little space as possible, yet efficiently answering queries on the repre-
sented data. Several results exist on the representation of sequences [24, 32, 3, 36, 37], trees [33, 12,
7], graphs [33], permutations [34], and texts [20, 8, 38, 35, 18], to name a few.

One of the most basic structures, which lie at the heart of the representation of more complex
ones, are binary sequences, with rank and select queries. Given a binary sequence S = s1s2 . . . sn,
we denote by Rankc(S, q) the number of times the bit c appears in S[1, q] = s1s2 . . . sq, and by
Selectc(S, q) the position in S of the q-th occurrence of bit c. The best current results [36, 37]
answer those queries in constant time, retrieve any sq in constant time, and occupy nH0(S) + o(n)
bits of storage, where H0(S) is the zero-order empirical entropy of S. This space bound includes
that for representing S itself, so the binary sequence is being represented in compressed form yet
allowing those queries to be answered optimally.

? A subset of the results presented in this paper appeared in the Proceedings of the Symposium on String Processing
and Information Retrieval (SPIRE), pages 150–160, 2004. Partially supported by MIUR Project “Algorithms for
the Next Generation Internet and Web (ALGO-NEXT)”, by the Academy of Finland under grant 108219 (part
of the work was done while the third author was visiting Bielefeld University), and by the Millennium Nucleus
Center for Web Research, Grant P04-067-F, Mideplan, Chile.



For the general case of sequences over an arbitrary alphabet of size r, the only known result is
the one in [18] which still achieves nH0(S) + o(n) space occupancy. The data structure in [18] is
the elegant wavelet tree, it takes O(log r) time to answer Rankc(S, q) and Selectc(S, q) queries, and
to retrieve any character sq.

Our first contribution is a new compressed representation for general sequences, which uses
nH0(S) + o(n) bits of space and answers the above queries in constant time. This generalizes
previous results on binary sequences [37] and improves the existing result on general sequences
[18]. Our result holds when the alphabet size is polylogarithmic in the sequence length, that is,
r = O(polylog(n)). For larger values of r, we can represent S using nH0(S)+o(n log r) bits of space
and answer all previous queries in O(log r/ log log n) time.

General sequences can be regarded, of course, as texts over an alphabet Σ. The difference lies on
the types of queries that are of interest on texts. A full-text index is a data structure built over a text
string T [1, n] that supports the efficient search for arbitrary patterns as substrings of the indexed
text. A full-text index is called compressed if its space occupancy is bounded by λnHk(T )+o(n) bits
for some k ≥ 0, where λ is a constant and Hk(T ) is the k-th order entropy of T (see Section 4.1). If
such an index also encapsulates the text, without requiring its explicit storage, then it is called a
compressed self-index. Note that a self-index must, in addition to the search functionality, permit
the display of any text substring, as the text is not separately available.

Recently, there has been a good deal of activity around compressed full-text indexes, because of
their obvious applications in text databases. The most succinct self-index up to date [18] occupies
nHk(T )+O(n log log n/ log|Σ| n) bits, for a fixed k ≤ α log|Σ| n and constant 0 < α < 1. It can count
the number of occurrences of a pattern P [1, p] in O(p log |Σ| + polylog(n)) time, and can locate
each such occurrence in O(log |Σ| log2 n/ log log n) time. To display a text substring of length ` it
takes the locate time plus O(` log |Σ|).

Our second contribution (which builds on the first) is a new compressed self-index that uses
nHk(T )+ o(n) bits for any k ≤ α log|Σ| n and for alphabets of size |Σ| = O(polylog(n)). Our index
improves over the one in [18] by removing from the query times the dependence on the alphabet size
and the polylogarithmic terms. More precisely: counting takes O(p) time, locating an occurrence
takes O(log1+ε n) time for any constant ε > 0, displaying a length-` text substring takes the time for
locating plus O(`). For alphabets larger than O(polylog(n)) (and up to O(nβ) for 0 < β < 1), our
space requirement becomes nHk(T )+o(n log |Σ|) bits and our query times grow by a multiplicative
factor O(log |Σ|/ log log n).

The rest of the paper is organized as follows. Section 2 explains our contributions in more detail
and relates them to the current literature. Section 3 presents our new representation for general
sequences, while Section 4 deploys such a sequence representation to design our new compressed
self-index. Finally, Section 5 discusses conclusions and future directions of interesting research.

2 Our Contribution in Context

2.1 Succinct Sequence Representations

The first results on binary sequences [24, 32, 3] achieved constant time on rank and select queries by
using n+o(n) bits. In those schemes, n bits are used by S itself and o(n) additional bits are needed
by the auxiliary data structures that support the Rankc and Selectc queries. Further refinements
[36, 37] achieved constant time on the same queries by using a compressed representation of S
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requiring nH0(S) + o(n) bits overall (i.e. for S and the auxiliary data structures). These solutions
also support the constant-time retrieval of any bit sq given q.

The case of general sequences, whose symbols are drawn from the range [1, r], has received
less attention. The only existing proposal is the wavelet tree [18], a powerful and elegant data
structure that allows reducing rank and select operations over general sequences to rank and select

operations over binary (compressed) sequences. By using the results in [36, 37] for binary sequence
representations, the wavelet tree represents S in nH0(S)+o(n log r) bits and answers sq, Rankc(S, q)
and Selectc(S, q) queries in O(log r) time.

In this paper we generalize the result on binary sequences [36, 37] to sequences of integers in
the range [1, r], and obtain an improved result. The main challenge in this generalization is to
generate short descriptions for pieces of the sequence, which can be computed in constant time
and used to index into tables containing partial precomputed queries. This is significantly more
complex than for binary sequences. We obtain a compressed sequence representation using nH0(S)+
O((rn log log n)/ logr n) bits which answers queries sq, Rankc(S, q) and Selectc(S, q) in constant time.

This first result is interesting only for small r = o(log n/ log log n), as otherwise the term
O((rn log log n)/ logr n) of the space complexity is Ω(n log r). We then use that sequence represen-
tation as a basic block within a generalized wavelet tree to obtain better results. In fact, the original
wavelet tree [18] is a binary tree whose nodes contain binary sequences representing the original
(general) sequence restricted to a subset of its symbols. In this paper we consider a h-ary generaliza-

tion of the wavelet tree that, in turn, requires the efficient storage into its nodes of integer sequences
from the range [1, h]. By setting h = O(logδ n) with δ < 1, and using our previous sequence repre-
sentation to store the wavelet-tree nodes, we obtain a representation for S that uses nH0(S)+ o(n)
bits and (optimal) constant query time for any r = O(polylog(n)). That is, the queries answered in
logarithmic time with binary wavelet trees [18] are now answered in constant time, within the same
asymptotic space occupancy. For larger alphabets, we can still obtain o(n log r) extra space over
the nH0(S) term and O(log r/ log log n) query time, again improving upon binary wavelet trees of
a sublogarithmic factor.

Note that there are even better results for binary sequences [37], which we have not generalized.
For example, it is possible to represent a sequence with m bits set taking nH0(S)+o(m)+O(log log n)
bits of space, and constant query time. This is better than the result we have focused on when m
is much smaller than n.

2.2 Compressed Full-Text Indexes

The classical full-text indexes, namely suffix trees and suffix arrays [4, 30, 15], are not succinct nor
self-indexes: They both occupy Θ(n log n) bits, plus O(n log |Σ|) bits to represent the indexed text.

The FM-index [8] has been the first self-index in the literature to achieve a space occu-
pancy proportional to the k-th order entropy of T [1, n]. Precisely, the FM-index occupies at most
5nHk(T ) + o(n) bits of storage, and allows one to count the number of occurrences of a pattern
P [1, p] within T in O(p) time. Each such occurrence can be located in O(log1+ε n) time, where ε > 0
is an arbitrary constant chosen when the index is built. The FM-index can display any text sub-
string of length ` in O(`+log1+ε n) time. The design of the FM-index is based upon the relationship
between the Burrows-Wheeler compression algorithm [1] and the suffix array data structure [30, 15].
It is therefore a sort of compressed suffix array that takes advantage of the compressibility of the
indexed text in order to achieve space occupancy related to the Information Theoretic minimum.
Indeed, the design of the FM-index does not depend on the parameter k whereas its space bound
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holds simultaneously for any fixed k. These remarkable theoretical properties have been validated
by experimental results [9, 22] and applications [21, 41].

