
Engineering a Compressed Suffix Tree

Implementation

Niko Välimäki1, Wolfgang Gerlach2, Kashyap Dixit3 ⋆, and Veli
Mäkinen1 ⋆

1 Department of Computer Science, University of Helsinki, Finland.
{nvalimak,vmakinen}@cs.helsinki.fi

2 Technische Fakultät, Universität Bielefeld, Germany.
wgerlach@cebitec.uni-bielefeld.de

3 Department of Computer Science and Engineering
Indian Institute of Technology, Kanpur, India

kdixit@iitk.ac.in

Abstract. Suffix tree is one of the most important data structures in
string algorithms and biological sequence analysis. Unfortunately, when
it comes to implementing those algorithms and applying them to real
genomic sequences, often the main memory size becomes the bottleneck.
This is easily explained by the fact that while a DNA sequence of length
n from alphabet Σ = {A, C, G, T} can be stored in n log |Σ| = 2n bits,
its suffix tree occupies O(n log n) bits. In practice, the size difference
easily reaches factor 50.
We report on an implementation of the compressed suffix tree very re-
cently proposed by Sadakane (Theory of Computing Systems, in press).
The compressed suffix tree occupies space proportional to the text size,
i.e. O(n log |Σ|) bits, and supports all typical suffix tree operations with
at most log n factor slowdown. Our experiments show that, e.g. on a 10
MB DNA sequence, the compressed suffix tree takes 10% of the space
of normal suffix tree. At the same time, a representative algorithm is
slowed down by factor 30.
Our implementation follows the original proposal in spirit, but some in-
ternal parts are tailored towards practical implementation. Our construc-
tion algorithm has time requirement O(n log n log |Σ|) and uses closely
the same space as the final structure while constructing it: on the 10 MB
DNA sequence, the maximum space usage during construction is only
1.4 times the final product size.

1 Introduction

Myriad non-trivial combinatorial questions concerning strings turn out to
have efficient solutions via extensive use of suffix trees [2]. As a theoret-
ical tool, suffix trees have a fundamental role in plethora of algorithmic

⋆ Funded by the Academy of Finland under grant 108219.

results in the area of string matching and sequence analysis. Bioinformat-
ics is a field where suffix trees would seem to have the strongest practical
potential; unlike the natural language texts formed by words and delim-
iters (enabling specialized data structures like inverted files), biological
sequences are streams of symbols without any predefined word bound-
aries.. Suffix trees treat any substring equally, regardless of it being a
word or not. This perfect synergy has created a vast literature describing
suffix tree -based algorithms for sequence analysis problems, see e.g. [13].
Several implementations exist as well, like STRMAT, WOTD, LIBSTREE, and
MUMMER1, to name a few.

Unfortunately, the theoretically attractive properties of suffix trees
do not always meet the practical realm. A bottleneck to the wide-spread
use of suffix trees in Bioinformatics is their immense space consumption.
Even for a reasonable size genomic sequence of 100 MB, its suffix tree may
require 5 GB of main memory. This phenomenon is not just a consequence
of constant factors in the implementation of the structure, but rather
an asymptotic effect. When examined more carefully, one notices that a
sequence of length n from an alphabet Σ requires only n log |Σ| bits of
space, whereas its suffix tree requires O(n log n) bits. Hence, the space
requirement is by no means linear when measured in bit-level.

The size bottleneck of suffix trees has made the research turn into
looking for more space-economic variants of suffix trees. One popular
alternative is the suffix array [20]. It basically removes the constant factor
of suffix trees to 1, as what remains from suffix trees is a lexicographically
ordered array of starting positions of suffixes in the text. That occupies
n log n bits. Many tasks on suffix trees can be simulated by log n factor
slowdown using suffix arrays. With three additional tables, suffix arrays
can be enhanced to support typical suffix tree operations without any
slowdown [1].

A recent twist in the development of full-text indexes is the use of ab-
stract data structures; the operations supported by a data structure are
identified and the best possible implementation is sought for that sup-
ports those operations. This line of development has led to compressed
suffix arrays [12, 9] (see [24] for more references). These data structures
take, in essence, n log |Σ|(1 + o(1)) bits of space, being asymptotically
space-optimal. For compressible sequences they take even less space. More
importantly, they simulate suffix array operations with logarithmic slow-

1 http://www.cs.ucdavis.edu/˜gusfield/strmat.html, http://bibiserv.techfak.uni-
bielefeld.de/wotd/, http://www.cl.cam.ac.uk/˜cpk25/libstree/,
http://sourceforge.net/projects/mummer/

downs. These structures are also called self-indexes as they do not need
the text to function; the text is actually represented compressed within
the index.

