
Project in String Processing Algorithms (Spring 2012)

Topics to be shared Tue 17.1, 14-16, B119, Veli Mäkinen

1. Dynamic Programming and Aho-Corasick.

Generalized edit operation converts a substring into another substring. For exam-
ple, abc → cd. Let G = {(α1, β1), . . . , (αr, βr)} be the set of allowed generalized
edit operations, where each (αi, βi) ∈ Σ∗ × Σ∗. Let c : Σ∗ × Σ∗ → {1, 2, . . . ,W}
be a cost assigned to each edit operation, denoted c(αi, βi). The cost c(L) of a
list L of edit operations is the sum of the costs of the edit operations in L. Gen-
eralized edit distance between strings A and B is the minimum total cost of a list
of generalized edit operations to convert A from left to right into B.

For example, let A = abcabc, B = cdcd, G = {(abc,cd), (ab,c), (ca,d), (bc,cd)}
with costs c(abc,cd) = 2 and c(ab,c) = c(ca,d) = c(bc,cd) = 1. Then there are
two lists of operations to convert A into B: (i) (abc,cd), (abc,cd) with cost 4 and
(ii) (ab,c), (ca,d), (bc,cd) with cost 3. Generalized edit distance between A and
B is hence 3.

The O(mn) unit cost edit distance computation for strings of length m and n is
easy to extend to generalized edit distance to achieve O(mn||G||) time, where ||G||
is

∑r
i=1

(|αi|+ |βi|): Construct an array D[0 . . . m, 0 . . . n] such that D[i, j] stores
the minimum cost generalized edit distance between A[1 . . . i] and B[1 . . . j]. The
recurrence to compute each D[i, j] is

D[i, j] = min { D[i′, j′] + c(A[i′ + 1 . . . i], B[j′ + 1 . . . j])

| (A[i′ + 1 . . . i], B[j′ + 1 . . . j]) ∈ G}. (1)

With initialization D[0, 0] = 0, definition min{∅} = ∞, usage of suitable evalua-
tion order, and implementation of (α, β) ∈ G as a for-loop, the claimed running
time follows to compute D[m,n], i.e. the minimum cost generalized edit distance
of A and B.

This basic algorithm is easy to speed up to O(mn|G| + ||G||) time (assuming
constant alphabet size here) by building two Aho-Corasick automata, one for set
{αi | 1 ≤ i ≤ r} and one for {βi | 1 ≤ i ≤ r}, and then feeding A to first
automaton and B to second automaton during filling the dynamic programming
table. The pseudocode follows. There Apatterns denotes set {αi | 1 ≤ i ≤ r}
and Bpatterns denotes set {βi | 1 ≤ i ≤ r}.

ACautomatonA = new ACautomaton(Apatterns)

ACautomatonB = new ACautomaton(Bpatterns)

// Assume G is a list of string pairs;

// i-th pair is (G[i].first, G[i].second)

// ACautomaton.push(a) reads symbol a and changes state

// ACautomaton.reset() returns the state to the root

// (equaling empty string)

// ACautomaton.output() prints current accepting states

// as subset of indices in G

// intersection(C,D) computes the intersection of C and D

// D[i,j]=infinity in the beginning for all i,j

// A[0]=B[0] contain a special symbol such that push() does nothing

D[0,0] = 0

for i=0 to m do

ACautomatonA.push(A[i])

for j=0 to n do

ACautomatonB.push(B[j])

for k in intersection(ACautomatonA.output(),

ACautomatonB.output()) do

D[i,j] = min(D[i,j],D[i-|G[k].first|+1,j-|G[k].second|+1]+

c(A[i-|G[k].first|+1 ... i],

B[j-|G[k].second|+1 ... j]))

ACautomatonB.reset()

print "Edit distance between " + A + " and " + B + " is " + D[m,n]

The goal in the project is to implement Aho-Corasick automaton and apply it to
achieve the above speed up. Experimental comparison should be made on what
type of generalized edit operations G the new algorithm wins the basic algorithm.