The above time and space bounds for the FM-index have been obtained by assuming that the
size of the input alphabet is a constant. Hidden in the big-O notation there is an exponential
dependence on the alphabet size in the space bound, and a linear dependence on the alphabet size
in the time bounds. More specifically, the time to locate an occurrence is O(|Σ| log1+ε n) and the
time to display a text substring is O((` + log1+ε n) |Σ|). In practical implementations of the FM-
index [9] these dependencies have been removed in exchange for a penalty factor (usually O(log n))
that multiplies all query times, including that for counting.

We point out that the FM-index concept is more general than the implementation associated to
its initial proposals [8, 9]. For the sake of presentation, let us denote now by T bwt the permutation of
the text T given by the Burrows-Wheeler transform (see [1] and Section 4.2). Assume we implement
the computation of Rankc(T

bwt, q) and the retrieval of T bwt[q] in time trnk and tret, respectively,
using O(N) space (where the parameter N is discussed below). The general FM-index concept
gives us immediately a succinct self-index that requires O(N +n/ logε n) space, counts the pattern
occurrences in O(p trnk) time, locates any such occurrence in O((trnk + tret) log1+ε n), and displays
any text substring of length ` in O((trnk+tret)(`+log1+ε n)) time (here and in the rest of this section
ε is a positive parameter chosen when the index is built). Up to date, several implementations of
the FM-index concept exist:

1. The original one [8], with trnk = O(1) and tret = O(|Σ|), where N = 5nHk(T ) + o(n) contains
an exponential dependence on |Σ| in the o(n) term.

2. The one obtained by using the binary wavelet tree [18] to represent T bwt and to implement
the required functions. This yields trnk = tret = O(log |Σ|), so counting time deteriorates
but locating and displaying times improve. The space occupancy becomes N = nH0(T ) +
o(n log |Σ|), which depends only mildly on |Σ| but has a main term significantly worse than
in the original implementation (since here H0(T ) occurs in place of Hk(T )). Some variants
providing trnk = tret = O(H0(T )) on average, and O(log |Σ|) in the worst case, have also been
proposed [27].

3. A variant of the Compressed Suffix Array (CSA) introduced by Sadakane [39]. Although the
CSA was originally conceived as completely different from the FM-index, this specific variant is
actually an implementation of the FM-index concept. It represents T bwt via |Σ| binary sequences
T bwt

c , each indicating the occurrences of a different character in T bwt. Those sequences are rep-
resented with existing techniques [36], so that Rankc(T

bwt, q) = Rank1(T
bwt
c , q) can be answered

in constant time. This yields trnk = O(1) and tret = O(|Σ|) as in the original implementation.
The space occupancy is N = nH0(T ) + O(n). The scheme works for |Σ| = O(polylog(n)).

4. The one obtained by Huffman-compressing T bwt and then representing the resulting binary
sequence with the techniques in [32]. This yields trnk = tret = O(H0(T )) on average and
O(log |Σ|) in the worst case. The space occupancy is N = 2nH0(T ) + O(n) [17].

5. The one obtained by compressing via run-length encoding the sequence T bwt [27, 28]. This
approach obtains either trnk = O(1) and tret = O(|Σ|) if |Σ| = O(polylog(n)), or trnk = tret =
O(log |Σ|) if |Σ| = o(n/ log n). The space occupancy is N = n(Hk(T ) log |Σ| + 1 + o(1)) bits.
Notice that this is the only alternative to the original FM-index with space occupancy related
to the k-th order entropy (although it shows a linear dependence on n but a milder dependence
on |Σ|).
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We note that, by directly applying our new sequence representation on T bwt, we immediately
obtain trnk = tret = O(1) time and N = nH0(T )+o(n), which supersedes all the alternatives whose
space requirement is proportional to the zero-order entropy of T (that is, items 2, 3, and 4 above), as
long as |Σ| = O(polylog(n)). Yet, in this paper we do better than this by making a further step that
turns H0(T ) into Hk(T ) in the previous space bound. Precisely, our main result is an implementation
of the FM-index concept with trnk = tret = O(1) time and N = nHk(T ) + o(n), for a reasonable
range of values of k (see below). Except for the limitation |Σ| = O(polylog(n)), this implementation
supersedes all the existing implementations of the FM-index concept, so it can be regarded as
the ultimate implementation of the FM-index. To obtain this result, we combine our sequence
representation with the compression boosting technique introduced in [6, 10]. Compression boosting
partitions the Burrows-Wheeler transformed text into contiguous areas in order to maximize the
overall compression achievable with zero-order compressors used over each area. Then we use our
new sequence representation in each area. The resulting structure is thus simple. It indexes a string
T [1, n] drawn from an alphabet Σ, with |Σ| = O(polylog(n)), using nHk(T ) + O(n/ logε n) bits.
The data structure does not depend on the parameter k and the space bound holds simultaneously
for all k ≤ α log|Σ| n and constant 0 < α < 1. With our index, the counting of the occurrences
of an arbitrary pattern P [1, p] as a substring of T takes O(p) time (i.e. no alphabet dependence).
Locating each pattern occurrence takes O(log1+ε n). Displaying a text substring of length ` takes
O(` + log1+ε n) time.

If the size of the alphabet is larger than polylogarithmic, that is, |Σ| = O(nβ) with β < 1,
our data structure uses nHk(T ) + o(n log |Σ|) space and the query times are multiplied by a factor
O(log |Σ|/ log log n). Note that, although the space occupancy can now be Ω(n), it is still less than
the size of the uncompressed text. Moreover, in terms of query time our index is faster than most
FM-index implementations. As an alternative, if space is more important than query speed, we
can use a simplified version of our index which uses binary wavelet trees instead of our new integer
sequences representation. For any alphabet size, the space occupancy of this latter index is bounded
by nHk(T ) + O(log |Σ|(n log log n/ log n)) bits for any k ≤ α log |Σ| n, and 0 < α < 1. The index

takes O(p log |Σ|) time to count the pattern occurrences, and O(log |Σ| (` + log2 n/ log log n)) time
to locate and display a substring of length `.

There exist several other compressed full-text indexes not based on the FM-index concept [8,
20, 38, 35, 18, 19, 29, 26]. Among them, the data structure with the smallest space occupancy is
described in [18] (Theorems 4.2 and 5.2) and uses nHk(T ) + O(log |Σ|(n log log n/ log n)) bits of
storage for a fixed k ≤ α log|Σ| n with 0 < α < 1 (the parameter k must be chosen when the index
is built). The index in [18] takes O(p log |Σ| + polylog(n)) time to count the pattern occurrences
and O(log |Σ| (`+log2 n/ log log n)) time to locate and display a substring of length `. Note that for
alphabets of polylogarithmic size our index is faster in both queries at the cost of a small increase
in the big-Oh terms of the space occupancy. Note also that for any alphabet size our simplified
data structure takes the same space as the index in [18], but it is faster in counting the occurrences
and takes the same time in reporting and displaying the occurrences.

Finally, we point out that the structure in [18] uses binary wavelet trees to compactly represent
sequences. By replacing binary wavelet trees with the sequence representation described in this
paper we can remove the O(log |Σ|) factors from their query times.

