
Rank and Select Revisited and Extended ⋆

Veli Mäkinen 1

Department of Computer Science, P. O. Box 68 (Gustaf Hällströmin katu 2b)
FIN-00014 University of Helsinki, Finland.

vmakinen@cs.helsinki.fi

Gonzalo Navarro 2

Center for Web Research, Department of Computer Science
University of Chile, Blanco Encalada 2120, Santiago, Chile

gnavarro@dcc.uchile.cl

Abstract

The deep connection between the Burrows-Wheeler transform (BWT) and the so-
called rank and select data structures for symbol sequences is the basis of most
successful approaches to compressed text indexing. Rank of a symbol at a given
position equals the number of times the symbol appears in the corresponding pre-
fix of the sequence. Select is the inverse, retrieving the positions of the symbol
occurrences. It has been shown that improvements to rank/select algorithms, in
combination with the BWT, turn into improved compressed text indexes.

This paper is devoted to alternative implementations and extensions of rank and
select data structures. First, we show that one can use gap encoding techniques to
obtain constant time rank and select queries in essentially the same space as what is
achieved by the best current direct solution (and sometimes less). Second, we extend
symbol rank and select to substring rank and select, giving several space/time trade-
offs for the problem. An application of these queries is in position-restricted substring
searching, where one can specify the range in the text where the search is restricted
to, and only occurrences residing in that range are to be reported. In addition, ar-
bitrary occurrences are reported in text position order. Several byproducts of our
results display connections with searchable partial sums, Chazelle’s two-dimensional
data structures, and Grossi et al.’s wavelet trees.

⋆ Part of this work appeared in Proc. LATIN’06, pp. 703–714, LNCS 3887.
1 Funded by the Academy of Finland under grant 108219.
2 Funded by Millennium Nucleus Center for Web Research, Grant P04-067-F, Mide-
plan, Chile.

Preprint submitted to Elsevier Science 31 October 2006

1 Introduction and Related Work

Recent years have witnessed a boom in compressed text index development.
A significant part of this development has been enabled by the discovery of
the surprising new opportunities offered by the Burrows-Wheeler transform
(BWT) [7]. One can now state the base result as follows: Take the Burrows-
Wheeler transform (permutation) of a text, build so-called rank and select data
structures for it, and you have a compressed index. Such index supports effi-
cient substring queries on the text. Let us introduce some notation to display
this connection more clearly.

The indexed string matching problem is that of, given a long text T [1, n] over
an alphabet Σ of size σ, build a data structure called full-text index on it, to
solve two types of queries: (a) Given a short pattern P [1, m] over Σ, count the
occurrences of P in T ; (b) locate those occ positions in T . There are several
classical full-text indexes requiring O(n log n) bits of space which can answer
counting queries in O(m) time (such as suffix trees [2]) or O(m + log n) time
(such as suffix arrays [26]). Both locate each occurrence in constant time once
the counting is done.

The intense research over the last decade to reduce the space requirement of
classical solutions has yielded compressed full-text indexes which take space
proportional to that of the compressed text and replace it. The most suc-
cinct current structures require nHk(T) + o(n log σ) bits of space, for any
k ≤ α logσ n and constant α < 1. Here, Hk(T) ≤ log σ denotes the k-th order
empirical entropy of T [27] 3 , a lower bound to the number of bits per symbol
achievable by any compressor that considers contexts of length k to model T .

One of these structures [13] achieves O(m log σ) time for counting, while each
occurrence can be located in O(log1+ε n) time, for any constant ε > 0. This
structure builds on three simple concepts: (i) rank queries over the BWT, (ii)
wavelet trees, (iii) compression boosting. Let us go into further details.

The BWT. Ferragina and Manzini [12] discovered that O(m) rank queries
over S = bwt(T), the BWT permutation of T , suffice to solve a counting
query, whereas locating can be carried out by sampling the suffix array and
using the BWT mechanism to locate the closest sample. Those rank queries
are defined as follows: rankc(S, i) is the number of occurrences of symbol c in
S[1, i]. Then, the problem of compressed full-text indexing boils down to the
problem of solving rank queries in little space.

3 In this paper log stands for log2 and we define log 0 = 0.

2

The wavelet tree. This data structure, introduced by Grossi et al. [18,19],
permits reducing symbol rank queries (i.e., over an alphabet of size σ) to binary
rank queries (over a bit sequence). The wavelet tree is a perfectly balanced
tree of height ⌈log σ⌉. Each tree node corresponds to a subinterval of [1, σ]
and represents the text subsequence of characters in that subinterval. At each
node, the current alphabet range is partitioned into two halves, and the cor-
responding alphabet subintervals are assigned to the left and right children of
the node. The only data stored at a node is a bitmap where, for each character
of the text it represents, it is indicated whether that character went left or
right. Each bitmap is processed for (binary) rank and select queries. The latter
is the inverse of rank: selectc(S, j) gives the position of the j-th occurrence of c
in sequence S. If those queries can be solved in constant time, the wavelet tree
solves in O(log σ) time the symbol rank and select queries, and it also obtains
S[i]. If each of the binary sequences B are represented in |B|H0(B) + o(|B|)
bits of space (as shown soon), the wavelet tree over sequence S[1, n] requires
nH0(S) + o(n log σ) bits.

Compression boosting. This is a mechanism devised by Ferragina et al.
[11] to partition S = bwt(T) so that, by compressing each partition to its zero-
order entropy (H0(Si)), one achieves nHk(T) overall, for any k ≤ α logσ n and
constant α < 1.

Later improvements to solve symbol rank queries combined with multiary
wavelet trees permit reducing the counting complexity to O(m⌈log σ/ log log n⌉),
which is O(m) if σ = O(polylog(n)) [14]. Wavelet trees with binary rank and
select are also essential in the construction of an alternative compressed full-
text index [18,19] which, although not based on the BWT, obtains essentially
the same space and time tradeoffs of [13].

We have gone into those details to display the deep connection between the
BWT and rank and select data structures for compressed text indexing. We
have also shown how improvements on the latter, combined with the BWT,
turn into improved compressed text indexes. In this paper we focus on revis-
iting and extending the existing solutions for rank and select data structures,
in order to give alternative solutions to known problems and also to face new
problems of interest in text indexing.

Several byproducts derive from this work. We show how the solutions to binary
rank and select can be adapted to the well-known searchable partial sums prob-
lem. We obtain an improved version of a well-known two-dimensional range
search data structure by Chazelle [8], taking less space and with some extra
functionality. We also show how wavelet trees are suitable for two-dimensional
range searching, and their connection with Chazelle’s data structure.

3

In the rest of this section we give more details on the state of the art and our
contributions.

1.1 Rank and Select Revisited

We first study the rank and select problem on binary sequences, focusing on
the case where the 1s (or alternatively the 0s) are sparse. We are given a bi-
nary sequence B1,n, Bi ∈ {0, 1} for 1 ≤ i ≤ n, and want to compress it while
at the same time supporting several operations on it. Typical operations that
are required are the following:

Bi: Accesses the i-th element of the compressed sequence.

rankb(B, i): Returns the number of times bit b appears in the prefix B1,i.

selectb(B, j): Returns the position i of the j-th appearance of bit b in B1,n.

Other useful operations are prevb(B, i) and nextb(B, i), which give the position
of the previous/next bit b from position i. These operations (as well as access to
Bi) can be expressed via a constant number of rank and select queries, and
hence are usually not considered separately. Notice also that rank0(B, i) =
i− rank1(B, i), so considering rank1(B, i) will be enough. However, the same
duality does not hold for select, and we have to consider both select0(B, j)
and select1(B, j). We call a representation of B complete if it supports all the
listed operations in constant time. A representation is partial if it supports
the listed operations only for 1-bits, that is, it supports rankb(B, i) only if
Bi = 1 and it only supports select1(B, j).

The study of succinct representations of various structures, including binary
sequences, was initiated by Jacobson [23]. The main motivation to study these
operations came from the possibility to simulate tree traversals in small space:
it is possible to represent the shape of a tree as a binary sequence, and then the
traversal from a node to a child and vice versa can be expressed via constant
number of rank and select operations. Currently, these queries are applied to
many other problem domains. Especially, as explained, they have a significant
role in compressed full-text indexes [20,12,34,35,18,29,19,14].

Jacobson showed that attaching a data structure of size o(n) to the binary
sequence B1,n is sufficient to support rank operation in constant time on a
RAM machine. He also studied select operation, but for the RAM model
the solution was not yet optimal. Later, Munro [28] and Clark [9] obtained
constant time select on the RAM model, using o(n) extra space as for rank.