Do you find any natural application where generalized edit distance would be
important?

2. Suffix Trees and Overlap Computation

In fragment assembly the goal is to reconstruct a superstring S given a set S of
its fragments (substrings) as the input. This is possible if the substrings cover all
positions in S, as one can deduce S by overlapping the set of fragments in correct
order. Finding the correct order is computationally a hard problem (and even the
optimization goal is not easy to define), but many heuristics have been proposed
that start with the graph defined by overlap-relations between the fragments. This
all-pairs suffix/prefix overlap computation is the task of determining for all pairs
of fragments the length of their longest overlap, i.e. longest suffix of fragment
A that is a prefix of fragments B for all pairs A and B in S. Let us refine the
problem such that only overlaps longer than a given threshold are outputted. The
problem can be solved in optimal running time O(N+out), where N is the overall
length of fragments in S and out is the size of the output, see e.g. [Gus97][pp.
137–8]: The idea is to build a suffix tree for the concatenation of strings in S.
Then the leaves corresponding to start of the strings have paths shared with all
suffixes and the longest overlaps can be recorded in stacks using one depth-first
traversal.

The goal in the project is to implement the above overlap computation algorithm
using suffix trees. One can use any existing suffix tree implementation, but it is
highly recommended to use compressed suffix trees: http://www.uni-ulm.de/

en/in/institute-of-theoretical-computer-science/research/sdsl.html

or http://www.cs.helsinki.fi/group/suds/cst/. These implementations

offer an implicit interface to suffix tree (class with functions to access children,
parent, suffix links, etc.); under the hood they have a mixture of compressed data
structures, but to use them it is sufficient to know how an explicit suffix tree
functions.

For comparison, one could compare the algorithm to the trivial one that tries out
all combinations brute force. (Do you know how to find in O(|A|+ |B|) time the
longest overlap of A and B without using suffix tree?)

It is also possible to extend this topic for a bigger group so that more suffix tree
-based algorithms of the same kind as above from Gusfield’s book are implemented
and tested.

3. Suffix Trees and Approximate Search

Suffix tree provides a way to do various kind of approximate pattern matching
faster than scanning the text from left to right. Consider you want to locate all
occurrences of pattern P in text T allowing k mismatches. You can build suffix
tree for T and then backtrack with the pattern on all paths of the suffix tree.
Whenever you follow a branch with next character different from that of pattern,
you can keep a counter on how many mismatches have been found so far. There
is no need to continue on branches where the counter exceeds k. In theory, this
approach does not provide a good worst case running time, but on small k it
works fast. The advantage of the approach is that it extends to many variants of
approximate search. For example, edit distance can be supported by computing
the columns of the dynamic programming matrix along the paths, or even faster
by simulating Myers’ bitparallel algorithm on the paths.

There are several heuristics to speed up this kind of backtracking search. The goal
in this project is to implement some of these heuristics and do an experimental
comparison on their efficiency. Possible heuristic speed-ups to try out are the
following and their combinations (of course one can invent new ones):

• If one only wants to find one match, it makes sense to go first greedily to
directions having fewer errors rather than depth-first order.

• Build suffix tree of reverse text and use it to partition the reverse pattern into
minimum amount of pieces such that each piece occurs exactly; this can be
done greedily by matching exactly the reverse pattern in suffix tree of reverse
text until there is no branch to follow, and starting the matching recursively
with the rest of the reverse pattern from the root. Let this induce partitioning
for the (forward) pattern P = P 1P 2 · · ·P p. Then when backtracking for P
in the suffix tree of T with the current position in P being inside piece P i

and number of errors seen so far being k′, one knows that if k′ + p − i > k
there is no need to continue the search in the current branch.

