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Abstract

Dimension reduction techniques have been a suc-
cessful avenue for automatically extracting the
“concepts” underlying unstructured data, a task
that naturally arises in fields as diverse as infor-
mation retrieval, image processing, social science,
etc. It is surprising how much can be achieved for
this task using only the raw data itself, without re-
sorting to any additional knowledge or intelligence.
We will survey the most important schemes con-
tributed from the various communities to date, by
commenting on the following aspects: optimization
techniques, the role of normalizations, setting the
parameters, computing time, quality of results, and
the integration of external knowledge.

1 Introduction

Information is made up of units, but humans are
usually interested more in the bigger picture. When
the author was recently searching the web for “non-
negative matrix factorization”, he was actually in-
terested in papers on that topic, not in literal oc-
currences of that phrase. A digital photograph is
made up of millions of pixels, but a human’s in-
terest usually lies more in higher-order features like
shapes etc. An opinion survey’s immediate result
are counts, but the desire is usually to learn about
trends.

In this short paper, we will survey methods for
extracting such concepts automatically, from rep-
resentations of data as (real-valued) matrices. A
suitable such matrix for a collection of text docu-
ments would have each document correspond to a
column and each word correspond to a row, with
a particular entry specifying, for example, how of-
ten that word occurs in that document. In image
processing, a good representation for some of the
methods that follow would be to have a column for
each pixel with rows representing features like coor-
dinates, color, intensity, etc. For an arbitrary col-
lection of objects, if equipped with a measure for
pairwise similarity, a generic representation would

be the (square) matrix of all pairwise similarities.
The basic idea, which we refer to as dimension

reduction, is to approximate a given such m × n
matrix M by a matrix of a given rank k, typically
much smaller than both m and n. In other words,
the goal is to find an m× k matrix C and an k × n
matrix M ′ such that the product C ·M ′, which is a
matrix of rank (at most) k, is a good approximation
to the original matrix M . Calling the columns of C
concepts, each column of M is then approximated
by a linear combination of these concepts, with the
k coefficients given by the corresponding column of
M ′. We remark that some methods only compute
M ′ explicitely, but neither C nor C · M ′. 1

The dimension reduction idea has been applied
in a large variety of contexts, and it is truly amaz-
ing how much can be achieved for the apparently
intelligence-demanding task of extracting underly-
ing concepts that make sense to a human, by ap-
proaches that are completely ignorant of any world
knowledge, relying only on the raw data itself (there
are, of course, limits; we come to this in Sec-
tion 2.6).

The sheer mass of papers published on dimension
reduction schemes is overwhelming. Moreover, con-
tributions come from quite different communitites
(information retrieval, image processing, machine
learning, artifical intelligence, theoretical computer
science, mathematics, even social sciences), each
with their own peculiar terminology and way of
looking at things. What adds to this confusing
complexity is that some papers focus more on so-
called clustering, where each object is assigned to
exactly one concept, while others also consider what
could be called soft clustering, where documents can
be fractionally assigned to several concepts. These
problems are actually more closely related than is
generally realized; the way we described them here
should give a first hint.

1It is also worth noting that while all the methods con-
sidered for this paper compute a decomposition based on
standard matrix multiplication, that is, involving + and ·,
other operations, for example, involving ∨ and ∧, would also
make sense for many applications. The mathematics, how-
ever, usually becomes harder to deal with then.



2 Brief Survey

In the following sections we will survey this large
body of research by viewing it from various angles:
optimization techniques, the role of normalizations,
setting the parameters, computing time, quality of
results, and the integration of external knowledge.
Citations will be in an exemplary (not comprehen-
sive) fashion, with an emphasis on recent results
and our own ongoing research on the topic.

2.1 Optimization techniques

The majority of dimension reduction schemes, and
indeed all considered for this survey, use one of the
following two basic optimization techniques.

In the one technique, widely known as spec-
tral analysis, for a given matrix and some k, the
eigenvectors pertaining to the k largest eigenval-
ues are computed; this corresponds to finding that
k-dimensional subspace from which the objects in
the original space have minimal total euclidean dis-
tance. The other fundamental technique is to use
the so-called expectation maximization (EM) prin-
ciple [9] or a variant of it; this finds a probability
distribution with few degrees of freedom (namely,
the concepts) which generates the given data with
maximum likelihood.