Very recently Sadakane [25] extended the abstract data structure con-
cept to cover suffix trees, identifying typical operations suffix trees are as-
sumed to possess. Some of these operations, like navigating in a tree, were
already extensively studied by Munro, Raman, and Rao [22]. In addition
to these navigational operations, suffix trees have several other useful op-
erations such as suffix links, constant time lowest common ancestor (lca)
queries, and pattern search capabilities. Sadakane developed a fully func-
tional suffix tree structure by combining compressed suffix arrays with
several other non-trivial new structures. Each operation was supported
by at most log n slowdown, often the slowdown being only constant. The
space requirement was shown to be still asymptotically optimal, more ac-
curately, |CSA|+6n+o(n) bits, where |CSA| is the size of the compressed
suffix array used.

This paper studies an implementation of Sadakane’s compressed suf-
fix tree. We implemented the structure following closely the original pro-
posal [25]. In addition, we considered the issue of space-efficient construc-
tion, studying the following subtasks: (1) How to construct the Burrows-
Wheeler transform on which the compressed suffix arrays are based on;
(2) storing sampled text/suffix array positions; (3) direct construction
of compressed longest common prefix information, and (4) construction
of balanced parentheses representation of suffix tree directly from com-
pressed suffix array. Tasks (1), (3) and (4) have been considered in [15]
and later improved in [16] so as to obtain an O(n logǫ n) time algorithm
to construct compressed suffix trees, where ǫ > 0. Task (2) is related
to our choice of implementing compressed suffix arrays using structures
evolved from FM-index [9], and is tackled in this paper. Also for task (3)
our solution variates slightly from [15] as we build on top of the suffixes-
insertion algorithm [6] and they build on top of the post-order traversal
algorithm of [17]. The final time-requirement of our implementation is
O(n log n log |Σ|), being reasonably close to the best current theoretical
result [16].

The outline of the article is as follows. Section 2 gives the basic def-
initions and a very cursory overview of Sadakane’s structure. Section 3
explains how we implemented compressed suffix arrays (related to task
(1)) and provides a solutions to task (2). Section 4 describes the solution
hinted in [15] for task (3). Section 5 gives an overview of balanced paren-
theses and describes our construction algorithm, solving task (4). Sec-

tion 6 explains how we implemented the lowest common ancestor struc-
ture by adding a space-time tradeoff parameter. We conclude with some
illustrative experimental results in Sect. 7.

The software package can be downloaded from
http://www.cs.helsinki.fi/group/suds/cst/. Also a technical report
is available there that contains the full implementation details that are
omitted here for the lack of space.

2 Preliminaries

A string T = t1t2 · · · tn is a sequence of characters from an ordered
alphabet Σ. A substring of T is any string Ti...j = titi+1 · · · tj, where
1 ≤ i ≤ j ≤ n. A suffix of T is any substring Ti...n, where 1 ≤ i ≤ n. A
prefix of T is any substring T1...j, where 1 ≤ j ≤ n.

Definition 1. (Adopted from [13]) The keyword trie for set P of strings
is a rooted directed tree K satisfying three conditions: (1) Each edge is
labeled with exactly one character; (2) any two edges out of the same
node have distinct labels; (3) every pattern P of P maps to some node v
of K such that the characters on the path from the root of K to v spell out
P , and every leaf of K is mapped to by some string in P.

Definition 2. The suffix trie of text T is a keyword trie for set S, where
S is the set of all suffixes of T .

Definition 3. The suffix tree of text T is the path-compressed suffix
trie of T , i.e., a tree that is obtained by representing each maximal non-
branching path of the suffix trie as a single edge labeled by the catenation
of the labels in the corresponding edges of the suffix trie. The edge labels
of suffix tree correspond to substrings of T ; each edge can be represented
as a pair (l, r), such that Tl...r gives the label.

A path label of a node v is the catenation of edge labels from root to
v. Its length is called string depth. The number of edges from root to v
is called node depth. The suffix link sl(v) of an internal node v with path
label xα, where x denotes a single character and α denotes a possibly
empty substring, is the node with path label α.