• Consider 1-mismatch problem. Then an occurrence has this mismatch either
in the left half of P or in the right half of P . One can search these cases
separately. For the former, use suffix tree of the reverse text and search
the reverse pattern with 0 errors to the midpoint, then backtracking with at

most 1-mismatch. For the latter, do the symmetric case with suffix tree of
the text. Approach extends to more errors, but then there are always cases
where backtracking must be started already from the root. However, when
searching only for one occurrence, one can consider these bad cases last.

Depending on the size of the group, one can concetrate on k-mismatches problem
or extend the approach for k-errors. Check previous assignment for pointers to
existing (compressed) suffix tree implementations that can be used as a basis.

4. Suffix Arrays, LCPs, and Maximal Exact Matches

Maximal Exact Matches (MEM) is the problem of computing for two strings A
and B tuples (i, j, k, l) such that A[i, j] = B[k, l] and j − i ≥ K, but A[i− 1, j] 6=
B[k − 1, l] and A[i, j + 1] 6= B[k, l + 1], where K is a threshold parameter. This
problem can be solved in the optimal time O(|A|+ |B|+out), where out is the size
of the output. There are many solutions achieving the optimal time e.g. using
suffix trees or enhanced suffix arrays. One such (easy to implement) solution is
described below and similar alternatives can be found in the literature.

Build suffix array SA for C = A#B, where # is a symbol not occurring in A or B.
Mark in a bitvector I the suffixes of A and B in the order of SA: I[i] = 1 iff SA[i]
is a suffix of B. Build also the LCP -array recording at LCP [i] the length of the
longest common prefix of suffixes C[SA[i] . . .] and C[SA[i−1] . . .]. For i such that
I[i] = 0 all indexes j > i such that I[j] = 1 and RMQ(i, j) = minj

i′=i+1
LCP [i′] ≥

K have the property that suffixes C[SA[i] . . .] and C[SA[j] . . .] share a prefix at
least of length K, the first suffix is from A, and second from B. Each pair (i, j)
satisfying the above give an exact match tuple (SA[i], SA[j] − |A| − 1, SA[i] +
RMQ(i, j)− 1, SA[j] − |A|+RMQ(i, j)− 2). However, these tuples may not all
be maximal: It can happen that (SA[i]− 1, SA[j]− |A| − 2, SA[i] +RMQ(i, j)−
1, SA[j]−|A|+RMQ(i, j)−2) is also an exact match. This happens iff C[SA[i]−
1] = C[SA[j]− 1]. To skip efficiently all non-maximal tuples, let R be a bitvector
such that R[i] = 1 iff I[i] = 1 and C[SA[i] − 1] 6= C[SA[pred(I, i − 1)] − 1],
where pred(I, i − 1) denotes index of the last 1-bit in I[1 . . . i− 1]; pred(I, i − 1)
returns i if there is no 1-bit in I[1 . . . i − 1], and in this special case we also set
R[i] = 1. Bitvector R now encodes the start of the runs in the subsequence of
C[SA[1]− 1]C[SA[2]− 1] · · ·C[SA[n]− 1] corresponding to suffixes of B. Now, if
for some (i, j) we have C[SA[i]−1] = C[SA[j]−1], we can set j ← succ(R, j+1),
where succ(R, j + 1) gives the first 1-bit in R[j + 1 . . .]. Otherwise we set j ←
succ(I, j + 1). Assume that RMQ(i, j), succ(I, j + 1), and succ(R, j + 1) can be
calculated in constant time. Then the sketched algorithm is optimal, as at most
every second tuple visited for fixed i is not maximal. Moreover, all maximal exact
matches are considered by using a symmetric solution for j < i.