To summarize, our index has asymptotically the smallest known space occupancy and processes
all queries faster than the data structure in [18], which is the only other compressed index known
to date with essentially nHk(T ) space occupancy. Table 1 summarizes our contribution.
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Reference Space in bits Counting time Works for |Σ| =

[8, 9] 5nHk(T ) + o(n) O(p) O(1)
[39] nH0(T ) + O(n) O(p) O(polylog(n))
[28] 2nHk(T ) log |Σ|+ O(n) O(p) O(polylog(n))
[38] nH0(T ) + O(n log log |Σ|) O(p log n) o(n/ log n)
[17] 2n(H0(T ) + 1)(1 + o(1)) O(p log |Σ|) o(n/ log n)
[18, 19] nHk(T ) + o(n log |Σ|) O(p log |Σ| + polylog(n)) o(n/ log n)
[35] 4nHk(T ) + o(n) O(p3 log |Σ| + p log n) o(n/ log n)

This paper nHk(T ) + o(n) O(p) O(polylog(n))

nHk(T ) + o(n log |Σ|) O(p log |Σ|/ log log n) O(nβ), β < 1
nHk(T ) + o(n log |Σ|) O(p log |Σ|) o(n/ log n)

Table 1. Comparison of space, counting time, and restrictions on the alphabet size among the best known self-indexes.

3 Compressed Representation of Sequences

Let S = s1s2 . . . sn be a sequence of n integers in the range [1, r], called symbols from now on. In
this section we face the problem of supporting Rank and Select queries on S. The query Rankc(S, q)
returns the number of times symbol c ∈ [1, r] appears in S[1, q] = s1s2 . . . sq. The query Selectc(S, q)
returns the position in S of the q-th occurrence of symbol c ∈ [1, r]. Our aim is to represent S in
compressed form, and hence we need to support also the retrieval of any S[q] = sq.

We measure the size of the compressed representation of S as a function of its zero-order

empirical entropy H0(S) = −∑c(nc/n) log(nc/n), where nc is the number of occurrences of symbol
c in S, n =

∑

c nc = |S|, and all logarithms are taken to the base 2 (with 0 log 0 = 0). Notice that
nH0(S) is an Information Theoretic lower bound to the compressibility of S when we use a fixed
codeword for each of its symbols.

3.1 Representing Sequences of Small Integers

In this section we describe a first data structure which represents S in nH0(S)+O((rn log log n)/ logr n)
bits, and answers S[q], Rankc(S, q) and Selectc(S, q) queries in constant time. For the construction
of the data structure we only need 2 ≤ r ≤ √

n, but the data structure is interesting only for
r = o(log n/ log log n) since otherwise the space occupancy will exceed the space Ω(n log r) used
by the standard uncompressed representation. We first focus on S[q] and Rankc(S, q) queries, and
address the Selectc(S, q) query later.

Structure. We divide S into blocks of size u =
⌊

1

2
logr n

⌋

. Consider a block where each symbol c

appears N c times, so N 1 + N2 + . . . + N r = u. We say that tuple (N 1, N2, . . . , N r) is the symbol

composition of the block. Using this notation, we define the following sequences of values indexed
by block number i = 1, . . . , dn/ue:

– Si = S[u(i − 1) + 1 . . . ui] is the sequence of symbols forming the i-th block of S.
– For each symbol c ∈ [1, r], N c

i = Rankc(Si, u) is the number of occurrences of c in Si.

– Li =
⌈

log
( u
N1

i
,...,Nr

i

)

⌉

is the number of bits necessary to encode all the possible sequences of u

symbols in [1, r] that share the symbol composition (N 1
i , . . . , N r

i ) of block Si.
– Ii is the identifier of block Si among all sequences having its symbol composition (N 1

i , . . . , N r
i ).

Ii consists of Li bits.
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– Ri is the identifier of the symbol composition (N 1
i , . . . , N r

i ) among all possible tuples of r

numbers that add up to u.1 Ri consists of
⌈

log
(u+r−1

r−1

)

⌉

≤ dr log(u + 1)e bits.

Our compressed representation of S consists of the storage of the following information:

– A bit sequence I obtained by concatenating all variable-length identifiers Ii.
– A bit sequence R obtained by concatenating all fixed-length identifiers Ri.
– A table E = EN1,...,Nr for every possible symbol composition (N 1, . . . , N r) summing up to u.

Each entry of E corresponds to a different u-length block G (with the proper symbol composition
(N1, . . . , N r)) and stores the answers to all Rankc(G, q) queries, where 1 ≤ q ≤ u and c ∈ [1, r].
Indexes Ii are such that E[Ii] stores Rankc-information for the block Si. Tables E do not depend
on S, but just on u.

– A table F whose entries are indexed by all possible symbol compositions (N 1, . . . , N r) summing
up to u, and point to the corresponding tables EN1,...,Nr . Indexes Ri are such that F [Ri] points
to EN1

i
,...,Nr

i
. Also table F does not depend on S, but just on u.

– Information to answer partial sum queries on Li, that is, to compute
∑i

j=1 Lj in constant time
for any block i.

– Information to answer partial sum queries on N c
i , that is, to compute

∑i
j=1 N c

j in constant time
for any block i and symbol c.

Solving queries. To answer queries about position q we first compute the block number i = dq/ue
to which q belongs and the offset ` = q − (i − 1)u inside that block. Then we compute E = F [Ri],
the table of entries corresponding to block i, and G = E[Ii], the entry of E corresponding to block i.
Note that, since the Ii values use variable number of bits, we need to know which is the starting and
ending positions of the representation for Ii in the sequence. These are 1 +

∑i−1
j=1

Lj and
∑i

j=1 Lj ,
respectively, which are known in constant time because we have partial sum information on Li.

Now, to answer Rankc(S, q) we evaluate (in constant time) the partial sum
∑i−1

j=1 N c
j and add

Rankc(G, `). To answer S[q] we simply give G[`]. Both queries take constant time. Figure 1 graph-
ically illustrates the rank computation.

Space usage. First notice that uH0(Si) = log
( u
N1

i
,...,Nr

i

)

, and thus

dn/ue
∑

i=1

uH0(Si) =

dn/ue
∑

i=1

log

(

u

N1
i , . . . , N r

i

)

= log

dn/ue
∏

i=1

(

u

N1
i , . . . , N r

i

)

≤ log

(

n

n1, . . . , nr

)

= nH0(S), (1)

where nc is the total number of occurrences of character c in S. The inequality holds because
distributing N c

i symbols over block Si is just one possible way to distribute nc symbols over S [36].
This result permits us to bound the length of the sequence I as

dn/ue
∑

i=1

Li =

dn/ue
∑

i=1

⌈

log

(

u

N1
i , . . . , N r

i

)⌉

≤
dn/ue
∑

i=1

uH0(Si) + dn/ue

≤ nH0(S) + O(n/ logr n).

1 In the binary case (r = 2), Ri is just the number of bits set in Si [37], but this is more complicated here.
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Fig. 1. A graphical description of the algorithm solving rank queries on sequences. Precisely, we illustrate the case
Rankc(S, q), where q = i · u + l. The final “+” is the answer.

Let us now consider the sequence R. The number of different tuples (N 1, . . . , N r) that add up
u is

(u+r−1

r−1

)

≤ (u + 1)r. Hence it is enough to use dr log(u + 1)e bits for each Ri (which actually
is enough to describe any tuple of r numbers in [0, u]). Accumulated over the dn/ue blocks, this
requires O(rn log log n/ logr n) bits.

We consider now the structures to answer partial sum queries [36], namely
∑i

j=1 N c
j and

∑i
j=1 Lj . Both structures are similar. Let us first concentrate on the Lj’s, whose upper bounds are

Li ≤ du log re, since
( u
N1

i
,...,Nr

i

)

≤ ru. Recall that we need to answer partial sum queries over the se-

quence of integers L = L1, L2, . . . , Lt, where t = dn/ue. Since Li ≤ du log re, each partial sum over L
does not exceed n dlog re and can be represented in dlog(n dlog re)e bits. Divide L into blocks of that
length, dlog(n dlog re)e, and store the full partial sums for each block beginning. This requires ex-
actly t = O(n/ logr n) bits. Inside each block, store the partial sums relative to the block beginning.
These latter partial sums cannot exceed du log re dlog(n dlog re)e because of the upper bound on
the Li’s and the length of the L-blocks. Hence we need O(log u+log log r+log log n) = O(log log n)
bits for each partial sum within each block of L. Thus, we need O(|L| log log n) = O(t log log n) =
O(n log log n/ logr n) bits overall for the partial sum information on L. A partial sum query on Li

is answered in constant time by adding the partial sum of the block of L that contains Li and the
relative partial sum of Li inside that block. The same technique can be applied to sequences N c,
whose values are in the range [0, u], to obtain O(rn log log n/ logr n) bits of space because there are
r sequences to index.