A typical operation on suffix trees is the lowest common ancestor
query, which can be used to compute the longest common extension
lce(i, j) of arbitrary two suffixes Ti...n and Tj...n: Let v and w be the
two leaves of suffix tree have path labels Ti...n and Tj...n, respectively.

Then the path label α of the lowest common ancestor node of v and w is
the longest prefix shared by the two suffixes. We have lce(i, j) = |α|.

The following abstract definition captures the above mentioned typical
suffix tree operations.

Definition 4. An abstract suffix tree for a text supports the following
operations:

1. root(): returns the root node.
2. isleaf(v): returns Yes if v is a leaf, and No otherwise.
3. child(v, c): returns the node w that is a child of v and the edge (v,w)

begins with character c, or returns 0 if no such child exists.
4. sibling(v): returns the next sibling of node v.
5. parent(v): returns the parent node of v.
6. edge(v, d): returns the d-th character of the edge-label of an edge point-

ing to v.
7. depth(v): returns the string depth of node v.
8. lca(v,w): returns the lowest common ancestor between nodes v and

w.
9. sl(v): returns the node w that is pointed to by the suffix link from v.

2.1 Overview of Compressed Suffix Tree

Sadakane [25] shows how to implement each operation listed in Def. 4 by
means of a sequence of operations on (1) compressed suffix array, (2) lcp-
array 2, (3) balanced parentheses representation of suffix tree hierarchy,
and (4) a structure for lca-queries. In the following sections we explain
how we implemented those structures.

3 Compressed Suffix Array

Suffix array is a simplified version of suffix tree; it only lists the suffixes
of the text in lexicogaphic order. Let SA[1 . . . n] be a table such that
TSA[i]...n gives the i-th smallest suffix in lexicographic order. Notice that
this table can be filled by a depth-first traversal on suffix tree following
its edges in lexicogaphic order.

As the array SA takes n log n bits, there has been considerable effort
in building compressed suffix arrays to reduce its space requirement, see
[24]. The following captures typical suffix array operations on an abstract
level.
2 Sadakane [25] uses name Height-array.

Definition 5. An abstract suffix array for a text T supports the following
operations:

– lookup(i): returns SA[i],

– inverse(i): returns j = SA−1[i], defined such that SA[j] = i,

– Ψ(i): returns SA−1[SA[i] + 1], and

– substring(i, l): returns T [SA[i] . . . SA[i] + l − 1].

3.1 Our Implementation

We used Succinct Suffix Array (SSA) of [18] to implement the abstract
suffix array operations. The base structure is the wavelet tree [11] build
on the Burrows-Wheeler transform [3]. The Burrows-Wheeler transform
T bwt is defined as T bwt[i] = TSA[i]−1 (where SA[i] − 1 = SA[n] when

SA[i] = 1). A property of T bwt used in compressed suffix arrays is so-
called LF -mapping: LF (i) = i′ such that SA[i′] = SA[i] − 1.

It can be shown [9] that LF -mapping can computed by the means of
T bwt:

Lemma 1 ([9]). Let c = T bwt[i]. Then

LF (i) = C[c] + rankc(T
bwt, i), (1)

where C[c] is the the number of positions of T bwt containing a character
smaller than c and rankc(T

bwt, i) tells how many times character c occurs
upto position i in T bwt.

Table C[1 . . . |Σ|] can be stored as is in |Σ| log n bits of space, and
space-efficient data structures built for storing rankc-function values. For
example, a simplified version of the wavelet tree (see [18, Sect. 5]) stores
those values in n log |Σ|(1 + o(1)) bits so that each rankc value (as well
as value T bwt[i]) can be computed in O(log |Σ|) time.

Rest of the abstract suffix array operations can be supported by stor-
ing sampled suffix array values (and sampled inverse suffix array values)
and using LF -mapping to simulate those operations. These additional
structures occupy together 2n

R
log n+n(1+ o(1) bits, where R is the sam-

ple rate used. See the full version of this article for details or consult [24],
where these are explained for lookup() and substring(); Ψ() and inverse()
are analogous.