The following pseudocode gives a slightly more engineered solution that avoids
the use of RMQ(i, j). This would not be a bottleneck for the theoretical running
time, as there exist data structures that can be build in O(|A| + |B|) time and
answer RMQ(i, j) in constant time. Queries succ(X,x) are easy to support in
constant time by building a cumulative array, but there also exist o(|A|+ |B|) bits

data structures that achieve constant time query time.1

Let SA, LCP, I, R, and K be as above

// recompute LCP-array to store RMQ(i,succ(I,i+1))

minlcp=|A|+|B|+2

for i=|A|+|B|+1 downto 1 do

temp = LCP[i]

LCP[i] = minlcp

if I[i]=1 then minlcp = temp

else minlcp = min(minlcp,temp)

// compute LCP-array for I[i]=1 to store RMQ(i,succ(R,i+1))

LCPR = copy of LCP

minlcp=|A|+|B|+2

for i=|A|+|B|+1 downto 1 do

if I[i]=1 then LCPR[i]=minlcp

if R[i]=1 then minlcp = LCPR[i]

else minlcp = min(minlcp,LCPR[i])

// collect maximal exact matches

for i such that I[i]=0 do

j = succ(I,i+1)

minlcp = LCP[i]

while minlcp>=K do

if C[SA[i]-1]!=C[SA[j]-1] then

print (SA[i]-1,SA[j]-|A|-2,SA[i]+minlcp-1,SA[j]-|A|+minlcp-2)

minlcp = min(minlcp,LCP[j])

j = succ(I,j+1)

else

minlcp = min(minlcp,LCPR[j])

j = succ(R,j+1)

// Do the analogous computation for the symmetric case j<i

The goal in the project is to implement the above algorithm (or some other that
uses enhanced suffix arrays). You can use existing suffix array and LCP array
construction algorithms to start with. You can compare the implementation to a
non-optimal practical solution:

// use original LCP

// collect maximal exact matches

for i such that I[i]=0 do

minlcp = |A|+|B|+2

for j=i+1 to |A|+|B|+1 do

minlcp = min(LCP[j],minlcp)

if minlcp>=K and C[SA[i]-1]!=C[SA[j]-1] then

print (SA[i]-1,SA[j]-|A|-2,SA[i]+minlcp-1,SA[j]-|A|+minlcp-2)

1Such techniques are covered in the Data Compression Techniques -course.

else if minlcp<K then break

// Do the analogous computation for the symmetric case j<i

Do you find any instances where the theoretically optimal algorithm is faster in
practice than the trivial solution above?

For the poster, look up in what kind of applications MEMs are used.

5. Distributed Suffix Sorting

Consider the case you have p processors and access to a shared fast storage space
(ideally shared RAM). The task is to sort suffixes of a string (i.e. construct suffix
array) as fast as possible exploiting distributed computation. One way to proceed
is to use pivots and either bucket sorting or doubling algorithm a.k.a. Karp-Miller-
Rosenberg naming technique.

The idea to first choose p+ 1 strings (pivots) S0, S1, . . . , Sp such that suffixes of
a string T = t1t2 . . . tn listed in lexicographic order could be partitioned into p
almost equal size blocks with the property that block i suffixes are larger than
Si−1 and smaller than Si. This is a difficult combinatorial problem to solve in
distributed manner (without resorting to sorting leading to a chicken and egg prob-
lem). Here we assume that pivots are given, or they can be trivially constructed
assuming T is sampled from uniform distribution.

Now prosessor assigned to pivot Si can concentrate in sorting suffixes that lie
between Si−1 and Si. Bucket sort could be used here with the modification that
each prosessor ignores buckets that are strictly out of the pivot range. When all
prosessors have all their buckets shrinked to size one, sorting is done, and one
can concatenate the results in the pivot order to produce the suffix array. Even
with the perfect choice of pivots the worst case running time of distributed bucket
suffix sort is O(n2) time; consider text T = cn.