The spectral methods are typically easier to im-
plement and faster to compute, but suffer from the
fact that minimum total euclidean distance is rarely
a realistic objective. More realistic (probabilistic)
data models usually lead to EM-based methods.
These, however, are generally slower, cf. Section 2.4,
and since EM is an iterative local search algorithm,
there is always the risk of getting stuck in a local
minimum.

2.2 Normalizations

Different methods use different normalizations — of
the rows of the matrix or of its columns, by L1, L2,
or L∞ norm, by centering (subtracting the mean),
or any combination of these. This apparent detail
turns out to make a big difference in practice. We
give only two striking examples here, pertaining to
the basic latent semantic indexing (LSI) technique
[8], which was the first successful application of the
dimension reduction idea in information retrieval.

In [18] we compared two of LSI’s widely used vari-
ants and showed that for any given number of terms
and documents, a corpus and query can be con-
structed such that the ranking produced by the one
variant is the complete reverse of the ranking pro-
duced by the other variant. In practice, the effect
is usually not as extreme, of course, but it clearly
shows.

In [13] it was found that on a large document
collection, standard LSI performs worse than basic

text-matching, which the authors attribute to the
unproportionally large weight LSI gives to frequent
terms. To remedy this, they suggested a particu-
lar additional normalization(!). But when compar-
ing this new variant to standard LSI and to ba-
sic text-matching, they found that on each of the
three different collections they considered, a differ-
ent method came out as the (clear) winner.

Another issue in this context is that there are nu-
merous instances in the literature where two meth-
ods, which from the given descriptions look pretty
different, can actually be shown to be identical up
to normalization. We come back to this important
point in the concluding Section 3.

2.3 Setting Parameters

Every dimension reduction scheme comes with one
or more parameters (one is always the number of
concepts), the appropriate setting of which, just
like for the normalizations, is essential for obtain-
ing high-quality results. For most methods there
is no guidance for this choice except empirical ev-
idence. In some methods averaging over different
runs with different parameters makes sense [12]. A
few methods have implicit a quantification of how
well a parameter worked, so they can just try out
values systematically [14].

Unfortunately (or fortunately for those looking
for research problems), there is hardly any theory
for computing a provably good parameter setting
for a given problem instance. Efron [11] surveys
a number of statistically well-founded procedures
for computing a good value k for the number of
concepts, without any performance guarantee how-
ever. A first result of that kind is given in [5],
where for a special type of query a formula is given
which provably computes the optimal dimension for
such queries, i.e., the dimension where the precision
peaks.

2.4 Computing time

The spectral methods are usually based on some
variant of the Lanczos algorithm [6]. For comput-
ing k eigenvectors (which give the k concepts), the
bulk of the running time of Lanczos and related al-
gorithms is spent on computing O(k) matrix-vector
products [6]. This gives a total running time of
O(nz · k), where nz is the number of nonzero en-
tries in the given (typically sparse) matrix.

One iteration of the EM-based methods requires
computation proportional to the amount of the
given data and to the number of concepts. Usually,
sparseness of the given data matrix can be exploited
also here, in which case we have a running time of
O(nz · k) per iteration. A few dozen iterations are
usually sufficient, but even then there is a tangible
performance gap to the spectral methods.



Neither of these bounds imposes a principal limit
on the use of dimension reduction schemes in prac-
tice, not even for huge amounts of data. The EM-
based probabilistic latent semantic indexing (PLSI)
scheme of [12], for example, powers a search engine
for the fairly large MEDLINE database; you can
try it at http://www.nlm.nih.gov/medlineplus/
searchtips.html.

On the other hand, what is peculiar about each
dimension reduction scheme, is that the theoreti-
cal optimum which all the heavy computation is
aimed at, is definitely not the desired optimum.
We already mentioned that eucledian distance (in
the vector space spanned by the columns or rows
of the given matrix) is rarely a meaningful mea-
sure in concept-extraction tasks. One is tempted to
say that the spectral methods work so well in such
a wide variety of contexts not because they mini-
mize certain eucledian distances but rather despite
of this fact. And the EM-based methods are in-
deed principally not run until convergence to avoid
“overoptimization” effects. There may hence well
be other objectives, which are at least as realistic
but easier to optimize.