4

Although the n+o(n) solutions are asymptotically optimal for incompressible
binary sequences, one can obtain shorter representations for compressible ones.
Consider, for example, select1(B, i) on a binary sequence with ℓ = o(n/ log n)
1-bits. One can store all answers explicitly using O(ℓ log n) = o(n) bits.

Pagh [31] was the first to study compressed representations of binary sequences
supporting more than just access to Bi. He gave a representation of binary
sequence B1,n that uses

⌈

log
(

n
ℓ

)⌉

+o(ℓ)+O(log log n) bits, where ℓ is the num-
ber of 1-bits in B. In principle this representation supported only Bi queries,
yet it also supported rank queries for sufficiently dense binary sequences,
n = O(ℓ polylog(ℓ)). Notice that nH0(B) − O(log n) ≤ log

(
n
ℓ

)

≤ nH0(B),

where H0(B) = ℓ log n
ℓ

+ (n− ℓ) log n
n−ℓ

is the zeroth order entropy of B.

This result was later enhanced by Raman et al. [33], who developed a partial
representation with similar space complexity, nH0(B)+o(ℓ)+O(log log n) bits,
supporting rank and select. They also provide a new complete representation
requiring nH0(B) + O(n log log n/ log n) bits.

As explained earlier, these solutions over binary sequences can be generalized
to arbitrary sequences by using wavelet trees. Very recently, Sadakane and
Grossi [36] developed a general technique that allows improving the above
nH0(S) terms to nHk(S) + O(n

log n
((k + 1) logσ + log log n)), for any k ≥ 0.

This technique, again, builds on binary rank and select queries.

The best current complete representation of binary sequences [33] is based on
a numbering scheme. The sequence is divided into short chunks, which are
expressed as a pair (l, i), where l is the number of 1-bits in the chunk and i
is the identifier of that particular chunk among all chunks with l 1-bits. This
way, chunks with few (or many) 1s require shorter identifiers and zero-order
compression is achieved.

An alternative study, based on gap encoding, was initiated by Sadakane [35].
By encoding the distances between consecutive 1-bits (assuming 1s are mi-
noritary), Sadakane showed that the space required was, essentially, nH0(B)
bits for the binary sequence. Structures of o(n) bits were attached to this
representation to provide constant time access. Actually, the space can be
rewritten as gap(B)(1 + o(1)), where gap(B) =

∑ℓ
i=1 log(xi + 1) and xi =

select(B, i) − select(B, i − 1) are the distances between consecutive 1s in B.
It holds gap(B) ≤ ℓ log n

ℓ
, achieving equality when all 1s are regularly spaced.

Grossi et al. considered the possibility of avoiding the o(n) extra term, and
depending only on gap(B), so that the space depends mostly on ℓ and only
logarithmically on n. In the preliminary journal version of [19] they show that
rank and select can be supported in O(log ℓ) time, by attaching o(gap(B))-size
information that permits binary searching the code. Blandford and Blelloch

5

[6] presented a technique to simulate a given space-demanding data structure
using O(gap(B)) bits of space and maintaining the same time complexity.
Recently, Gupta et al. [21] (journal version in this same issue) improved these
results for rank/select dictionaries, achieving gap(B)(1+o(1)) bits. Their time
complexities approach the lower bound for this problem when the size of the
structure depends on ℓ and only logarithmically on n. 4 Finally, some dynamic
schemes building on gap encoding have been presented which permit insertions
and deletion of bits [6,25], and achieve O(log n) time for all the operations.

The current situation is that, if the extra directories on top of the gap encoding
depend only logarithmically on the total number of bits n, then operations
rank and select require time ω(1). Otherwise, if the directories can be of any
size of the form o(n), constant time should be possible, as in the solution by
Raman et al. [33]. Yet, this gap-based constant-time solution has not yet been
precisely presented.

This is our contribution in this part. We complete the picture by achieving
constant time binary rank and select queries on top of gap encoding. Our final
result is a complete representation of B taking αgap(B)(1 + o(1)) + O(ℓ) +
O(n log log n/

√
log n) = αℓ log n

ℓ
+ O(ℓ) + o(n) bits of space, by attaching

o(n)-size structures to the binary sequence B′ that is obtained by encoding the
gaps between consecutive 1s of B using arbitrary random access self-delimiting
integer codes. Here α is a constant depending on the coding used. We achieve
α = 1 using, for example, Elias δ-encoding [10].

The best alternative constant-time solution [33] is not based on gap encoding.
It achieves nH0 + O(n log log n/ log n) bits of space. This is better than our
results if the 1s are equally spaced, but otherwise ours can be smaller. For
example, if ℓ = n/(log n)1/3 and there are ℓ− O(1) gaps of length O(1), then
our space is smaller by an O(log log n) factor.

In general, it is sufficient to build a compressed representation of a sequence
that gives constant-time access to any O(log n)-bit substring, and combine it
with any o(n)-bit overhead rank/select constant-time solution, to have a com-
petitive scheme for this problem. This was hinted in [4], where they propose to
add the usual rank/select structures [28,9] on top of a Huffman-compressed
sequence that gives constant-time access [23]. The space overhead of this solu-
tion, however, is nH0 + O(n/ log log n), higher than ours. If one applied their
idea over a gap representation and used the rank/select structures of [33,16],
one could achieve gap(B)(1 + o(1)) + O(ℓ) + O(n log log n/ log n) space, im-
proving our solution. Still, our solution can be interesting because it takes
advantage of specific properties of the gap encoding to achieve solutions for
select that are lighter than, say, those of [9].

4 Their time complexity formula is long, but they get for example o((log log n)2).

6

This idea of combining a compressed representation with direct access with
any rank/select solution is indeed the core idea of [36] (and others that fol-
lowed [17,15]), who achieve nHk + O(n(k + log log n)/ log n) space on binary
sequences. This can be higher or lower than gap(B).

Binary sequences supporting rank and select operations have several imme-
diate applications. With minimal adjustments they can solve problems such
as: (i) store a sequence of ℓ increasing integers in [1, n] so that one can query
the amount of numbers smaller than X (rank) and locate the Y -th smallest
number (select) in constant time; (ii) store a sequence of ℓ positive integers
adding up n so that one can find the longest prefix whose summed values do
not yet exceed X (rank) and compute the sum of the Y first numbers (select)
in constant time; (iii) store a sparse set of size ℓ over an integer universe [1, n]
so that one can query the amount of numbers smaller than X (rank) and
locate the Y -th value (select). In all these cases we require ℓ log n

ℓ
+ o(n) bits

of space. Note that using plain representations just for the data, without any
further structure to answer these queries in constant time, requires O(ℓ log n)
bits.

Note in particular that problem (ii) is a static version of the Searchable Partial
Sums problem [32]. It can be solved in constant time using kℓ + o(kℓ) bits of
space, where k is the number of bits to represent the largest number. Now,
since n is the sum of all the ℓ numbers, the largest number must be ≥ n/ℓ,
and therefore k ≥ log n

ℓ
. Thus, the solution based on binary rank and select

is always similar or better. Moreover, both space complexities meet when all
the numbers are very similar. As the numbers in the set differ more and more
for fixed n, our solution improves (as ℓ log n

ℓ
occurs in the worst case where

all numbers are equal) and the kℓ+ o(kℓ)-bit solution degrades (as k grows to
accomodate the largest number).

1.2 Rank and Select Extended

In this paper we also introduce a new problem, position restricted substring
searching, which consists of two new queries: (a′) Given P [1, m] and two in-
tegers 1 ≤ l ≤ r ≤ n, count all the occurrences of P in T [l, r], and (b′) locate
those occl,r occurrences. These queries are fundamental in many text search
situations where one wants to search only a part of the text collection, e.g.
restricting the search to a subset of dynamically chosen documents in a doc-
ument database, restricting the search to only parts of a long DNA sequence,
and so on. Curiously, there seem to be no solutions to this problem apart from
locating all the occurrences and then filter those in the range [l, r]. This costs
at least O(m + occ) for (a′) and (b′) together, using classical data structures.

7

We present several alternative structures to solve this problem. For example,
by using O(n log1+ε n) bits of space, for any constant ε > 0, we can achieve
O(m + log log n) counting time and O(1) locating time per occurrence. This
worsens to O(m + log n) and O(log n) time, respectively, if we use n log n(1 +
o(1)) bits of space. Several of our results rely on the use of a compressed
full-text index. In addition, we are able to present the occurrences in text
position order, which is much more convenient than the classical suffix array
order. Actually, within the same O(log n) time we are able to retrieve the k-th
ocurrence, in text position order, for any given k.