In our implementation, we use the Huffman-tree shape as advised in
[18], so that the structure takes overall 2n

R
log n+n(H0 +2)(1+ o(1)) bits

of space and supports all the abstract suffix array operations in O(R ·H0)
average time. (Worst case O(R·log n).) Here H0 is the zeroth order entropy
of T . Recall that H0 ≤ log |Σ|. Fixing any R = Ω(log n

log |Σ|), the structure

takes O(n log |Σ|) bits.

Space-efficient Construction via Dynamic Structure. The construction of
the structure is done in two phases. First the Burrows-Wheeler transform
is constructed, then the additional structures.

The first phase can be executed in O(n log n log |Σ|) time and using
nH0 +o(n log |Σ|) bits of space by using the dynamic self-index explained
in [19]. We implemented the simplified version that uses O(n log |Σ|) bits:
Instead of using the more complicated solution to solve rank-queries on
dynamic bitvectors, we used the O(n) bits structure of [4] (see also [19,
Sect. 3.2]). Using this inside the dynamic wavelet trees of [19], one ob-
tains the claimed result (see the paragraph just before Sect. 6 in [19]).
The result is actually a dynamic wavelet tree of the Burrows-Wheeler
transform supporting rankc-queries in O(log n log |Σ|) time. This is eas-
ily converted into a static structure of the original SSA (in time linear
in the size of the structure) that supports rankc-queries in O(log |Σ|)
time. In our implementation, we use the Huffman-shaped wavelet tree
to improve the space to O(nH0) bits. This conversion is also easily done
by extracting the Burrows-Wheeler transform from the dynamic wavelet
tree with a depth-first traversal and creating the Huffman-balanced static
wavelet tree instead as in [18].

The rest of the structures to support abstract suffix array operations
can be constructed afterward in O(n log |Σ|) time using LF -mapping. We
leave the details for the full version.

4 lcp-array

Array lcp[1 . . . n − 1] is used to store the longest common prefix infor-
mation between consecutive suffixes in the lexicographic order. That is,
lcp[i] = |prefix(TSA[i]...n, TSA[i+1]...n)|, where prefix(X,Y) = x1 · · · xj

such that x1 = y1, x2 = y2, . . . , xj = yj, but xj+1 6= yj+1. Sadakane
[25] describes a clever encoding of the lcp-array that uses 2n + o(n) bits.
The encoding is based on the fact that values i + lcp[i] are increasing
when listed in the text position order; sequence S = s1, . . . , sn−1 =
1 + lcp[SA−1[1]], 2 + lcp[SA−1[2]], . . . , n − 1 + lcp[SAn−1[n − 1]] is in-
creasing.

To encode the increasing list S, it is enough to encode each diff(i) =
si − si−1 in unary: 0diff(i)1, where we assume s0 = 0 and 0d denotes

repetition of 0-bit d-times. This encoding, call it H, takes at most 2n bits.
We have the connection diff(k) = select1(H, k) − select1(H, k − 1) − 1,
where select1(H, k) gives the position of the k-th 1-bit in H. Bitvector
H can be preprocessed to answer select1(H, k)-queries in constant time
using o(|H|) bits extra space [21].

Computing lcp[i] can now be done as follows. Compute k = SA[i]
using lookup(i). Value lcp[i] equals select1(H, k) − k.

Kasai et al. [17] gave a linear time algorithm to construct lcp-array
given SA. One can easily modify Kasai et al. algorithm to directly give
H [15]. The construction uses no extra memory in addition to text, com-
pressed suffix array, and the outcome of size 2n + o(n) bits. Using the
compressed suffix array explained earlier in this paper, the time require-
ment is O(n log n).

5 Balanced Parentheses

The balanced parenthesis representation P of a tree is produced by a
preorder traversal printing ′(′ whenever a node is visited the first time,
and printing ′)′ whenever a node is visited the last time [22]. Letting
′(′= 1 and ′)′ = 0, the sequence P takes 2u bits on a tree of u nodes. A
suffix tree of n leaves can have at most n − 1 internal nodes, and hence
its balanced parenthesis representation takes at most 4n bits.