Finally, let us consider tables E and F . The total number of entries over all EN1,...,Nr tables is
clearly ru since each sequence of u symbols over [1, r] belongs exactly to one symbol composition.
For each such entry G we explicitly store the sequence itself plus the answers to all Rankc(G, q)
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queries, c ∈ [1, r], 1 ≤ q ≤ u. This storage requires O(u log r + ru log u) bits. Added over all the
entries of all the E tables, we have O(ru(u log r + ru log u)) = O(

√
nr logr n log log n) bits, which

is o(rn log log n/ logr n). Table F has necessarily less entries than E, since there is at least one
distinct entry of E for each (N 1, . . . , N r) symbol composition in F . Each entry in F points to the
corresponding table EN1,...,Nr . If we concatenate all EN1,...,Nr tables into a supertable of ru entries,
then F points inside that supertable, to the first entry of the corresponding table, and this needs
O(u log r) bits per entry. Overall this adds O(ruu log r) bits, which is negligible compared to the
size of E.

We remark that the simpler solution of storing indexes Pi = F [Ri] + Ii directly pointing to the
large supertable E would require n log r bits as the pointers are as long as the sequences represented.
This would defeat the whole scheme. Thus we use table F as an intermediary so as to store the
smaller Ri (subtable identifier) and Ii (index relative to the subtable).

Solving Selectc(S, q) queries. The solution to Selectc(S, q) queries on binary sequences proposed
in [37, Lemma 2.3] divides the sequence into blocks of size u (with the same formula we use for u,
with r = 2) and makes use of a sequence A, so that Ai is the number of bits set in the i-th block.
In our scheme, sequence A corresponds to sequence N c for each character c ∈ [1, r]. We can use
exactly the same scheme of [37] for each of our sequences N c. They need precisely the same partial
sum queries we already considered for N c, as well as other structures that require O(n log(u)/u)
bits per sequence N c. They also need to have all Selectc(G, q) queries precomputed for each possible
block G, which we can add to our E tables for additional O(ruru log u) bits. Overall, the solution
needs O(rn log(u)/u) = O(rn log log n/ logr n) additional bits of space.

Theorem 1. Let S[1, n] be a sequence of numbers in [1, r], with 2 ≤ r ≤ √
n. There exists a data

structure using nH0(S) + O(r(n log log n)/ logr n) bits of space, that supports queries Rankc(S, q)
and Selectc(S, q), and retrieves S[q], all in constant time. ut

The theorem is a generalization of the result in [36, 37], which uses nH0(S)+O((n log log n)/ log n)
bits of space to represent a binary sequence S (r = 2) so as to answer Rankc(S, q) and Selectc(S, q)
queries in constant time. Note that for binary sequences queries S[q] can be easily answered in
constant time by finding c ∈ {0, 1} such that Rankc(S, q) − Rankc(S, q − 1) = 1, whereas we had to
provide direct access to G[`]. Moreover, with binary sequences one can use Ri = i, while we needed
explicit pointers to an intermediate table F .

As we have already observed, the above result is interesting only for alphabets of size r =
o(log n/ log log n), since otherwise the space occupancy of the data structure is Ω(n log r). In the
next section we show how to extend this result to alphabets of polylogarithmic size.

3.2 Generalized Wavelet Trees

In this section we use the representation of sequences developed in the previous section to build an
improved sequence representation, which adapts better to the range of different symbols represented.
Albeit we solve exactly the same problem, we will change notation a little bit for clarity. This time
our sequence S[1, n] will be a sequence of symbols over an alphabet Σ = [1, |Σ|], so that r ≤ |Σ|
will be reserved to applications of Theorem 1. Actually, for r = |Σ| the data structure we are going
to introduce will be essentially the data structure of Theorem 1.
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Let us recall the basic ideas underlying the (binary) wavelet tree [18]. Consider a balanced
binary tree T whose leaves contain the characters of the alphabet Σ. T has height O(log |Σ|). Each
node u of T is associated with a string Su that represents the subsequence of S containing only

the characters that are stored into leaves descending from u. The root is thus associated with the
entire S. The node u of the wavelet tree does store indeed a binary image of the sequence Su,
denoted by Bu, such that Bu[i] = 1 if the character Su[i] descends from the right child of u, and
Bu[i] = 0 otherwise. By representing every binary sequence Bu with the data structure of [37] we
get a data structure supporting Rankc(S, q), Selectc(S, q), and S[q] queries in O(log |Σ|) time using
nH0(S) + o(n) space.

The r-ary Wavelet Tree. Let us consider an r-ary balanced tree whose leaves are associated with
the symbols of the alphabet Σ. This r-ary tree has height at most 1 + logr |Σ|. As in a (binary)
wavelet tree, each node v is associated with a subsequence Sv of S[1, n] formed just by the symbols
descending from v. Unlike a (binary) wavelet tree, the subsequence Sv is stored in v as a sequence

of integers in the range [1, r]. Precisely, let v be a node with children v1 . . . vr, and let Σv be the
set of symbols descending from v. Because of the balancedness of the tree, Σv is actually split into
r equally-sized subsets Σv1

. . . Σvr , which are integral ranges of size |Σvi
| ≈ |Σv|/r. Therefore, the

sequence Sv is represented as a sequence of nv = |Sv| integers in the range [1, r] such that Sv[q] = j
whenever Sv[q] ∈ Σvj

. The data structure of Theorem 1 is finally built over Sv and stored at node
v so to answer queries Sv[q], Rankj(Sv, q), and Selectj(Sv, q) in constant time.

A technical detail is that we concatenate all the sequences Sv lying at the tree level h, and store
them into one unique long sequence Sh. All these level-wise sequences have the same length of S,
namely n. As we go down/up the tree, it is easy to maintain in constant time the index q∗ + 1
where the current node sequence Sv starts inside the level sequence Sh. To achieve this, each node
v maintains also a vector Cv[1, r] such that Cv[j] is the number of occurrences in Sv of symbols
in [1, j − 1]. Now assume that we are at node v and its sequence Sv starts at index q∗ + 1 of Sh;
then the sequence Svj

of the jth child of v starts at q∗ + Cv[j] + 1 in Sh+1. Conversely, assume
that we are at node vj and its sequence Svj

starts at index q∗ + 1 of Sh+1; then the sequence Sv

of the parent v of vj starts at q∗ − Cv[j] + 1 in Sh. Notice that we need to store pointers (with
negligible extra space) to find the C vectors of children or parents, or we can take advantage of the
tree being almost perfect to avoid such pointers. We need also, for the bottom-up traversal required
to implement select (see next), |Σ| pointers to the leaves of the r-ary wavelet tree.