Interestingly, our solutions can also be seen as extensions of rank and select
queries, namely, to substring rank and select. For a string s, ranks(S, i) is the
number of occurrences of s in S[1, i], and selects(S, j) is the starting position
of the j-th occurrence of s in S. As far as we know, this problem has not
been addressed before. We can use the indexes for position-restricted substring
searching to answer ranks in the same time of a counting query (type (a′)),
and selects in the same time of a counting query plus the time to locate one
occurrence (type (b′)).

As a byproduct, we present a more space-efficient implementation of a well-
known two-dimensional range search data structure by Chazelle [8]. We show
how modern rank and select data structures over bit arrays can be used to
reduce the constant factor of its space requirement and to implement some
extended functionalities. We also show that Grossi et al.’s wavelet trees [18,19]
are suitable for two-dimensional range searching, pointing out in particular
their connection with Chazelle’s data structure.

Our problem falls within a more general problem studied in [5], where a set
of objects with attached priorities is indexed so as to retrieve objects ordered
by priority. We obtain better complexities for the particular case we address,
see paragraph “Larger and faster” within Section 3.2 for details.

2 Rank and Select Revisited

2.1 Self-delimiting codes

Let us first formally define what we mean by random access self-delimiting
code.

Definition 1 Let x be an integer x ≥ 0. A code c(x) ∈ {0, 1}∗ is a random
access self-delimiting code if the following conditions hold:

a) c(x) is not prefix of c(y) for any integer y ≥ 0, y 6= x;

8

b) |c(x)| ≤ α log x + g(x), where g(x) = o(log x), and α is a constant;
c) c(x) can be decoded into x in constant time on the RAM model, using an

auxiliary table of size o(n) common to all codes, for any x ≤ n.

An example of a random access self-delimiting code is Elias δ-code [10]:

δ(x) = 11 · · ·1
︸ ︷︷ ︸

|b(|b(x)|−1)|−1

0b(|b(x)| − 1)b(x), (1)

where b(x) is the binary representation of x. Note that x can be uniquely
decoded from this representation, fulfilling property a) above, and that the
representation takes |b(x)|+ 2|b(|b(x)| − 1)| bits. As |b(x)|+ 2|b(|b(x)| − 1)| ≤
(log x + 1) + 2(log log x + 1) = 3 + log x + 2 log log x, the code fulfills property
b) above with α = 1, g(x) = 2 log log x + 3. Property c) is fulfilled by noticing
that a table of 2|b(|b(n)|−1)|+1 = O(log n) entries is enough to store information
of where each of the binary sequences of length |b(|b(n)| − 1)| contain the first
0. When x ≤ n, we can decode it by reading three blocks of bits from δ(x).

Def. 1 also captures other Elias codes. For example, it captures γ-code:

γ(x) = 11 · · ·1
︸ ︷︷ ︸

|b(x)|−1

0b(x), (2)

but the leading constant α becomes 2. On the other hand, g(x) = 2. There are
several other codes providing trade-offs for α and g(x). See e.g. [3, App. A].

Let us now examine a property of self-delimiting codes that extends property
c) to short sequences of self-delimiting codes.

Lemma 1 Let X = c(x1)c(x2) · · · c(xp) be a sequence of O(log n) bits repre-
senting a sequence of random access self-delimiting codes c(xk), where

∑p
k=1 xk ≤

n. Let pos(X, k) =
∑k

k′=1 |c(xk′)| and dpos(X, k) =
∑k

k′=1 xk′. Using an index
of o(n) bits, we can i) decode c(xk) in constant time for any given k; ii) com-
pute k, pos(X, k), and dpos(X, k) such that pos(X, k − 1) < j ≤ pos(X, k) in
constant time for any given position j of X; and iii) compute k, pos(X, k),
and dpos(X, k) such that dpos(X, k − 1) < i ≤ dpos(X, k) in constant time
for any given decoded position i. Query iii) requires the restriction

∑p
k=1 xk =

O(polylog(n)).

Proof. We partition X into a constant number of t-bit blocks, t = ⌊ log n
2
⌋.

Let us denote one such block by x in the following. We build tables storing
precomputed answers for all t-length binary sequences (blocks x) as follows.
Let G[0,

√
n − 1][0, t] be a table such that k′ = G[x][j] tells the number of

codes included in x[1, j]. Let another table posG[0,
√

n − 1][0, t] store the
length of these codes, that is, pos(x, k′) = posG[x][k′]. Similarly, we store

9

table dposG[0,
√

n− 1][0, t] such that dpos(x, k′) = dposG[x][k′]. We initialize
pos[x][0] = 0 and dpos[x][0] = 0 to handle the boundary case correctly.

Note that s = G[x][t] gives the number of code words in x, and then pos(x, s) =
posG[x][s] and dpos(x, s) = dposG[x][s] give the sum of the code lengths in x
and sum of the decoded values in x, respectively.

Query i) is handled by summing up values G[x][t] into scodes for each con-
secutive t-bit block x of X, until scodes + G[x][t] ≥ k. Then we have found
the correct block x and can query posG[x][k − 1 − scodes] to reveal where
the (k − 1)-th code ends, and finally decode the k-th code in constant time.
Notice that the consecutive blocks may overlap when a suffix of a block does
not contain the complete code word. Hence, we read the first t bits of X to
integer x, continue reading the next t bits from position posG[x][G[x][t]]+1 of
X to x, an so on. If some code word spans more than two blocks, we decode
it in constant time using property c) of self-delimiting codes, and continue
scanning from the end of that code word. Overall, we use time linear in the
number of blocks scanned (which is constant), since only one code word per
block needs special attention.

Query ii) is analogous by summing up instead values posG[x][G[x][t]] into spos,
until spos + posG[x][G[x][t]] ≥ j. Then k′ = G[x][j − spos − 1], pos(x, k′) =
posG[x][k′], and dpos(x, k′) = dposG[x][k′]. As we sum up posG[x][G[x][t]]
values, we also add up values G[x][t] into scodes and dposG[x][G[x][t]] into
sdpos. The required values are then computed in constant time as k = scodes+
k′+1, pos(X, k) = spos+pos(x, k′+1), and dpos(X, k) = sdpos+dpos(x, k′+1).
The case were a single code word spans several blocks is easily taken into
account in the computation, as in case i).

Query iii) proceeds similarly by summing up the values dposG[x][G[x][t]] into
sdpos until sdpos + dposG[x][G[x][t]] ≥ i. We use another precomputed table
H [0,

√
n][0, c · logd n], where c and d are the constants in the O(polylog(n))

restriction of case iii). Value k′ = H [x][i′] gives the maximum k′ such that
dpos(x, k′) ≤ i′. Hence, using i′ = i − sdpos − 1, we get k′ = H [x][i′] and
k = scodes + k′ + 1, pos(X, k) = spos + pos(x, k′ + 1), and dpos(X, k) =
sdpos + dpos(x, k′ + 1) are the required values to be computed, where scodes
and spos are computed as in case ii). 2

2.2 Compressing binary sequences

We compress the binary sequence B1,n into B′
1,n′ using self-delimiting en-

coding to represent the lengths of 0-runs between consecutive 1-bits: Let
X = x0, x1, . . . , xℓ be the sequence of integers such that xi = select1(B, i +
1)− select1(B, i)− 1, where ℓ is the number of 1-bits in B, select1(B, 0) = 0

10

and select1(B, ℓ + 1) = n + 1. That is, xi is the length of the (i + 1)-th 0-run.
Then, B′ = c(x0)c(x1) · · · c(xℓ). For example, B = 000100110100 is encoded
as B′ = c(3)c(2)c(0)c(1)c(2).

Before explaining how to support rank and select using B′, let us analyze the
size of the encoding.

Lemma 2 Using random access self-delimiting code c(), a binary sequence
B1,n can be compressed into binary sequence B′

1,n′ such that n′ ≤ αℓ log n
ℓ
(1 +

o(1))+O(ℓ+logn), where ℓ is the number of 1-bits in B, and α is the constant
in Def. 1.

Proof. The length of B′ is maximized when all the 1-bits are equally distributed
in B, that is, xi = (n−ℓ)/(ℓ+1) for all i. Since |c(xi)| ≤ α log xi+o(log xi), we
have n′ ≤ α(ℓ+1) log n−ℓ

ℓ+1
(1+o(1))+O(ℓ) ≤ αℓ log n

ℓ
(1+o(1))+O(ℓ+log n) as

claimed. This encompasses the cases ℓ = o(n) (i.e., xi = ω(1)) and ℓ = Θ(n)
(i.e., xi = Θ(1)). 2

Notice that ℓ log n
ℓ
≤ ℓ log n

ℓ
+(n− ℓ) log n

n−ℓ
= nH0(B) = ℓ log n

ℓ
+O(ℓ), since

(n−ℓ) log n
n−ℓ
≤ ℓ/ ln 2. We can hence re-express the size of B′ as αnH0(B)(1+

o(1)) + O(ℓ + log n). Recall that, using δ-encoding, we achieve α = 1.