Munro, Raman, and Rao [22] explain how to simulate tree traversal
by means of P . After building several structures of sublinear size, one
can go e.g. from node to its first child, from node to its next sibling,
and from node to its parent, each in constant time. Sadakane [25] lists
many other operations that are required in his compressed suffix tree. All
these navigational operations can be expressed as combinations of the
following functions: rankp, selectp, findclose, and enclose. Here p is a
constant size bitvector pattern, e.g. 10 expresses an open-close parenthesis
pair. Function rankp(P, i) returns the number of occurrences of p in P
upto position i. Function selectp(P, j) returns the position of the j-th
occurrences of p in P . Function findclose(P, i) returns the position of
the matching closing parenthesis for the open parenthesis at position i.
Function enclose(P, i) returns the open parenthesis position of the parent
of the node whose open parenthesis is at position i.

5.1 Our Implementation

We used the existing rank and select implementations that are explained
and experimented in [10]. We leave for the full version the explanation

how we modified these solutions to the case of short patterns p, as the
original implementations assume p = 1. For findclose and enclose we
used Navarro’s implementations explained in [23] that are based on [22].

5.2 Space-efficient Construction via LCP Information

To build balanced parentheses sequence of suffix tree space-efficiently one
cannot proceed naively; doing preorder traversal on a pointer-based suf-
fix tree requires O(n log n) bits of extra memory. We consider a new ap-
proach that builds the parentheses sequence incrementally. Very similar
algorithm is already given in [15], and hence we only sketch the main idea
and differences.

Recall from [6, Theorem 7.5, p. 97] the suffixes-insertion algorithm
to construct suffix tree from LCP information: The algorithm adds suf-
fixes in lexicographic order into a tree, having the keyword tree of suffixes
TSA[1]...n, TSA[2]...n, . . . , TSA[i]...n ready after i-th step. Suffix TSA[i+1]...n is
then added after finding bottom-up from the rightmost path of the tree
the correct insertion point. That is, the split node v closest to the right-
most leaf (corresponding to suffix TSA[i]...n) whose string depth is smaller
or equal to lcp[i] is sought for. If the depth is equal, then a new leaf
(corresponding to suffix TSA[i+1]...n) is created as its child. Otherwise,
its outgoing rightmost edge is split, a new internal node is inserted in
between, and the leaf corresponding to suffix TSA[i+1]...n is added as its
rightmost child.

To obtain a space-efficient version of the algorithm, we maintain the
balanced parentheses representation of the tree at each step. Unfortu-
nately, the parentheses structure does not change sequentially, so we
need to maintain it using a dynamic bitvector allowing insertions of bits
(open/close parentheses) inside it. Such bitvector can be maintained using
O(n) bits of space so that accessing the bits and inserting/deleting takes
O(log n) time [4, 19]. In addition to the balanced parentheses to store the
tree hierarchy, we need more operations on the rightmost path; we need
to be able to virtually browse the rightmost path from leaf to root as
well as to compute the the string depth of each node visited. It happens
that the string and node depths are monotonic on the rightmost path,
and during the algorithm one only needs to modify them from the tail.
Such monotonic sequences of numbers, whose sum is O(n), can be stored
in O(n) bits using integer codes like Elias δ-code [7]. We leave the de-
tails to the full version. Hence we can construct the balanced parentheses
sequence in O(n log n) time using O(n) bits working space.

The difference to Hon and Sadakane algorithm [15] is mainly on the
conceptual level. They build on top of an algorithm in [17] that simulates
the post-order traversal of suffix tree given the lcp-values. When making
that algorithm space-efficient, the end result is very close to ours.3

Implementation remark. A practical bottleneck found when running ex-
periments on the first versions of the construction above was the space
reserved for Elias codes. The estimated worst case space is O(n) bits but
this rarely happens on practical inputs. We chose to reserve initially o(n)
bits and double the space if necessary. The parameters were chosen so that
the doubling does not affect the overall O(n log n) worst case time require-
ment. This reduced the maximum space usage during the construction on
common inputs significantly.

6 Lowest Common Ancestor Structure

Farach-Colton and Bender [8] describe a O(n log n) bits structure that
can be preprocessed for a tree in O(n) time to support constant time
lowest common ancestor (lca) queries. Sadakane [25] modified this struc-
ture to take O(n) bits of space without affecting the time requirements.
We implemented Sadakane’s proposal that builds on top of the balanced
parentheses representation of previous section, adding lookup tables tak-
ing o(n) bits.