Solving queries. To compute Rankc(S, q), we start at the root node v and determine in constant
time the subset Σvj

to which c belongs by a simple algebraic calculation. We then compute the
position corresponding to q in Svj

, namely qvj
= Rankj(Sv, q). We then recursively continue with

q = qvj
at node vj . We eventually reach a tree leaf vl (corresponding to the subset {c} ⊆ Σ), for

which we have the answer to our original query Rankc(S, q) = qvl
. On the other hand, to determine

S[q], we start at the root node v and obtain j = Sv[q], so that S[q] ∈ Σvj
. Then we continue

recursively with node vj and q = qvj
= Rankj(Sv, q) as before, until we reach a leaf vl, where

Σvl
= {S[q]} is finally determined. Both queries take O(logr |Σ|) time.
To compute Selectc(S, q), instead, we proceed bottom-up. We identify the leaf vl corresponding

to subset {c} and then proceed upwards. At leaf vl (not actually represented in the tree), we
initialize qvl

= q. This is the position we want to track upwards in the tree. Now, let v be the
parent of vj , then qv = Selectj(Sv, qvj

) is the position of Svj
[qvj

] in Sv. We eventually reach the
root, with qroot = Selectc(S, q), in O(logr |Σ|) time.
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It goes without saying that, since we do not represent sequences Sv but level-wise sequences
Sh, in the calculations above we need to take care of the latter. Assume that our current sequence
Sv starts at position q∗ + 1 in Sh. Then, queries over Sv are translated to queries over Sh as
follows: Sv[q] = Sh[q∗ + q], Rankj(Sv, q) = Rankj(S

h, q∗ + q) − Rankj(S
h, q∗), and Selectj(Sv, q) =

Selectj(S
h,Rankj(S

h, q∗) + q).

Space usage. An immediate advantage of having all sequences Sh[1, n] over the same alphabet
[1, r] is that all tables E and F are the same for all levels, so they take o((rn log log n)/ log r n)
bits overall. All the other O((rn log log n)/ logr n) size structures used to prove Theorem 1 total-
ize O(log |Σ| (rn log log n)/ log n) bits of space by adding up all the O(logr |Σ|) levels. The struc-
tures Cv need O(r log n) bits each, and there is one Cv array per non-leaf node v. This totalizes

O
(

|Σ|
r−1

r log n
)

= O(|Σ| log n) bits. This space includes also the pointers to leaves and the parent-

child pointers in the tree, if they are used.
Let us consider now the entropy-related part. For each non-leaf node v at tree level h, with

children v1, . . . , vr, sequence Sv spans at most 2+ bnv/uc blocks in Sh (recall from Section 3.1 that

the sequence is divided into blocks of length u =
⌊

1

2
log n

⌋

and that nv = |Sv|). The sum of local

zero-order entropies uH0(S
h
i ) for the bnv/uc blocks is a lower bound to nvH0(Sv) (recall Eq. (1)).

For the other 2 blocks, we simply assume that they take the maximum u dlog re = O(log n) bits.
We have at most r

r−1
|Σ| boundaries over the whole tree. Hence summing over all the sequence

boundaries, the space overhead induced by all the partial blocks is O(|Σ| log n) bits.
Thus, let us focus on the term nvH0(Sv). Note that this is

−nv

r
∑

j=1

nvj

nv
log

nvj

nv
= −

r
∑

j=1

nvj
log nvj

+
r
∑

j=1

nvj
log nv

= nv log nv −
r
∑

j=1

nvj
log nvj

.

If we add this term over all the nodes v in the tree, we get a sort of telescopic sum in which the
second terms −nvj

log nvj
computed for v will cancel with the first (positive) term of the formula

derived for the children vj’s. Therefore, after all the cancellations, the only surviving terms are:
the term n log n corresponding to the tree root, and the terms −nul

log nul
corresponding to the

parents of the tree leaves (where nul
= nc for some c ∈ Σ, being nc the frequency of character c).

This is
n log n −

∑

c∈Σ

nc log(nc) = nH0(S).

Theorem 2. Let S[1, n] be a string over an arbitrary alphabet Σ. The r-ary wavelet tree built on

S, for 2 ≤ r ≤ min(|Σ|,√n), uses nH0(S) + O(|Σ| log n) + O(log |Σ| (rn log log n)/ log n) bits of

storage and supports in O(logr |Σ|) time the queries S[q], Rankc(S, q) and Selectc(S, q), for any

c ∈ Σ and 1 ≤ q ≤ n.

Moreover, if |Σ| = O(polylog(n)), then r can be chosen so that the resulting r-ary wavelet tree

supports all queries in constant time and takes nH0(S)+O(n/ logε n) bits of space, for any constant

0 < ε < 1.

Proof. The first part of the theorem, for a general r, is a consequence of the development in this
section. For the last sentence, note that by choosing r = |Σ|1/κ, for constant κ > 0, we can support
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the query operations in constant time O(κ). Now, if |Σ| = O(polylog(n)) = O((log n)d), then we
can choose any κ > d to obtain O(dn(log log n)2/(log n)1−d/κ) space overhead. For any constant
0 < ε < 1, we choose d < κ < d/(1−ε) to ensure that O(n(log log n)2/(log n)1−d/κ) = O(n/ logε n).

ut

The theorem is a generalization upon the (binary) wavelet tree data structure [18], which takes
nH0(S)+O(log |Σ| (n log log n)/ log n) space and answers the same queries in O(log |Σ|) time. The
last part shows that, when |Σ| = O(polylog(n)), the generalization obtains essentially the same
space (up to lower order terms) and reduces query times to a constant. The case of larger alphabets
deserves a separate corollary.

Corollary 1. Let S[1, n] be a string over an alphabet Σ. If we choose r = O(log n/(log log n)2),
the r-ary wavelet tree built on S uses nH0(S) + O(|Σ| log n) + o(n log |Σ|) bits and supports in

O(log |Σ|/ log log n) time the queries S[q], Rankc(S, q) and Selectc(S, q), for any c ∈ Σ and 1 ≤ q ≤
n. Note that if |Σ| = O(nβ), β < 1, the space occupancy simplifies to nH0(S) + o(n log |Σ|). ut

4 Compressed Representation of Full-Text Indexes

We will now apply the results of the previous section to build a new implementation of the FM-index
concept. We need first to explain the FM-index concept in full detail, that is, the Burrows-Wheeler
transform and the backward search mechanism, highlighting the time dependence on the alphabet
size |Σ|. Also, the compression boosting technique [10] will be central to our solution. We introduce
these previous developments in Sections 4.1 to 4.4 and then introduce our new result in Section 4.5.

Hereafter we assume that T [1, n] is the text we wish to index, compress and query. T is drawn
from an alphabet Σ of size |Σ|. By T [i] we denote the i-th character of T , T [i, n] denotes the ith
text suffix, and T [1, i] denotes the ith text prefix. A substring of T is any T [i, j]. We write |w| to
denote the length of string w.

Our final goal is to answer substring queries using a compressed representation of T . That is,
we wish to find out whether a given pattern P [1, p] occurs as a substring of T (existence query),
how many times it occurs (counting query), and at which positions (locating query). Also, as T is
compressed we need to support the retrieval of any substring of T (context query). If the compressed
representation of T supports all these queries, we say that the representation is a compressed full-text

self-index.

4.1 The k-th Order Empirical Entropy

Following a well established practice in Information Theory, we lower bound the space needed
to store a string T by using the notion of empirical entropy. The empirical entropy is similar to
the entropy defined in the probabilistic setting with the difference that it is defined in terms of
the character frequencies observed in T rather than in terms of character probabilities. The key
property of empirical entropy is that it is defined pointwise for any string T and can be used
to measure the performance of compression algorithms as a function of the string structure, thus
without any assumption on the input source. In a sense, compression bounds produced in terms of
empirical entropy are worst-case measures.