We need the following lemma that characterizes a non-stretching property on
B′.

Lemma 3 Let p = select(B, i) and q = select(B, j) for any i < j, and p′ and
q′ be the positions of B′ starting codes c(xi) and c(xj). Then, q′−p′ = O(q−p).

Proof. We can bound q′ − p′ similarly as for n′ in the proof of Lemma 2:
q′ − p′ =

∑j−1
k=i |c(xk)| ≤ (j − i)α log q−p−(j−i)

j−i
(1 + o(1)) + O(j − i) ≤ (j −

i)α q−p
j−i

+ O(j − i) ≤ (q − p)(α + O(1)). 2

2.3 Supporting rank

We first notice that if we are given block C of length log n in B, then the
corresponding block X = c(x0)c(x1) · · · c(xp) of B′ is of length O(logn) by
Lemma 3. Here corresponding means the smallest block sequence that, when
decoded, contains C (decoding c(xi) gives xi 0’s followed by a 1). We have the
connection

rank1(C, i + offset) = k, (3)

where k is the minimum value such that k+
∑k

k′=0 xk′ ≥ i (sum of the length of
0-runs plus number of 1-bits), and offset tells where the block C starts inside
x0. This is almost identical to query iii) of Lemma 1, where the value of k is

11

computed in constant time by maximizing dpos(X, k) =
∑k

k′=0 xk′ < i. This
change to Lemma 1 is straightforward, and hence we can compute k in Eq. (3)
in constant time given X and i.

To compute rank1(B, i) we store D[i/ log n] = rank1(B, i) for i multiple of
log n, where D[0] = 0. 5 That is, B is divided into blocks of length log n for
which the rank at the start of the block can be computed by table lookup.
We have

rank1(B, i) = D[⌊i/ log n⌋] + rank1(Bj+1...j+log n, i− j), (4)

where j = ⌊i/ log n⌋ · log n.

Another table stores pointers to B′: Dp[i/ log n] gives the starting position
of the block corresponding to Bi+1...i+log n in B′ for i multiple of log n. An-
other table offsetDp[i/ log n] stores the offsets inside the corresponding blocks.
Eq. (3) gives then the way to compute rank inside the block in B′. The final
condition of query iii) holds because our blocks C = Bj+1...j+log n are of length
log n once decompressed. It is still possible that the first or last xi value in
the corresponding X is not O(polylog(n)), but one can treat the first and last
block individually, without resorting to table H , and still retain constant time.

Notice that tables D, Dp, and offsetDp require each O((n/ log n) log n) = O(n)
bits, which is too much. However, we can use the standard trick [22] of storing
absolute values for every log2 n-th position (superblock) and relative values for
each log n-th position (block): Let D1[i/ log2 n] = rank(B, i) for i multiple of
log2 n, and D2[i/ log n] = D[i/ log n] − D1[⌊i/ log2 n⌋] for i multiple of log n.
Then D[i/ log n] = D1[⌊i/ log2 n⌋] + D2[i/ log n] for i multiple of log n. Table
D1 only requires n/ log n bits, and table D2 requires n log log n/ log n bits, as
the maximum value in D2 is log2 n. Due to Lemma 3, analogous replacements
can be done for table Dp. Finally, we can do the same in offsetDp because
the difference between two consecutive table values cannot exceed log n. This
ensures that all tables will take at most O(n log log n/ log n) = o(n) bits.

We have shown that the structure supports constant-time rank using αℓ log n
ℓ
(1+

o(1))+O(ℓ)+o(n) bits of space, where the first part comes from the size of B′

(Lemma 2) and o(n) comes from the rank data structures, from the structures
of Lemma 1, and from the O(log n) of Lemma 2.

5 To clarify notation we assume logarithms to give integers. In general one should
take floors.

12

2.4 Supporting select

Providing constant time select1(B, j) uses similar ideas as for rank, but some
parts become more complicated. We explain the difficult parts in detail and
sketch those analogous to the rank solution.

We use tables E1 and E2 like D1 and D2 for rank, but this time storing every
log2 n-th select1 answer in E1 and every log1/2 n-th relative select1 answer in
E2. More precisely, E1[⌊j log1/2 n/ log2 n⌋] + E2[j] gives the position in B′

where the code of x1+j log1/2 n begins. Notice that the maximal value in E2

table is O(log3 n), hence O(log log n) bits are enough for each entry. Both
tables E1 and E2 take o(n) bits.

We can now find the starting positions of every log1/2 n-th code (let us call
blocks the areas of B between consecutive sampled positions). However, the
distance between two sampled positions (i.e., block length) in B′ can be
O(log1/2 n log n), if all the intermediate codes use the maximum O(log n) bits.
Using the technique of Lemma 1 we could need O(log1/2 n) time to find the
starting position of a non-sampled code. To avoid this, we separate the blocks
into small and large. A block is large if its length in B′ is greater than log n,
otherwise it is small. Notice that we can find the j-th code inside a small block
in constant time using Lemma 1. For large blocks, we store all the answers
(that is, corresponding code beginning following each 1-bit) explicitly. We need
to show that the total number of bits used for large blocks is sub-linear: Each
large block requires O(log1/2 n log log n) bits to store its answers. We can limit
the amount of large blocks, say L, as follows. The sum of all values in large
blocks cannot exceed n, hence L is maximized when each value is equal to
n/L. Considering one block, we get inequality log1/2 n log n

L
> log n, that is,

L < n/2
√

log n. Now the overall space needed for all the explicit answers in
large blocks, that is, O(L log1/2 n log log n), can be seen to be o(n).

To complete the description of select1-queries, we still need to show (i) how
to find the explicit answers corresponding a large block, and (ii) how to map
the position in B′ to a position of B (as that is the final answer we want). To
solve (i) we proceed as follows. As all the explicit information for large blocks
takes the same number b of bits, we concatenate all the data together and
store a bitmap telling which blocks are large. Then, computing rank1 over
this bitmap and multiplying by b gives the position of the entries for large
blocks. Using the technique of [22] this bitmap takes only O(n/ log1/2 n) bits.

Solving (ii) is trickier, but the solution uses again the small/large blocks ap-
proach. We sample codes of B′ building superblocks of length log2 n and blocks
of length log n. However, even storing the relative pointers from blocks of B′

to the corresponding positions in B may require O(log n) bits. To avoid this,

13

we divide the superblocks into small and large; a superblock is small if every
relative pointer value in its blocks takes at most log1/2 n bits, otherwise the
superblock is called large. The space required for the block pointers inside
small superblocks is clearly o(n). Hence, inside small superblocks we get for
each log n-th position of B′ the corresponding position in B by reading from
tables; for other positions query ii) of Lemma 1 provides a constant-time so-
lution. For large superblocks, we can use exactly the same strategy, but we
need to use O(log n) bits for each block pointer. However, the amount of large
superblocks, say S, can be bounded by noticing that at least one block inside
a superblock corresponds to an area of length at least 2log1/2 n in B. Hence,
S2log1/2 n ≤ n, and the total number of bits needed for all block pointers inside
large superblocks is S log2 n ≤ n log2 n/2log1/2 n = n 22 log log n/2log1/2 n = o(n).
Finally, the answers to small and large blocks are stored in separate tables,
but this time we can afford to store direct links to the corresponding positions
in these tables as the links are stored for superblocks.

Note that we are performing a regular sampling over B′, where its codes do
not start at regular positions. Each superblock/block also stores the offset in
B′ from its regular sample position to the beginning of the code word where
the sample falls. This requires O(log log n) bits per block and adds up to o(n).
Given a code word beginning, this information lets one know where is the
beginning of the code word from where we must apply Lemma 1 until reaching
the desired codeword (that is, up to which codeword has the preceding sample
accumulated positions in B).

It is easy to extend the structure to allow select0-queries as well. However, to
do this we need to adjust our coding slightly: The runs of 1-bits are a problem,
as such are encoded as a run of c(0) codes, and precomputed select0 answers
may require O(log n) bits no matter which sample rate is used. As runs of zeros
and ones alternate in B, we can simply code the sequence of both runs. This
complicates slightly the details of how rank1 and select1 are implemented, as
one has to take into account pointers inside runs of 1-bits, and preprocessing
for a variant of Lemma 1. The computation time remains constant. While in
general the structure gets smaller, in the worst case we may add O(ℓ) bits to
Lemma 2; if all runs of 1-bits are of length 1 the original coding did not use
any bits for them, now we use |c(1)| = O(1) bits for each.