Implementation remark. While implementing Sadakane’s proposal, we
faced a practical problem; one of the sublinear structures for lca-queries
takes space n(log log n)2/ log n bits, which on practical inputs is consid-
erable amount: This lookup table was taking half the size of the com-
plete compressed suffix tree on some inputs. To go around this bottle-
neck, we added a space-time tradeoff parameter K such that using space
n(log log n)2/(K log n) bits for this structure, one can answer lca-queries
in time O(K).

3 The handling of P is not quite complete in [15]: in some extreme cases, their al-
gorithm might need O(n log n) bits space. This can be fixed by adding a similar
handling of node depths as in our algorithm (their algorithm already has very sim-
ilar handling of string depths). Alternatively, Hon [14, page 59] describes another
solution that goes around this problem.

7 Experimental Results

We report some illustrative experimental results on a 50 MB DNA se-
quence 4. We used a version of the compressed suffix tree CST whose
theoretical space requirement is nH0 + 10n + o(n log |Σ|) bits; other vari-
ants are possible by adjusting the space/time tradeoff parameters. Here
n(H0 + 1)(1 + o(1)) + 3n comes from the compressed suffix array CSA,
and 6n + o(n) from the other structures. The maximum average slow-
down on suffix tree operations is O(log n log |Σ|) under this tradeoff. The
experiments were run on a 2.6GHz Pentium 4 machine with 1GB of main
memory. Programs were compiled using g++ (GCC) compiler version
4.1.1 20060525 (Red Hat 4.1.1-1) and -O3 optimization parameters.

We compared the space usage against classical text indexes: a stan-
dard pointer-based implementation of suffix trees ST, and a standard suffix
array SA were used. We also compared to the enhanced suffix array ESA

[1]; we used the implementation that is plugged into the Vmatch software
package5. For suffix array construction, we used the bpr algorithm [26]
that is the currently the fastest construction algorithm in practice.

Figure 1 reports the space requirements on varying length prefixes of
the text. One can see that the achieved space-requirement is attractive;
CST takes less space than a plain suffix array.

We also measured the maximum space usage for CSA and CST during
the construction. These values (CSA, max and CST, max) are quite satis-
factory; the maximum space needed during construction is only 1.4 times
larger than the final space.

For the time requirement comparison, we measured both the construc-
tion time and the usage time (see Fig. 2). For the latter, we implemented a
well-known solution to the longest common substring (LCSS) problem us-
ing both the classical suffix tree and the compressed suffix tree. For sanity
check, we also implemented an O(n3) (O(n2) expected case) brute-force
algorithm.

The LCSS problem asks to find the longest substring C shared by two
given input strings A and B. The solution using suffix tree is evident:
Construct the suffix tree of the concatenation A$B, search for the node
whose string depth is largest and its subtree contains both a suffix from
A and from B. Notice, that no efficient solution without using suffix tree
-alike data structures is known.

4 http://pizzachili.dcc.uchile.cl/texts/dna/dna.50MB.gz
5 http://www.vmatch.de

Fig. 1. Comparison of space requirements. We have added the text size to the SA and ST

sizes, as they need the text to function as indexes, whereas CSA and CST work without.
Here ST-heapadmin is the space used by suffix tree without the overhead of heap; this
large overhead is caused due to the allocation of many small memory fragments. For
other indexes, the heap overhead is negligible. Three last values on the right report the
maximum space usage during the construction (for ESA and ST the maximum is the
same as the final space requirement).

Fig. 2. Comparison of time requirements. For LCSS, we treated the first half of the
sequence as A, the second as B. We plotted the expected behaviour, 2n log n, for
reference. The more dense sampling of x-values is to illustrate the brute-force algorithm
behaviour. After 30MB, suffix tree did not fit into main memory. This constitutes a
huge slowdown because of swapping to disk.

Finally, to get an idea how much different types of algorithms will
slow down when using the CST instead of ST, we measured the average
execution times of some key operations. We used the DNA sequence prefix
of length 5 million for the experiment and ran each operation repeatedly
over the nodes of ST and CST, respectively, to obtain reliable average
running time per operation. The results are shown in Table 1.

Table 1. Average running times (in microseconds) for operations of ST and CST.

tree operation edge(*,1) sl() isleaf() parent() depth() lca()

ST 0, 14 0, 09 0, 09 - - -
CST 13, 12 11, 07 0, 05 0, 11 4, 56 6, 66

Notice that ST does not support parent(), depth(), and lca() functions.
Such functionalities are often assumed in algorithms based on suffix trees.
They could be be added to the classical suffix tree as well (two first easily),
but this would again increase the space requirement considerably. That
is, the space reduction may in practical settings be even more than what
is shown in Fig. 1.