We can do better using the doubling algorithm. To see how that algorithm extends
to the distributed case, let us consider i-th prosessor after j-th doubling step. It
stores the array Ai[0 . . . ni − 1] with Ai[k] = (rankik, x

i
k), where rankik, 1 ≤ i <

ni−1, is the lexicographic rank of substring T [xik . . . x
i
k+2j−1] among substrings

of the same length lying in the same pivot interval. Values Ai[0] = (ranki0, x
i
0)

and Ai[ni− 1] = (rankini−1, x
i
ni−1) correspond to pivots Si−1 and Si, respectively.

For this to work, we need to concatenate the pivots to the end of the text: T ←
t1t2 . . . tn#S0#S1# . . . Sp#, where # is smaller than other alphabet symbols.

Before proceeding to the next step, we (virtually) produce a global rank table
A[0 . . . N] as follows:

A[K] = (rK , xik), (2)

where i is such that
∑i−1

i′=1
ni′ ≤ K <

∑i
i′=1

ni′ , k = K −
∑i−1

i′=1
ni′ , and

rK = rK−1 if rankik = rankik−1 and k > 0,

rK = rK−1 + 1 if rankik 6= rankik−1 and k > 0, and

rK = rK−1 otherwise.

Notice that the last case is k = 0, and the rank is not incremented because
previous block ends with the same pivot as the next one starts, so they must have
the same rank. Notice also that each prosessor can construct its part of the table
A almost independently; largest rank of each prosessor is known after sorting and
it is sufficient that each prosessor sends that value to all the other prosessors.
Finally for each 0 ≤ K ≤ N table R[1 . . . |T |] is filled by applying R[x] = r
for A[K] = (x, r). This writing can be done in distributed manner, assuming a
computation model where if array cell is locked for writing, the prosess does not
wait for the lock to be released but continues; several processors can write to the
same cell x, but they all must have the same rank, so the first writing is sufficient.

The next ((j + 1)-th) doubling step for prosessor i works as follows. Set Ai[k] =
((R[xik], R[xik + 2j+1 − 1]), xik) and sort the array by the values (R[xik], R[xik +
2j+1 − 1]), and replace the values with the ranks of the pairs. Here omitting the
special cases of indexes exceeding |T |. Once the array is sorted, the head of the
array where ranks are below the pivot Si−1 and tail of the array where ranks are
above Si are cut off.

This process is repeated on all processors i at most O(log n) times until all ranks
are unique. With perfect choice of pivots, the running time of distributed dou-
bling algorithm is O(n+N log2 n/p), where n ≤ N ≤ np is the size of the global
rank table after first round (again T = cn is the worst case). This bound assumes
comparison sort is used for sorting the pairs; better bounds can be achieved using
other models of computation. When assuming T is sampled from uniform dis-
tribution, we have N ≤ n⌈p/σ⌉ (for each character there is the same amount of
pivots).

Although these algorithms do not give any theoretical time improvement over the
linear time suffix sorting algorithms, the benefit is that they can work in smaller
shared memory. Distributed bucket sorting works already completely without
shared memory, and distributed doubling sort can be modified so by splitting array
R in p equal size parts; each prosessor handles its own part. The complication
is that to access values R[xik] and R[xik + 2j+1 − 1] one needs to do all-pairs
message passing. However, this does not increase the running time of the algorithm
significantly as one round of message passing takes O(p2 + N/p) time (with the
perfect pivot assumption). This is required to be done O(log n) times.

The goal in the project is to implement either the simpler distributed
bucket suffix sort working in cluster environment (ukko001.hpc.cs.helsinki.fi-
ukko240.hpc.cs.helsinki.fi) with shared file system, or the distributed doubling
algorithm using threads and shared memory. Experimental comparison should be
made against a serial implementation of (linear time) suffix sorting.2

2If one is familiar with MapReduce framework, it is possible to implement the distributed doubling
algorithm with all-pairs message passing using it. Our ukko-cluster has disco (http://discoproject.
org/) implementation of MapReduce installed if someone wants to try out this approach.

References

[Gus97] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science
and Computational Biology. Cambridge University Press, 1997.