What we have achieved with the new coding is that every second code encodes
at least one 0-bit. Now, we can use superblocks of size log2 n and blocks of
size log n to store indirectly pointers to each log n-th 0-bit in B′ (pointer to
the code word containing the 0-bit, and offset inside it). The block length is
at most O(log n), so we can find in constant time the j-th 0-bit inside each
block by using the techniques of Lemma 1. We have obtained the following
result.

14

Theorem 1 There is a complete representation for a binary sequence B1,n

requiring αℓ log n
ℓ
+O(ℓ)+ o(n) bits, where ℓ is the number of 1-bits in B, and

α ≥ 1 is a constant depending on the random access self-delimiting code used.

Note that we have simplified the space bound by removing the o(αℓ log n
ℓ
)

term. The reason is that ℓ log n
ℓ

= o(n) when ℓ = o(n), and otherwise the O(ℓ)
term hides the constant log n

ℓ
. We can reexpress the space in terms of gap as

follows, where now we can be more specific about the o(n) term.

Observation 1 The complete representation of Theorem 1 requires αgap(B)(1+
o(1)) + O(ℓ) + O(n log log n/

√
log n) bits of space.

We remark that queries prevb(i) and nextb(i) can be directly supported by
small changes to the rank mechanism, without requiring the structures for
select.

Minor modifications (simplifications) to rank1 and select1 structures give con-
stant time access inside a sequence of self-delimiting codes. Hence we have a
corollary that applies to the searchable partial sums problem:

Corollary 1 A sequence of positive integers x1x2 . . . xℓ adding up n can be
represented using ℓ log n

ℓ
+ O(ℓ) + o(n) bits of space so that the

∑Y
i=1 xi can

be computed in constant time. Moreover, one can find in constant time the
maximum value j such that

∑j−1
i=1 xi < X for a given limit X. The term O(ℓ)

can be removed from the space complexity by using representations alternative
to gap encoding [33].

3 Rank and Select Extended — Position Restricted Substring Search-

ing

3.1 Two-Dimensional Range Searching

We describe a range search data structure to query by rectangular areas.
The structure is a more succinct variant of one from Chazelle [8,24], where
we have replaced the original O(n)-bit data structure for rank with newer
structures performing rank and select in n + o(n) bits. Given a set of points
in [1, n]× [1, n], the data structure permits determining the number of points
that lie in a range [i, i′] × [j, j′] in time O(log n), as well as retrieving each
of those points in O(log n) time in the order given by one coordinate. The
structure improved can be implemented using n log n(1 + o(1)) bits when no
two points share the same row or column.

15

Structure. We describe a slightly simpler version of the original structure
[8], which is sufficient for our problem (yet our improvements can be applied to
the general version as well). The simplification is that our set of points come
from pairing two permutations of [1, n]. Therefore, no two different points
share their same first or second coordinates, that is, for every pair of points
(i, j) 6= (i′, j′) it holds i 6= i′ and j 6= j′. Moreover, there is a point with first
coordinate i for any 1 ≤ i ≤ n and a point with second coordinate j for any
1 ≤ j ≤ n.

The structure is built as follows. First, sort the points by their j coordinate.
Then, form a perfect binary tree where each node handles an interval of the
first coordinate i, and thus knows only the points whose first coordinate falls
in the interval. The root handles the interval [1, n], and the children of a node
handling interval [i, i′] are associated to [i, ⌊(i+ i′)/2⌋] and [⌊(i+ i′)/2⌋+1, i′].
The leaves handle intervals for the form [i, i]. All those intervals will be called
tree intervals.

Each node v contains a bitmap Bv so that Bv[r] = 0 iff the r-th point handled
by node v (in the order given by the initial sorting by j coordinate) belongs
to the left child. Each of those bitmaps Bv is preprocessed for constant-time
rank queries using a structure that requires O(|Bv|) bits (basically, they have
no superblocks but just n/ log n blocks taking O(log n) bits each, recall Sec-
tion 2.3). We replace this rank structure with the more modern ones [9,28],
which take only |Bv|+ o(|Bv|) bits and give also select in constant time. This
brings some complications we consider soon.

Querying. We first show how to track a particular point (i, j) as we go
down the tree. In the root, the position given by the sorting of coordinates
is precisely j, because there is exactly one point with second coordinate j for
any j ∈ [1, n]. Then, if Broot[j] = 0, this means that point (i, j) is in the left
subtree, otherwise it is in the right subtree. In the first case, the new position
of (i, j) in the left subtree is j ← rank0(Broot, j), which is the number of
points preceding (i, j) in Broot which chose the left subtree. Similarly, the new
position on the right subtree it is j ← rank1(Broot, j).

Range searching for [i, i′]× [j, j′] is carried out as follows. Find in the tree the
O(log n) maximal tree intervals that cover [i, i′]. The answer is then the set
of points in those intervals whose second coordinate is in [j, j′]. Those points
form an interval in the B array of each of the nodes that form the cover of
[i, i′]. However, we need to track those j and j′ coordinates as we descend
by the tree. Every time we descend to the left child of a node v, we update
[j, j′] ← [rank0(Bv, j − 1) + 1, rank0(Bv, j

′)], and similarly with rank1 for a
right child. When we arrive at a node whose interval is contained in [i, i′], the
number of qualifying points is just j′− j + 1. Thus the whole procedure takes

16

O(log n) time. Figure 1 shows the pseudocode.

Algorithm RangeCount(v, [i, i′], [j, j′], [ti, ti′])
(1) if j > j′ then return 0;
(2) if [ti, ti′] ∩ [i, i′] = ∅ then return 0;
(3) if [ti, ti′] ⊆ [i, i′] then return j′ − j + 1;
(4) tm← ⌊(ti + ti′)/2⌋;
(5) [jl, j

′
l]← [rank0(Bv, j − 1) + 1, rank0(Bv, j

′)];
(6) [jr, j

′
r]← [rank1(Bv, j − 1) + 1, rank1(Bv , j

′)];
(7) return RangeCount(left(v), [i, i′], [jl, j

′
l], [ti, tm]) +

RangeCount(right(v), [i, i′], [jr, j
′
r], [tm + 1, ti′]);

Fig. 1. Algorithm for counting the number of points in [i, i′]×[j, j′] on a tree structure
rooted by v with children left(v) and right(v). The last argument is the tree interval
handled by node v. The first invocation is RangeCount(root, [i, i′], [j, j′], [1, n]).

For retrieving the points, we basically continue the counting process even when
the nodes are completely contained in [i, i′]. We track down the occurrences
until the leaves, where their i coordinate is revealed. Internal nodes with no
occurrences in the range [j, j′] are abandoned. The process takes at most
O(log n) time per retrieved element. Figure 2 gives the pseudocode.

Algorithm RangeLocate(v, [j, j′], [ti, ti′])
(1) if j > j′ then return;
(2) if ti = ti′ then { output ti; return; }
(3) tm← ⌊(ti + ti′)/2⌋;
(4) [jl, j

′
l]← [rank0(Bv, j − 1) + 1, rank0(Bv, j

′)];
(5) [jr, j

′
r]← [rank1(Bv, j − 1) + 1, rank1(Bv , j

′)];
(6) RangeLocate(left(v), [jl , j

′
l], [ti, tm]);

(7) RangeLocate(right(v), [jr , j
′
r], [tm + 1, ti′]);

Fig. 2. Algorithm to invoke instead of returning j′− j +1 in line (3) of RangeCount,
so as to locate occurrences instead of just counting them.

Note that leaves are reported in the order of their i coordinate, and moreover
only the i coordinate of the solutions is delivered. In order to retrieve the j
coordinate of an occurrence, we must track its local j position upwards until
the tree root. This is valid both for a leaf and for a given local j coordinate at
an internal tree node. For example we may wish to know the j coordinates of
the results and not the i coordinates. In this case we would not track down the
occurrences from the nodes where the counting finished, but we would track
them up. To track a position j upwards from node v, we do as follows: If v
is the left child of its parent vp, then the position corresponding to j in vp is
j′ = select0(Bvp, j). If v is a right child, then j′ = select1(Bvp , j). When we
reach the root node we have the coordinate j of the occurrence.

17

Space. We do not need any pointer for this tree. We only need 1 + ⌈log n⌉
bit streams, one per tree level. All the bit streams at level h of the tree are
concatenated into a single one, of length exactly n. A single rank structure
is computed for each whole level, totalizing n log n(1 + O(log log n/ log n))
bits. Maintaining the initial position p of the sequence corresponding to node
v at level h is easy. There is only one sequence at the root, so p = 1 at
level h = 1. Now, assume that the sequence for v starts at position p (in
level h), and we move to a child (in level h + 1). Then the left child starts
at the same position p, while the right child starts at p + rank0(Bv, |Bv|).
The length of the current sequence |Bv| is also easy to maintain. The root
sequence is of length n. Then the left child of v is of length rank0(Bv, |Bv|)
and the right child is of length rank1(Bv, |Bv|). Finally, if we know that v
starts at position p and we have the whole-level sequence Bh instead of Bv,
then rankb(Bv, j) = rankb(B

h, p− 1 + j)− rankb(B
h, p− 1).