These experiments show that even though the compressed suffix tree
is significantly slower than a classical suffix tree, it has an important
application domain on genome-scale analysis tasks; when memory is the
bottleneck for using classical suffix trees and brute-force solutions are too
slow, compressed suffix trees can provide a new opportunity to solve the
problem at hand without running out of space or time. 6

References

1. M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced
suffix arrays. Journal of Discrete Algorithms, 2:53–86, 2004.

2. A. Apostolico. The myriad virtues of subword trees. In Combinatorial Algorithms
on Words, NATO ISI Series, pages 85–96. Springer-Verlag, 1985.

3. M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report Technical Report 124, Digital Equipment Corporation, 1994.

4. W.-L. Chan, W.-K. Hon, and T.-W. Lam. Compressed index for a dynamic col-
lection of texts. In Proc. CPM’04, LNCS 3109, pages 445–456, 2004.

6 Notice that our suffix tree implementation is not tuned for secondary memory use.
When such tuning is done, the slowdown gets very close to that of compressed suffix
trees in main memory [5]. Comparison between these two approaches is left for future
work.

5. C.-F. Cheung, J. X. Yu, and H. Lu. Constructing suffix tree for gigabyte sequences
with megabyte memory. IEEE Transactions on Knowledge and Data Engineering,
17(1):90–105, 2005.

6. M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific, 2002.
7. P. Elias. Universal codeword sets and representation of the integers. IEEE Trans-

actions on Information Theory, 21(2):194–20, 1975.
8. M. Farach-Colton and M. A. Bender. The lca problem revisited. In Proc.

LATIN’00, pages 88–94, 2000.
9. P. Ferragina and G. Manzini. Indexing compressed texts. Journal of the ACM,

52(4):552–581, 2005.
10. R. González, Sz. Grabowski, V. Mäkinen, and G. Navarro. Practical implemen-

tation of rank and select queries. In Poster Proceedings Volume of 4th Workshop
on Efficient and Experimental Algorithms (WEA’05), pages 27–38, Greece, 2005.
CTI Press and Ellinika Grammata.

11. R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes.
In Proc. SODA’03, pages 841–850, 2003.

12. R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM Journal on Computing, 35(2):378–407,
2006.

13. D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

14. W.-K. Hon. On the Construction and Application of Compressed Text Indexes.
PhD thesis, University of Hong Kong, 2004.

15. W.-K. Hon and K. Sadakane. Space-economical algorithms for finding maximal
unique matches. In Proc. CPM’02, pages 144–152, 2002.

16. W.-K. Hon, K. Sadakane, and W.-K. Sung. Breaking a time-and-space barrier in
constructing full-text indices. In Proc. FOCS’03, page 251, 2003.

17. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-
common-prefix computation in suffix arrays and its applications. In Proc. CPM’01,
Springer Verlag LNCS 2089, pages 181–192, 2001.

18. V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding.
Nordic Journal of Computing, 12(1):40–66, 2005.

19. V. Mäkinen and G. Navarro. Dynamic entropy compressed sequences and full-text
indexes. In Proc. CPM’06, LNCS 4009, pages 306–317, 2006.

20. U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing, pages 935–948, 1993.

21. I. Munro. Tables. In Proc. 16th Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS’96), LNCS 1180, pages 37–42, 1996.

22. I. Munro, V. Raman, and S. Rao. Space efficient suffix trees. Journal of Algorithms,
39(2):205–222, 2001.

23. G. Navarro. Indexing text using the Ziv-Lempel trie. Journal of Discrete Algo-
rithms (JDA), 2(1):87–114, 2004.

24. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM
Computing Surveys, 2007. To appear, preliminary version available at
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/survcompr2.ps.gz.

25. K. Sadakane. Compressed suffix trees with full functionality. Theory
of Computing Systems, 2007. To appear, preliminary version available at
http://tcslab.csce.kyushu-u.ac.jp/~sada/papers/cst.ps.

26. K.-B. Schürmann and J. Stoye. An incomplex algorithm for fast suffix array con-
struction. In Proc. ALENEX/ANALCO, pages 77–85, 2005.