Just as defined for sequences, the zero-order empirical entropy of T is defined as H0(T ) =
−∑c(nc/n) log(nc/n), where nc is the number of occurrences of alphabet character c in T , and
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mississippi#

ississippi#m

ssissippi#mi

sissippi#mis

issippi#miss

ssippi#missi

sippi#missis

ippi#mississ

ppi#mississi

pi#mississip

i#mississipp

#mississippi

=⇒

F T bwt

# mississipp i

i #mississip p

i ppi#missis s

i ssippi#mis s

i ssissippi# m

m ississippi #

p i#mississi p

p pi#mississ i

s ippi#missi s

s issippi#mi s

s sippi#miss i

s sissippi#m i

Fig. 2. Example of Burrows-Wheeler transform for the string T = mississippi. The matrix on the right has the rows
sorted in lexicographic order. The output of the BWT is the last column; in this example the string ipssm#pissii.

n =
∑

c nc = |T |. To introduce the concept of k-th order empirical entropy we need to define what
is a context. A length-k context w in T is one of its substrings of length k. Given w, we denote by
wT the string formed by concatenating all the symbols following the occurrences of w in T , taken
from left to right. For example, if T = mississippi then sT = sisi and siT = sp. The k-th order
empirical entropy of T is defined as:

Hk(T ) =
1

n

∑

w∈Σk

|wT | H0(wT ). (2)

The k-th order empirical entropy Hk(T ) is a lower bound to the output size of any compressor
which encodes each character of T using a uniquely decipherable code that depends only on the
character itself and on the k characters preceding it. For any k ≥ 0 we have Hk(T ) ≤ log |Σ|.
Note that for strings with many regularities we may have Hk(T ) = o(1). This is unlike the entropy
defined in the probabilistic setting which is always a constant. As an example, for the family of
texts T = (ab)n/2 we have H0(T ) = 1 and Hk(T ) = O((log n)/n) for any k ≥ 1.

4.2 The Burrows-Wheeler Transform

In [1] Burrows and Wheeler introduced a new compression algorithm based on a reversible trans-
formation now called the Burrows-Wheeler Transform (BWT from now on). The BWT consists
of three basic steps (see Fig. 2): (1) append at the end of T a special character # smaller than
any other text character; (2) form a conceptual matrix MT whose rows are the cyclic shifts of the
string T# sorted in lexicographic order; (3) construct the transformed text T bwt by taking the last
column of matrix MT . Notice that every column of MT , hence also the transformed text T bwt, is a
permutation of T#. In particular the first column of MT , call it F , is obtained by lexicographically
sorting the characters of T# (or, equally, the characters of T bwt).

We remark that the BWT by itself is not a compression algorithm since T bwt is just a permu-
tation of T#. However, if T has “small” entropy the transformed string T bwt contains long runs of
identical characters and turns out to be highly compressible (see [1, 31] for details).

Because of the special character #, when we sort the rows of MT we are essentially sorting the
suffixes of T . Therefore there is a strong relation between the matrix MT and the suffix array built
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on T . The matrix MT has also other remarkable properties; to illustrate them we introduce the
following notation:

– Let C[ ] denote the array of length |Σ| such that C[c] contains the total number of text characters
which are alphabetically smaller than c.

– Let Occ(c, q) denote the number of occurrences of character c in the prefix T bwt[1, q]. In our
sequence terminology, Occ(c, q) = Rankc(T

bwt, q).
– Let LF (i) = C[T bwt[i]] + Occ(T bwt[i], i).

LF ( ) stands for Last-to-First column mapping since the character T bwt[i], in the last column
of MT , is located in the first column F at position LF (i). For example in Fig. 2 we have LF (10) =
C[s] + Occ(s, 10) = 12; and in fact T bwt[10] and F [LF (10)] = F [12] both correspond to the first s
in the string mississippi.

The LF ( ) mapping allows us to scan the text T backward. Namely, if T [k] = T bwt[i] then
T [k − 1] = T bwt[LF (i)]. For example in Fig. 2 we have that T [3] = s is the 10th character of T bwt

and we correctly have T [2] = T bwt[LF (10)] = T bwt[12] = i (see [8] for details).

4.3 The FM-Index

The FM-index is a self-index that allows one to efficiently search for the occurrences of an arbitrary
pattern P [1, p] as a substring of the text T [1, n]. Pattern P is provided on-line whereas the text T is
given to be preprocessed in advance. The number of pattern occurrences in T is hereafter indicated
with occ.

The FM-index consists, in essence, of the data structures required to compute C[ ], Occ( ),
and LF ( ). The first is directly stored in |Σ| log n bits. To compute Occ(c, q) in constant time, the
FM-index stores a compressed representation of T bwt together with some auxiliary information.
This also gives the tools to compute LF (i), provided we have access to T bwt[i]. This is obtained in
O(|Σ|) time by linearly searching for the only c ∈ Σ such that Occ(c, q) 6= Occ(c, q − 1). The two
key procedures to operate on the FM-index are: the counting of the number of pattern occurrences
(shortly count), and the location of their positions in the text T (shortly locate). Note that the
counting process returns the value occ, whereas the location process returns occ distinct integers in
the range [1, n].

Algorithm count(P [1, p])

1. i← p, c← P [p], First← 1, Last← n;
2. while ((First ≤ Last) and (i ≥ 1)) do

3. c← P [i];
4. First← C[c] + Occ(c, First− 1) + 1;
5. Last← C[c] + Occ(c, Last);
6. i← i− 1;
7. if (Last < First) then return “no rows prefixed by P [1, p]” else return (First, Last).

Fig. 3. Algorithm count for finding the set of rows prefixed by P [1, p], and thus for counting the pattern occurrences
occ = Last− First + 1. Recall that C[c] is the number of text characters which are alphabetically smaller than c, and
that Occ(c, q) denotes the number of occurrences of character c in T bwt[1, q].

Fig. 3 sketches the pseudocode of the counting operation that works “backwards” in p phases,
hence numbered from p to 1. The i-th phase preserves the following invariant: The parameter
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First points to the first row of the BWT matrix MT prefixed by P [i, p], and the parameter Last

points to the last row of MT prefixed by P [i, p]. After the final phase, P prefixes the rows between
First and Last and thus, according to the properties of matrix MT (see Section 4.2), we have
occ = Last − First + 1. It is easy to see that the running time of count is dominated by the cost of
the 2p computations of the values Occ( ).

Algorithm locate(i)

1. i′ ← i, t← 0;
2. while row i′ is not marked do

3. i′ ← LF [i′];
4. t← t + 1;
5. return Pos(i′) + t;

Fig. 4. Algorithm locate for the computation of Pos(i).

Given the range (First, Last), we now consider the problem of locating the positions in T of
these pattern occurrences. We notice that every row in MT is prefixed by some suffix of T . For
example, in Fig. 2 the fourth row of MT is prefixed by the text suffix T [5, 11] = issippi. Then,
for i = First,First + 1, . . . , Last we use procedure locate(i) to find the starting position in T of the
suffix that prefixes the i-th row MT [i]. Such a position is denoted hereafter by Pos(i), and the
pseudocode of locate is given in Fig. 4. The intuition underlying its functioning is simple. We scan
backward the text T using the LF ( ) mapping (see Section 4.2) until a marked position is met. If
we mark one text position every Θ(log1+ε n), for some constant ε > 0, the while loop is executed
O(log1+ε n) times. Since the computation of LF (i) is done via at most |Σ| computations of Occ( ),
we have that locate takes O(|Σ| log1+ε n) time. The space required by the marked positions is
Θ(n/ logε n) bits. Combining the observations on locate with the ones for count, we get [8]:

Theorem 3. For any string T [1, n] drawn from a constant-sized alphabet Σ, the FM-index counts

the occurrences of any pattern P [1, p] within T taking O(p) time. The location of each pattern

occurrence takes O(|Σ| log1+ε n) time, for any constant ε > 0. The size of the FM-index is bounded

by 5nHk(T ) + o(n) bits, for any fixed k. ut

In order to retrieve the content of T [l1, l2], we must first find the row in MT that corresponds
to l2, and then issue ` = l2 − l1 + 1 backward steps in T , using the LF ( ) mapping. Starting at
the lowest marked text position that follows l2, we perform O(log1+ε n) steps until reaching l2.
Then, we perform ` additional LF-steps to collect the text characters. The resulting complexity is
O((` + log1+ε n) |Σ|).

As we mentioned in the Introduction, the main drawback of the FM-index is that, hidden in
the o(n) term of the space bound, there are constants which depend exponentially on the alphabet
size |Σ|. In Section 4.5 we describe our new implementation of the FM-index concept, which takes
nHk(T )+o(n) bits and allows the computation of Occ(c, q) and T bwt[i] in O(1) time for a reasonable
range of alphabet sizes, i.e. |Σ| = O(polylog(n)).
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4.4 Compression Boosting

The concept of compression boosting has been recently introduced in [6, 10, 13] opening the door
to a new approach to data compression. The key idea is that one can take an algorithm whose
performance can be bounded in terms of the zero-order entropy and obtain, via the booster, a new
compressor whose performance can be bounded in terms of the k-th order entropy, simultaneously

for all k. Putting it another way, one can take a compression algorithm that uses no context
information at all and, via the boosting process, obtain an algorithm that automatically uses the
“best possible” contexts.