Note that this arrangement by levels is necessary to ensure that the o(|Bv|)
space complexities actually add up o(n) per level, which would not happen
near the bottom of the tree if we indexed each vector separately. This was not
a concern in Chazelle’s original O(|Bv|)-bits scheme. The space we achieve is
asymptotically optimal in the worst case, as n log n bits are stored to store a
permutation.

Note that this scheme to concatenate bit sequences does not work well to move
upwards in the tree. Yet, the way we have used the upward traversal in this
section brings no trouble because we have first descended to the nodes where
the upward traversals start. Thus the recursion stack contains the information
on the limits in the bit arrays of all the ancestors of each relevant node.

Wavelet Trees. We note now that wavelet trees have yet other applications
not considered before. Assume we have a set of points (i, j) ∈ [1, n] × [1, n]
which is the product of two permutations of [1, n] as explained in the beginning
of this section. Call i(j) the unique i value such that (i, j) is a point in the set.
Then consider the text T [1, n] = i(1)i(2)i(3) . . . i(n). Then, the wavelet tree of
T is exactly the data structure we have described in this section. This text has
alphabet of size n and its zero-order entropy is also log n, thus this wavelet
tree takes n log n(1 + o(1)) bits as expected. This shows that the wavelet tree
structure can indeed be used to solve two-dimensional range search queries in
O(log n) time, and report each occurrence in O(log n) time as well.

3.2 A Simple O(m + log n) Time Solution

Let us now address the position-restricted substring search problem.

18

Our first solution is composed of two data structures. The first is the familiar
suffix arrayA[1, n] of T , enriched with longest common prefix (lcp) information
[26]. This structure needs 2n⌈log n⌉ bits and permits determining the interval
A[sp, ep] of suffixes that start with P [1, m] in O(m + log n) time [26]. The
second is the range search data structure R described in Section 3.1, indexing
the points (A[j], j). Both structures together require 3n log n(1 + o(1)) bits,
or 3n + o(n) words.

To find the number of occurrences of P [1, m] in T [l, r], we first find the interval
A[sp, ep] of the occurrences of P in T , and then count the number of points in
the range [l, r−m+1]× [sp, ep] using R. This takes overall O(m+logn) time.
Additionally, each first coordinate (that is, text position l ≤ i ≤ r−m + 1) of
an occurrence can be retrieved in O(log n) time, that is, the occl,r occurrences
can be located in O(occl,r log n) time.

A plus of the index is that, unlike plain suffix arrays, this structure locates the
occurrences in text position order, not in suffix array order. By walking the
tree upwards from an occurrence position j within a tree node, one can also
reveal its suffix array location. We note that retrieving the occurrences in text
position order is interesting even if we do not want position-restricted queries.
A classical scheme would pay O(m + occ log occ) to report the occurrences in
text position order, whereas our scheme requires O(m + occ log n). However,
our technique is online: after O(k log n) time we have already output the first k
occurrences in the text, whereas the classical scheme requires at least O(occ+
k log occ) time. (If we still wish to report occurrences in suffix array order, we
should rather index the points (i,A[i]) and search for the interval [sp, ep] ×
[l, r −m + 1].)

More ambitious than retrieving occurrences in text position order is to be able
to return the k-th occurrence, for any k, in text position order. This can also
be done in O(log n) time by a slight modification of the locating algorithm.
We must start by running the counting query. It will give us O(log n) tree
nodes that cover the interval [l, r−m+1]. Now, to track down the k-th of the
occurrences, we first traverse the nodes linearly, adding up the total number
of occurrences found within each node (this number is j′ − j + 1 in line (3) of
RangeCount). If at some node v this sum exceeds k, then the k-th occurrence
is to be found within the subtree rooted at v. We go left or right depending on
how many occurrences are found in the left subtree, until reaching the proper
leaf. The whole process takes O(logn) time. Fig. 3 gives the pseudocode of a
recursive version of the algorithm.

Substring rank and select. An extension to the classical symbol rank
and select problems is substring rank and substring select problems. That is,
given s ∈ Σ∗, ranks(T, i) is the number of occurrences of s in T [1, i], while

19

Algorithm kLocate(k, v, [i, i′], [j, j′], [ti, ti′])
(1) if k = 0 ∨ j > j′ then return k;
(2) if [ti, ti′] ∩ [i, i′] = ∅ then return k;
(3) if [ti, ti′] ⊆ [i, i′] then

(4) if k ≤ j′ − j + 1 then kFind(k, v, [j, j′], [ti, ti′]); return 0;
(5) else return k − (j′ − j + 1);
(6) tm← ⌊(ti + ti′)/2⌋;
(7) [jl, j

′
l]← [rank0(Bv, j − 1) + 1, rank0(Bv, j

′)];
(8) [jr, j

′
r]← [rank1(Bv, j − 1) + 1, rank1(Bv , j

′)];
(9) k ← kLocate(k, left(v), [i, i′], [jl, j

′
l], [ti, tm]);

(10) k ← kLocate(k, right(v), [i, i′], [jr, j
′
r], [tm + 1, ti′]);

(11) return k;

Algorithm kFind(k, v, [j, j′], [ti, ti′])
(1) if ti = ti′ then { output ti; return; }
(2) tm← ⌊(ti + ti′)/2⌋;
(3) [jl, j

′
l]← [rank0(Bv, j − 1) + 1, rank0(Bv, j

′)];
(4) [jr, j

′
r]← [rank1(Bv, j − 1) + 1, rank1(Bv , j

′)];
(5) if k ≤ j′l − jl + 1
(6) then kFind(k, left(v), [jl, j

′
l], [ti, tm]);

(7) else kFind(k − (j′l − jl + 1), right(v), [jr , j
′
r], [tm + 1, ti′]);

Fig. 3. Algorithm kLocate is invoked like RangeCount, plus an initial k indicating
which occurrence to output. It returns 0 if it could output it, and k−occl,r otherwise.
kFind is used internally to output the text position of the k-th occurrence.

selects(T, j) is the initial position of the j-th occurrence of s in T .

Those queries are particular cases of what we have obtained with the structures
in this section: ranks(T, i) corresponds just to counting the occurrences of
pattern s in the interval [1, i] of T , whereas selects(T, j) corresponds to finding
the j-th occurrence of pattern s in the interval [1, n] of T .

Larger and faster. In [5], they give a very general solution to report the
top-k ranked occurrences, where the rank can be defined in any way and there
are few restrictions on the search structure and data set. If we understand
rank as the inverse of the text position, the set as the text suffixes, and the
search structure as the suffix array, their solution permits obtaining the first k
occurrences, in text position order, in time O(m+log n+k). Essentially, they
use Chazelle’s structure to index the points (i,A[i]), so that one can read A in
the leaves of the tree, and each internal node contains a section of A with the
values in text position order. Parent nodes merge the postions of their children.
To solve the query they locate leaves sp and ep, and find the maximal nodes
covering [sp, ep] upwards. Then they use special priority queues to merge the

20

occurrence lists of the O(log n) nodes, which obtain the first k elements in
O(k) time. In order to retrieve the absolute values within each node, they use
a variant of Chazelle’s structure [8] that requires O(n log1+ǫ n) bits of space,
for any ǫ > 0.

We can adapt the method to our position-restricted search problem as follows.
We index the points (i,A[i]), but search for the nodes covering [sp, ep] top-
down, tracking down the interval [l, r −m + 1] as we move down. When we
have the O(log n) maximal covering nodes v, and for each we know the local
interval [lv, rv], we merge them using the solution in [5], yet starting processing
the sequence of node v from position lv and stopping at position rv. Overall,
this solution requires O(n log1+ǫ n) bits, and can locate each position in O(1)
time after O(m+ log n) counting time, and they are delivered in text position
order.

Yet, more modern data structures let us further improve the time complexities.
Instead of the structure of Section 3.1, that of Alstrup et al. [1] can be used
to index the points (A[j], j). This structure retrieves the occl,r occurrences of
a range query in O(log log n + occl,r) time. In exchange, it needs O(n log1+ǫ n)
bits of space, for any constant 0 < ǫ < 1.