Steps in that direction have been taken in [15]
and [4], where an attempt is made to explain the
entries of the reduced (by spectral methods) term-
term affinity matrix directly by co-occurrence infor-
mation like distances and number of paths between
terms in the co-occurrence graph (where each term
is a vertex, and there is an edge between two ver-
tices, if the two terms co-occur in at least one doc-
ument).

If the goal is merely to reduce computational cost,
an idea is to sample from the full data, optimize
on the sample, and then extrapolate. For spectral
analysis, there has been theoretical work in that
direction by [10] and [1].

2.5 Quality of results

An assessment of dimension reduction schemes is
difficult, not only theoretically but even empirically,
for the following reason. There is (for good reason)
no mathematical definition of what a good concept
is, and ultimately a human must assess the quality
of a given solution. However, the fully automatic di-
mension reduction approach is especially interesting
for huge amounts of data, which no human can ever
sift manually; for example, how to obtain the set of
all relevant web pages — let’s assume there were
an objective relevance criterion here — for a query
on “non-negative matrix factorization” (at the time
of this writing, Google was indexing 4,285,199,774
pages)? A must-read in that context is [7].

The lack of a formal problem definition is of
course a major obstacle also for solid theoretical
work. Theory still has its place here, however, since

simple models can very well give insights on whether
a method does basic things right or not. A nice re-
sult in that vein was given in [17], where it is proven
that under a number of well-defined and reasonable
assumptions, a simple spectral clustering algorithm
finds the “true” clusters. For soft clustering, a com-
parable result has been given in [2].

In [3] we implemented a tool which allows for an
intuitive, interactive evaluation of the performance
of a dimension reduction scheme on an arbitrary
collection of text documents. This tool permits in-
sight into how a method brought about a certain
result, and why it succeeded in certain aspects and
failed in others; issues that remain completely ob-
scured behind the typical performance figures: ei-
ther carefully selected examples or averages over
a large number of very heterogeneous problem in-
stances. Currently, only the PLSI scheme of [12] is
implemented, but we are working on an interface
that enables a “plug-in” of arbitrary schemes. The
tool can be downloaded from the web [3], and it will
be presented at the workshop.

2.6 External Knowledge

Dimension reduction schemes come to their limit,
when, abstractly speaking, the hints for the un-
derlying concepts cannot be distinguished from the
more random constellations in the data which carry
no specific information. An example would be, in
a document collection, a single rare word being
the only but highly specific hint for a topic; phe-
nomenons of that kind are actually very frequent.
An important aspect of any dimension reduction
scheme is therefore its ability to incorporate some
form of external knowledge.

Most methods actually permit an ad hoc exten-
sion to this scenario. We here mention just one re-
cent, more principled step in that direction. Kam-
var et al. [14] showed how information of the kind
”these two documents certainly (do not) belong to
the same topic” can be plugged into their spectral
dimension reduction scheme. The bottom line of
their investigations was that the performance in-
creases with the amount of such knowledge input
as well as with the amount of the raw mere data.

3 Directions for Future Re-
search

First, given the success of the dimension reduction
idea and the mass of papers published on it, it
would be highly desirable to have a general frame-
work or taxonomy, which in particular would high-
light the commonalities of the various schemes and
where they differ. We already mentioned the vari-
ous instances of apparently different schemes, which



a closer look reveals to be identical up to normal-
ization. Another issue are researchers from different
communitites doing very closely related work under
different names, and in complete ignorance of each
other (e.g., the works of [16] and [12], and their
respective successors).

Second, there is an obvious need for a better the-
oretical underpinning, in particular for an under-
standing of the effects of apparently minor details
like normalizations and the setting of parameters,
which to a high degree influence the actual perfor-
mance. It seems a bit weird to invest large amounts
of effort in complicated algorithms and/or analyses,
when some completely heuristic parameter setting
makes all the difference in practise.

Third, one of the most important and also most
interesting directions of research, in the opinion of
the author, is the seamless integration of external
knowledge. Doing away with such knowledge al-
together puts unsurmountable suboptimal perfor-
mance limits for most applications, but it seems
that already very little such input is enough to
boost the quality of the results. Much more insight
is required into which part of the concept-extraction
task a machine can in principle do, which part re-
quires genuine knowledge, and how to combine the
one with the other.
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