For technical reasons we need a boosting theorem which is slightly different from the one in [6,
10]. However, the proof of Theorem 4 is obtained by a straightforward modification of the proof of
Lemma 3.5 in [10].

Theorem 4. Let A be an algorithm which compresses any string S in less than |S|H0(S) + f(|S|)
bits, where f( ) is a non decreasing concave function. Given T [1, n] there is an O(n) time procedure

that computes a partition S1, S2, . . . , Sz of T bwt such that, for any k ≥ 0, we have

z
∑

i=1

|A(Si)| ≤
z
∑

i=1

(|Si|H0(Si) + f(|Si|)) ≤ nHk(T ) + |Σ|kf(n/|Σ|k).

Proof. For any k ≥ 0 let Ŝ1, Ŝ2, . . . , Ŝm denote the partition of T bwt such that

m
∑

i=1

|Ŝi|H0(Ŝi) = nHk(T ). (3)

Each Ŝi is a permutation of one of the strings wT defined in Sec. 4.1 with w ∈ Σk (see [10, Sec. 2.2]
for details). Repeating verbatim the proof of Lemma 3.5 in [10] we get that the partition S1, . . . , Sz

of T bwt produced by the boosting algorithm is such that

z
∑

i=1

(|Si|H0(Si) + f(|Si|)) ≤
m
∑

i=1

(

|Ŝi|H0(Ŝi) + f(|Ŝi|)
)

. (4)

Since by hypothesis |A(Si)| ≤ |Si|H0(Si) + f(|Si|), From (4) and (3) we get

z
∑

i=1

(|Si|H0(Si) + f(|Si|)) ≤
m
∑

i=1

|Ŝi|H0(Ŝi) +
m
∑

i=1

f(|Ŝi|)

= nHk(T ) +
m
∑

i=1

f(|Ŝi|)

≤ nHk(T ) + |Σ|kf(n/|Σ|k),

where the last inequality follows from the concavity of f( ) and the fact that m ≤ |Σ|k. ut

To understand the relevance of this result suppose that we want to compress T [1, n] and that
we wish to exploit the zero-order compressor A. Using the boosting technique we can first compute
the partition S1, S2, . . . , Sz of T bwt, and then compress each Si using A. By the above theorem, the
overall space occupancy would be bounded by

∑

i |A(Si)| ≤ nHk(T ) + |Σ|kf(n/|Σ|k). Note that
the process is reversible, because the decompression of each Si retrieves T bwt, and from T bwt we can
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retrieve T using the inverse BWT. Summing up, the booster allows us to compress T up to its k-th
order entropy using only the zero-order compressor A. Note that the parameter k is neither known
to A nor to the booster, it comes into play only in the space complexity analysis. This means that
the space bound in Theorem 4 holds simultaneously for all k ≥ 0. The only information that is
required by the booster is the function f() such that |S|H0(S) + f(|S|) is an upper bound on the
size of the output produced by A on input S.

4.5 An Improved FM-Index Implementation

We now show how to combine the tools described in the previous sections to obtain an FM-index
implementation with query time independent of the alphabet size when |Σ| = O(polylog(n)). At
the end we consider the case of larger alphabets.

The crucial observation is the following. To build the FM-index we need to solve two problems:
(a) compress T bwt up to Hk(T ), and (b) support the efficient computation of Occ(c, q) and T bwt[q].
We use the boosting technique to transform problem (a) into the problem of compressing the
strings S1, S2, . . . , Sz up to their zero-order entropy, and use the generalized wavelet tree to create
a compressed (up to H0) and indexable representation of each Si, thus solving simultaneously
problems (a) and (b).

1. Use Theorem 4 to determine the optimal partition S1, S2, . . . , Sz of T bwt with respect to f(t) =
Kt/ logε t + (1 + |Σ|) log n, where K is larger than the constant hidden in the O(t/ logε t) term of Theo-
rem 2.

2. Build a binary sequence B that keeps track of the starting positions in T bwt of the Si’s. The entries of B are all
zeroes except for the bits at positions

∑i

j=1
|Sj | for i = 1, . . . , z which are set to 1. Construct the data structure

of Theorem 1 (or the one in [37]) over the binary string B.

3. For each string Si, i = 1, . . . , z build:

(a) the array Ci[1, |Σ|] such that Ci[c] stores the occurrences of character c within S1S2 · · ·Si−1;
(b) the generalized wavelet tree Ti of Theorem 2.

Fig. 5. Construction of our improved FM-index.

The details of the construction are given in Fig. 5, some comments follow. To compute T bwt[q], we
first determine the substring Sy containing the q-th character of T bwt by computing y = Rank1(B, q).
Then we exploit the generalized wavelet tree Ty to determine T bwt[q]. By Theorem 1 the former
step takes O(1) time, and by Theorem 2 the latter step takes also O(1) time.

To compute Occ(c, q), we initially determine the substring Sy of T bwt where the matrix row
q occurs in, y = Rank1(B, q). Then we find the relative position of q within Sy by calculating

q′ = q −∑y−1

j=1
|Sj| = q − Select1(B, y).2 Finally, we exploit the generalized wavelet tree Ty and

use the array Cy[c] to compute Occ(c, q) = OccSy(c, q
′) + Cy[c] = Rankc(Sy, q

′) + Cy[c]. Again, by
Theorems 1 and 2 this computation takes overall O(1) time. Using this technique inside algorithms
count and locate of Section 4.3, we immediately obtain O(p) time to count the occurrences of a

2 Instead of implementing select we can just store all these partial sums at O(z log n) extra space, where z is the
number of pieces in the T bwt partition, and this cost does not affect the overall space result.
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pattern P [1, p] and O(log1+ε n) time to retrieve the position of each occurrence. The time to display
a substring of length ` is O(`) in addition to the locate time.

We now analyze the space occupancy of our data structure. Let us call a sequence Si long if
|Σi| = O(polylog(|Si|)), where Σi is the alphabet of Si. Otherwise Si is short.

Let us first assume that all sequences are long. This assumption and Theorem 2 allow us to
conclude that a generalized wavelet tree Ti built on Si uses |Si|H0(Si) + O(|Si|/ logε |Si|) bits,
for any 0 < ε < 1. By Theorem 1, the storage of B takes

⌈

log
(n
z

)⌉

+ O((n log log n)/ log n) ≤
z log n + O((n log log n)/ log n) bits. Each array Ci takes |Σ| log n bits. Consequently, under the
hypothesis that |Σi| = O(polylog(|Si|)) for all sequences Si, the total space occupancy is bounded
by

z
∑

i=1

(

|Si|H0(Si) + K|Si|/ logε |Si| + (1 + |Σ|) log n
)

+ O((n log log n)/ log n) .

Note that the function f(t) used at Step 1 of our construction (see Fig. 5) matches exactly the
overhead with respect to H0 that we have for each Si. From Theorem 4 we get that for any k ≥ 0
we can bound the above summation by

nHk(T ) + O
(

n/ logε(n/|Σ|k)
)

+ O
(

|Σ|k+1 log n
)

+ O((n log log n)/ log n) . (5)

Recall that we are interested in bounding the space occupancy in terms of Hk(T ) only for k ≤
α log|Σ| n for some α < 1. In this case we have |Σ|k ≤ nα. By observing that O((n log log n)/ log n) =
O(n/ logε n) we turn (5) into

nHk(T ) + O(n/ logε n) . (6)

We complete the analysis of the space occupancy by considering the case of short sequences, that
is, where |Σi| = ω(polylog(|Si|)) for some sequences Si. The first part of Theorem 2 implies that we
can always choose r = |Σi|1/κ such that all the query times are the constant O(logr |Σi|) = O(κ).
The extra space, however, can only be bounded by o(|Σi||Si|). Since ω(polylog(|Si|)) = |Σi| ≤
|Σ| = O(polylog(n)), we must have |Si| = o(nβ) for any β > 0. Thus, the extra space for a short
sequence Si is o(|Σ||Si|) = o(nβpolylog(n)).