Now, given the complexity O(log log n) for the range-search part of the count-
ing query, we could replace the suffix array by a suffix tree, so that we still have
O(n log1+ǫ n) bits of space and can solve the counting query in O(m+log log n)
time, and the locating query in constant time per occurrence. Thus, for this
particular problem, we improve upon the time complexity of [5].

Smaller and slower. Alternatively, it is possible to replace the suffix array
A and its lcp information by any of the wealth of existing compressed data
structures [30]. For example, by using the LZ-index of Ferragina and Manzini
[12] we obtain n log n(1 + o(1)) + O(nHk(T) logγ n) bits of space (for any
γ > 0 and any k = O(1)) and the same time complexities. On the other
hand, we can use the alphabet-friendly FM-index of Ferragina et al. [13,14]
based on the BWT to obtain n log n(1 + o(1)) + nHk(T) bits of space (for
any σ = o(n/ log log n) and any k ≤ α logσ n for any constant 0 < α < 1).
In this case the counting time raises to O(m⌈log σ/ log log n⌉+ log n). This is
still O(m + log n) if σ = O(polylog(n)).

3.3 An O(m log σ)-time Solution

We present now a solution that, given a construction parameter t, requires
nt log σ(1 + o(1)) bits of space and achieves O(m⌈log σ/ log log n⌉) time for

21

counting the occurrences of any pattern of length m ≤ t. Likewise, each such
occurrence can be located in O(m⌈log σ/ log log n⌉) time. For example, choos-
ing t = logσ n gives a structure using n log n(1 + o(1)) bits of space able to
search for patterns of length m ≤ logσ n. Actually, we show that this structure
can be smaller for compressible texts, taking n

∑t−1
k=0 Hk(T) instead of nt log σ.

Structure. Our structure indexes the positions of all the t-grams (substrings
of length t) of T . It can be thought of as an extension of the wavelet tree [18,19]
to t-grams.

The structure is a perfectly balanced binary tree, which indexes the binary
representation of all the t-grams of T , and searches for the binary represen-
tation of P . The binary representation b(s) of a string s over an alphabet
σ is obtained by expanding each character of s to the ⌈log σ⌉ bits necessary
to code it. We index n t-grams of T , namely b(T [1, t]), b(T [2, t + 1]), . . . ,
b(T [n, n + t− 1]). The text T is padded with t− 1 dummy characters at the
end.

The binary tree has ℓ = t⌈log σ⌉ levels. Each tree node v is associated a binary
string s(v) according to the path from the root to v. That is, s(root) = ε and,
if vl and vr are the left and right children of v, respectively, then s(vl) = s(v)0
and s(vr) = s(v)1. To each node v we also associate a subsequence of text
positions Sv = {i, s(v) is a prefix of b(T [i, i + t− 1])}.

Note that each i ∈ Sv will belong exactly to one of its two children, vl or vr.
At each internal node v we store a bitmap Bv of length nv = |Sv|, such that
Bv[i] = 0 iff i ∈ Svl

. Neither s(v) nor Sv are explicitly stored, only Bv is.

An example for the text "AGTAGCCCTGTA" is illustrated in Figure 4. The alpha-
bet size is σ = 4 and we expand t = 2 symbols. On the left we show the text
positions S that are prefixed by the binary string each node represents. On
the right we display the information actually stored in the tree: a bit vector
per node, telling whether the elements of its S set went to its left or right
child.

Querying. Given a text position i at the root node, we can track its cor-
responding position in Bv for any node v such that i ∈ Sv. At the root, we
start with iroot = i. When we descend to the left child vl of a node v in the
path, we set ivl

= rank0(Bv, i), and if we descend to the right child vr we set
ivr = rank1(Bv, i). Then we arrive with the proper iv value at any node v.

In order to search for P in the interval [l, r], we start at the root with lroot = l
and rroot = r−m+1, and find the tree node v such that s(v) = b(P) (following

22

0

S = { 1, 4, 6, 8, 12 } S = { 2, 3, 5, 9, 10, 11 }

S = { 3, 9, 11 }S = { 1, 4, 12 } S = { 6, 7, 8 } S = { 2, 5, 10 }

12 1, 4 6, 7 8 93, 112, 105

12 1, 4 6, 7 8 5 3, 112, 10 9

0 1

0

0

0 0 0 0 0 0 0 0

000

01 1

1111

1 1 1 1 1 1 1 1

A G A G C C C T G T AT

1 2 3 4 5 6 7 8 9 10 11 12

00 10 11 00 10 01 01 01 11 10 11 00

A: 00
C: 01
G: 10
T: 11

0 1

0

0

0 0 0 0 0 0 0 0

000

01 1

1111

1 1 1 1 1 1 1 1

0 1 1 0 1 0 0 0 1 1 1 0

0 0 1 1 1 0 0 1 0 1 0 1

1 1 0 0 0 1 1 0 1 0 1 0

0 00 11 1 1 11 00

Fig. 4. An example of our structure for the text "AGTAGCCCTGTA".

the bits of b(P) to choose the path from the root). At the same time we obtain
the proper values lv and rv. Then the answer to the counting query is rv−lv+1.
The process requires O(m logσ) time.

To locate each such occurrence lv ≤ iv ≤ rv, we must do the inverse tracking
upwards, just as earlier in the paper. If v is the left child of its parent vp, then
the corresponding position in vp is ivp = select0(Bvp , iv). If v is a right child,
then ivp = select1(Bvp, iv). The final position in T is thus iroot. This takes
O(m log σ) time for each occurrence.

Space. The bulk of the space requirement corresponds to the overall size of
bit arrays Bv. Vectors Bv could be represented using the technique of Clark
and Munro [9,28], which provide constant-time rank and select over the bit
arrays Bv using nv(1+o(1)) bits. All the nv values at any depth add up n, and
since the tree height is ℓ, we have nt⌈log σ⌉(1 + o(1)) bits overall. The same
technique used before to concatenate all the bitmaps at each level is used here
to ensure that o(1) is sublinear in n.

We show now that, by using a representation that achieves zero-order entropy
size, the space requirement may be reduced on compressible texts T . We choose
the structure of Raman et al. [33], which requires nvH0(Bv) + o(nv) bits to
provide constant-time rank and select queries over Bv. (Note that the O(ℓ)
overhead of the structures in Section 2 could be significant here, so we stick
to the most space-efficient representation.) As we already know from the pre-
vious paragraph that the o(nv) parts add up o(nt log σ) bits (more precisely,
O(nt log σ log log n/ log n) bits), we focus on the entropy-related part. Let us
assume for simplicity that σ is a power of 2.

Let us analyze all the nvH0(Bv) terms together. For a binary string s, let us
define ns = |{i, s is a prefix of b(T [i, i + t− 1])}|. Thus, if we consider vector

23

Broot, its representation takes nH0(Broot) = −n0 log n0

n
− n1 log n1

n
.

Consider now the vectors B for the two children of the root. The entropy
part of their representations add up −n00 log n00

n0
− n01 log n01

n0
− n10 log n10

n1
−

n11 log n11

n1
. We notice that n0 = n00+n01 and n1 = n10+n11. By adding up the

size of representations of the root and its two children, we get −n00 log n00

n
−

n01 log n01

n
− n10 log n10

n
− n11 log n11

n
bits. This can be extended inductively to

log σ levels, so that the sum of all the representations from the root to level
log σ − 1 is

−
∑

s∈{0,1}log σ

ns log
ns

n
= nH0(T),

where 0 log 0 = 0.

Similarly, starting from each node v such that s(v) ∈ {0, 1}logσ, we have that
nH0(Bv) = −ns(v)0 log

ns(v)0

ns(v)
−ns(v)1 log

ns(v)1

ns(v)
, and all the B vectors in the next

log σ levels of its subtree add up

−
∑

s∈{0,1}log σ

ns(v)s log
ns(v)s

ns(v)

.

Summing this for all the nodes representing all the possible s(v) ∈ {0, 1}log σ,
we have

−
∑

s,s′∈{0,1}log σ

nss′ log
nss′

ns

= nH1(T).

This can be continued inductively until level t log σ, to show that the overall
space is

n
t−1∑

k=0

Hk(T) + O(nt logσ log log n/ log n)

bits. For incompressible texts this is nt log σ(1 + o(1)), but for compressible
texts it may be significantly less.

Higher arity trees. A generalization of the rank/select data structures [33]
permit handling sequences with alphabets of size up to O(polylog(n)) with
constant time rankc and selectc [14]. Instead of handling one bit of b(T [i, i +
t − 1]) at a time, we could handle a bits at a time. This way, our binary
tree would be 2a-ary instead of binary. Instead of a sequence of bits Bv at
each node, we would store a sequence Bv of integers in [0, a − 1]. As long as
2a = O(polylog(n)) (that is, a = O(log log n)), we can index those sequences
Bv with the generalized data structure so as to answer in constant time the
rank/select queries we need to navigate the tree.

The search algorithm is adapted in the obvious way. When going down to
the d-th child of node v, 0 ≤ d < a, we update iv to ivd

= rankd(Bv, iv)

24

and, similarly, when going up to v from child d, iv = selectd(Bv, ivd
). Note

that a must divide log σ to ensure that any pattern search will arrive exactly
at a tree node. The overall time is O(m log(σ)/a) = O(m⌈log σ/ log log n⌉),
either for counting or for locating an occurrence. This is O(m) whenever σ =
O(polylog(n)).

We note that it is necessary, again, to concatenate all sequences at each tree
level, so that the limit a = O(log log n) remains constant as we descend in the
tree. For space occupancy related to entropy, the analysis is very similar; we
just consider a bits at once.

Compared to the solution of Section 3.2 requiring O(n log n) bits of space and
O(m + log n) counting time, we can use t = O(logσ n) to achieve the same
space complexity, so that any query of length up to t can be answered. The
structure of this section is faster than that of Section 3.2 in this range of
m values. Compared to the faster structure requiring O(n log1+ǫ n) bits and
O(m) counting time, this structure could answer in the same space counting
queries on patterns of length up to O(logσ n logǫ n). The time for counting is
better than the previous structure for m = O(log log n).

Substring rank and select Substring rank can be solved again by resorting
to counting. Substring select requires more care. We search for s in the tree
starting with range [l, r] = [1, n]. We end up at some node v (such that s(v) =
b(s)) with [lv, rv]. To solve selects(T, j) we take entry lv + j− 1 at node v and
walk the tree upwards until finding the position in the root node, and that
position is the answer. This takes overall time O(|s|⌈logσ/ log log n⌉) (just as
for ranks), and requires O(nt log σ) bits of space (or less if T is compressible),
so that t is fixed at indexing time and the index works for any |s| ≤ t.

4 Conclusions

We have addressed several important generalizations of well-studied problems
in string matching and succinct data structures. In particular, those prob-
lems find applications to compressed text indexing when combined with the
Burrows-Wheeler transform.

First, we gave a new implementation of rank and select queries over sparse
bit arrays based on gap encoding. This new representation obtains almost the
same bounds as the best known structure. We also show a connection to the
searchable partial sums problem.

Second, we generalized rank and select queries on sequences to substring rank

25

and select, where the occurrences of any substring s can be tracked instead
of only characters. Our time complexities are slightly over the ideal O(|s|).
These extended queries turned out to be particular cases of the more pow-
erful position-restricted searching, where the search can be done inside any
text substring. We have obtained space and time complexities close to those
obtained for the basic problem, and moreover, we have shown that arbitrary
occurrences can be delivered in text position order.

In addition, we have shown some interesting connections between well-known
two-dimensional range search data structures by Chazelle and recent data
structures for compressed text indexing (the wavelet trees by Grossi et al.).
We also showed how modern rank queries permit implementing Chazelle’s
structure using less space and adding some extra functionality to it.

Some interesting open questions are (1) whether we can answer position-
restricted counting queries in O(m) time and locating each result in O(1)
time with structures taking O(n logn) bits of space, or even better, com-
pressed data structures requiring O(nHk) bits of space; and (2) whether we
can answer rank and select queries for a substring s in O(|s|) time.

References

[1] S. Alstrup, G. Brodal, and T. Rahue. New data structures for orthogonal range
searching. In Proc. 41st IEEE Symposium on Foundations of Computer Science
(FOCS), pages 198–207, 2000.

[2] A. Apostolico. The myriad virtues of subword trees. In Combinatorial
Algorithms on Words, NATO ISI Series, pages 85–96. Springer-Verlag, 1985.

[3] T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prentice Hall,
Englewood Cliffs, New Jersey, 1990.

[4] D. Benoit, E. Demaine, I. Munro, R. Raman, V. Raman, and S. Rao.
Representing trees of higher degree. Algorithmica, 43:275–292, 2005.

[5] I. Bialynicka-Birula and R. Grossi. Rank-sensitive data structures. In Proc.
12th International Symposium on String Processing and Information Retrieval
(SPIRE), LNCS v. 3772, pages 79–90, 2005.

[6] D. Blandford and G. Blelloch. Compact representations of ordered sets. In
Proc. 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 11–19, 2004.

[7] M. Burrows and D. Wheeler. A block sorting lossless data compression
algorithm. Technical Report 124, Digital Equipment Corporation, 1994.

[8] B. Chazelle. A functional approach to data structures and its use in
multidimensional searching. SIAM Journal on Computing, 17(3):427–462, 1988.

26

[9] D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1996.

[10] P. Elias. Universal codeword sets and representation of the integers. IEEE
Transactions on Information Theory, 21(2):194–20, 1975.

[11] P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting textual
compression in optimal linear time. OJO, 2005.

[12] P. Ferragina and G. Manzini. Indexing compressed texts. Journal of the ACM,
52(4):552–581, 2005.

[13] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. An alphabet-friendly
FM-index. In Proc. 11th International Symposium on String Processing and
Information Retrieval (SPIRE), LNCS v. 3246, pages 150–160, 2004.

[14] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed
representation of sequences and full-text indexes. ACM Transactions on
Algorithms, 2006. To appear. Also as TR 2004-05, Technische Fakultät,
Universität Bielefeld, Germany, December 2004.

[15] P. Ferragina and R. Venturini. A simple storage scheme for strings achieving
entropy bounds. In Proc. 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2007. To appear.

[16] A. Golynski. Optimal lower bounds for rank and select indexes. Theoretical
Computer Science, 2006. Appears in this volume.

[17] R. González and G. Navarro. Statistical encoding of succinct data structures.
In Proc. 17th Annual Symposium on Combinatorial Pattern Matching (CPM),
LNCS 4009, pages 295–306, 2006.

[18] R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes.
In Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 841–850, 2003.

[19] R. Grossi, A. Gupta, and J. Vitter. When indexing equals compression:
Experiments with compressing suffix arrays and applications. In Proc. 15th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 636–
645, 2004.

[20] R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM Journal on
Computing, 35(2):378–407, 2006.

[21] A. Gupta, W.-K. Hon, R. Shah, and J. Vitter. Compressed data structures:
dictionaries and data-aware measures. In Proc. 5th International Workshop on
Experimental Algorithms (WEA), pages 158–169, 2006.

[22] G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th IEEE Symp.
Foundations of Computer Science (FOCS), pages 549–554, 1989.

[23] G. Jacobson. Succinct Static Data Structures. PhD thesis, Carnegie Mellon
University, 1989.

27

[24] J. Kärkkäinen. Repetition-based text indexes. PhD thesis, Dept. of Computer
Science, University of Helsinki, Finland, 1999. Report A-1999-4.

[25] V. Mäkinen and G. Navarro. Dynamic entropy-compressed sequences and
full-text indexes. In Proc. 17th Annual Symposium on Combinatorial Pattern
Matching (CPM), LNCS 4009, pages 306–317, 2006.

[26] U. Manber and G. Myers. Suffix arrays: a new method for on-line string
searches. SIAM Journal on Computing, pages 935–948, 1993.

[27] G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the
ACM, 48(3):407–430, 2001.

[28] I. Munro. Tables. In Proc. 16th Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), LNCS 1180, pages 37–42, 1996.

[29] G. Navarro. Indexing text using the Ziv-Lempel trie. Journal of Discrete
Algorithms, 2(1):87–114, 2004.

[30] G. Navarro and V. Mäkinen. Compressed full-text indexes. Technical Report
TR/DCC-2006-6, Department of Computer Science, University of Chile, April
2006. ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/survcompr2.ps.gz.
Submitted to a journal.

[31] R. Pagh. Low redundancy in dictionaries with o(1) worst case lookup time. In
Proc. ICALP’99, pages 595–604, 1999.

[32] R. Raman, V. Raman, and S. Srinivasa Rao. Succinct dynamic data structures.
In Proc. WADS’01, pages 426–437, 2001.

[33] R. Raman, V. Raman, and S. Srinivasa Rao. Succinct indexable dictionaries
with applications to encoding k-ary trees and multisets. In Proc. 13th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 233–242, 2002.

[34] K. Sadakane. Succinct representations of lcp information and improvements in
the compressed suffix arrays. In Proc. SODA’02, pages 225–232, 2002.

[35] K. Sadakane. New text indexing functionalities of the compressed suffix arrays.
Journal of Algorithms, 48(2):294–313, 2003.

[36] K. Sadakane and R. Grossi. Squeezing succinct data structures into entropy
bounds. In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1230–1239, 2006.

28