Recalling again that we are interested in bounding the space occupancy in terms of Hk(T ) only
for k ≤ α log|Σ| n and α < 1, we have that the overall space overhead because of the (at most

|Σ|k ≤ nα) short sequences Si is o(nα+βpolylog(n)) bits for any β > 0. If we take β < 1 − α,
the space bound becomes O(n/ logε n) for any desired 0 < ε < 1. Therefore, we can correctly
apply Theorem 4 since the extra space to represent short sequences can be considered to be the
one corresponding to a long sequence plus smaller terms that are left in the sublinear term that
accompanies nHk(T ).

We note that we have inherited from (6) a sublinear space cost of the form O(n/ logε n), for any
0 < ε < 1. Also, from Theorem 3, we carry another term of the form O(n/ logε n), for any ε > 0.
We then achieve the following result:

Theorem 5. Let T [1, n] be a string over an alphabet Σ, where |Σ| = O(polylog(n)). The data

structure of Fig. 5 indexes T [1, n] within nHk(T ) + O(n/ logε n) bits, for any k ≤ α log|Σ| n and

0 < α, ε < 1. It can count the number of occurrences of any string P [1, p] in T in O(p) time, locate

each occurrence in O(log1+ε n) time, and display any text substring of length ` in O(` + log1+ε n)
time. ut
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Large Alphabets. Suppose now that the alphabet is larger than O(polylog(n)), in particular
|Σ| = O(nβ) with β < 1. Corollary 1 shows that we can obtain O(log |Σ|/ log log n) query time on
the sequences Si, using space |Si|H0(Si)+O(|Σ| log |Si|)+ o(|Si| log |Σ|) (more precisely, the latter
term is O(|Si| log |Σ|/ log log |Si|) in Corollary 1). It is easy to repeat the analysis and obtain that,
instead of (5), the bound on the size of our index becomes:

nHk(T ) + O
(

n log |Σ|/ log log(n/|Σ|k)
)

+ O
(

|Σ|k+1 log n
)

+ O((n log log n)/ log n) .

Since, for any k ≤ α(log|Σ| n) − 1, with 0 < α < 1, the above bound is nHk(T ) + o(n log |Σ|) we
can state the following theorem.

Theorem 6. Let T [1, n] be a string over an alphabet Σ, with |Σ| = O(nβ) and β < 1. It is possible

to index T [1, n] within nHk(T ) + o(n log |Σ|) bits, for any k ≤ α(log|Σ| n) − 1 and 0 < α < 1. This

index can count the number of occurrences of any string P [1, p] in T in O(p log |Σ|/ log log n) time,

locate each occurrence in O(log |Σ| log1+ε n/ log log n) time, and display any text substring of length

` in O((` + log1+ε n) log |Σ|/ log log n) time. ut

As an alternative to Theorem 6, we can handle large alphabets by decreasing the arity r of
our generalized wavelet tree. This reduces the space occupancy of our index at the cost of an
increased query time. Here we only discuss the extreme case r = 2 in which we use the traditional
binary wavelet tree instead of our sequence representation. Using binary wavelet trees we can
represent each Si in |Si|H0(Si) + O(log |Σ|(|Si| log log |Si|)/ log |Si|) bits of storage. Combining
this representation with the compression booster we get an index of size bounded by nHk(T ) +
O(log |Σ|(n log log n/ log n)) bits for any k ≤ α log |Σ| n and α < 1. Notice that this holds for any
alphabet size such that |Σ| = o(n/ log n). Since querying a binary wavelet tree takes O(log |Σ|)
time, our simplified index can count the number of occurrences in O(p log |Σ|) time, locate each
occurrence in O(log |Σ|(log2 n/ log log n)), and display any text substring of length ` in O(log |Σ|(`+
log2 n)/ log log n)) time. The details on the analysis of the above simplified index can be found
in [11].

5 Conclusions

The contribution of this paper is twofold. First, we have presented a compressed representation
of sequences S[1, n] that requires nH0(S) + o(n) bits of space and is able to retrieve individual
symbols S[q] and answer rank and select queries in constant time. The technique works whenever
the alphabet size of the sequence satisfies the condition |Σ| = O(polylog(n)). This is a non trivial
generalization of previous results on binary sequences [37] and an improvement of previous results
on general sequences [18].

Secondly, we have combined the above result with an existing compression boosting technique
to obtain a compressed full-text index for a text T [1, n] which uses nHk(T )+o(n) bits whenever the
alphabet size is O(polylog(n)). Our index has the smallest known space occupancy, is a self-index,
is faster than other indexes of the same size, and is the first compressed index with query time
independent of the alphabet size. We have also shown that on larger alphabets we can still improve
the best existing results.

After the first publication of this article, some new techniques have been proposed that enable
improving our bounds on rank and select queries slightly: Golynksi, Munro, and Rao [14] propose
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a succinct structure that supports rank in O(log log σ) time and select in constant time. Their
structure is, however, not compressed, as it uses n log σ + o(n log σ) bits. Hence, it can not be
coupled with the compression boosting technique. Sadakane and Grossi [40] propose a technique
to represent a sequence X in nHk(X) + o(n log |Σ|) bits supporting constant access to its short
substrings. However, even using this more powerful representation, compression boosting appears
to be still necessary to achieve a space usage bounded by nHk(T ) + o(n) bits (see [16]).

There are several future challenges on compressed full-text indexes: (i) obtaining better results
when the alphabet size is not O(polylog(n)); (ii) removing the limit on the maximum entropy order
k that can be achieved, which is currently k ≤ α log |Σ| n for any 0 < α < 1; (iii) achieving the
optimal query times within nHk(T ) + o(n) space, that is, O(p / log|Σ| n) for counting and O(1) for

locating, as opposed to our O(p) and O(log1+ε n) (this has been partially achieved [20, 8] in some
cases); (iv) coping with updates to the text and secondary memory issues (see e.g. [8, 2, 25]); (v)
handling more sophisticated searching, such as approximate and regular expression searching (see
e.g. [23]).

It should be clear, however, that some limits cannot be surpassed. For example, one cannot
achieve an nHk(T ) + o(n) space bound without any restriction on |Σ| or k. To see this, consider
the extreme case in which |Σ| = n, that is, the input string consists of a permutation of n distinct
characters. In this case we have Hk(T ) = 0 for all k ≥ 1, and any representation of such string must
require Ω(n log n) bits. Hence a self-index of size nHk(T ) + o(n) bits cannot exist. Understanding
which are the limits and the space-time tradeoffs that can be achieved on compressible strings (cfr.
[5]) is an extremely interesting open problem.
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5. E. D. Demaine and A. López-Ortiz. A linear lower bound on index size for text retrieval. Journal of Algorithms,

48(1):2–15, 2003.
6. P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting textual compression in optimal linear time.

Journal of the ACM, 52(4):688–713, 2005.
7. P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring labeled trees for optimal succinctness,

and beyond. In Proc. IEEE Symposium on Foundations of Computer Science (FOCS 2005) , pages 184–193,
2005.

8. P. Ferragina and G. Manzini. Indexing compressed texts. Journal of the ACM, 52(4):552–581, 2005. Earlier in
FOCS 2000.

9. P. Ferragina and G. Manzini. An experimental study of a compressed index. Information Sciences: special issue
on “Dictionary Based Compression”, 135:13–28, 2001. Earlier in SODA 2001.

10. P. Ferragina and G. Manzini. Compression boosting in optimal linear time using the Burrows-Wheeler transform.
In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pages 655–663, 2004.
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