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We propose a new data-driven decoding method called Spectral Linear Discriminant Analysis (Spectral LDA) for
the analysis ofmagnetoencephalography (MEG). Themethod allows investigation of changes in rhythmic neural
activity as a result of different stimuli and tasks. The introduced classification model only assumes that each
“brain state” can be characterized as a combination of neural sources, each of which shows rhythmic activity at
one or several frequency bands. Furthermore, the model allows the oscillation frequencies to be different for
each such state. We present decoding results from 9 subjects in a four-category classification problem defined
by an experiment involving randomly alternating epochs of auditory, visual and tactile stimuli interspersed
with rest periods. The performance of Spectral LDAwas very competitive comparedwith four alternative classifiers
based ondifferent assumptions concerning the organization of rhythmic brain activity. In addition, the spectral and
spatial patterns extracted automatically on the basis of trained classifiers showed that Spectral LDA offers a novel
and interesting way of analyzing spectrospatial oscillatory neural activity across the brain. All the presented
classification methods and visualization tools are freely available as a Matlab toolbox.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Unveiling neuronal information processing in the humanbrain during
real-world experiences is a central challenge in cognitive neuroscience
(Spiers and Maguire, 2007). Conventionally, functional neuroimaging
studies have been applied using relatively simple patterns of sensory
stimuli, and little is known about how the human brain operates
with real-world sensory input.More recently, the neuroimaging commu-
nity has started to introduce more naturalistic experimental conditions
(Hasson et al., 2004, 2008; Hejnar et al., 2007; Kauppi et al., 2010;
Lahnakoski et al., 2012; Wolf et al., 2010), and even “two-person neuro-
science” has been advocated to record brain activity simultaneously
from two interacting subjects (for a review, see Hari and Kujala (2009)).

Due to the diversity of the stimuli and/or the complexity of the exper-
imental settings mimicking real-world conditions, it may be necessary
to use data-driven analysis methods that allow investigation of brain
function without stringent assumptions about the underlying brain
mechanisms (Spiers and Maguire, 2007). One of the most promising
data-driven approaches to analyze complex brain-imaging signals is
“decoding”, which gathers information frommultiple brain imaging sig-
cience and HIIT, University of
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1 Hence, the terms “decoder” or “decoding model” may refer either to a classifier or a
regression model.
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nals to deduce the task, stimuli or brain state during the measurement.
Most commonly, multivariate classifiers are used to discriminate
between categories (Blankertz et al., 2011; Cox and Savoy, 2003;
Kamitani and Tong, 2005; Mitchell et al., 2004; Murphy et al., 2011)
but decoding can also be performed using regression in more complex
experimental settings (Carroll et al., 2009; Kauppi et al., 2011).1

Brain-function decoding can advance our knowledge in different
ways. For instance, above-chance classification performance for an in-
dependent test data set implies the presence of mutual information be-
tween themeasured signals and the categories of interest (Kriegeskorte,
2011). Thus, decoding can be used to test for the presence of specific
stimulus information in the region of interest or across the whole
brain. Additionally, investigating how the trained models are fitted to
the brain-imaging signals tells where and how information is processed
and represented in the brain. For instance, the coefficients of the linear
classifier may provide hints of brain regions involved in the processing
and discrimination of the stimuli (see e.g. Rasmussen et al. (2012)).
It is also possible to construct several decoders based on different neuro-
scientific hypotheses and compare their performances. A priori knowledge
can be incorporated to the decoder design for instance in the form of
neuroscientifically inspired feature transformations (see e.g. Richiardi
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et al. (2011)) or it can be embeddedmore directly to themodel design (see
e.g. Tomioka and Müller (2010)).

So far, most decoding studies in neuroscience have used functional
magnetic resonance imaging (fMRI) signals to demonstrate spatial pat-
terns related to different tasks or stimulus categories (Haynes and Rees,
2006; Tong and Pratte, 2012). However, the poor temporal resolution of
fMRI makes it inherently unsuitable for investigating the fine spectral
and temporal signatures of information encoding. Instead, the brain's
oscillatory electrical activity has been suggested to have a central
role in information processing, and distinct oscillation frequencies and
amplitudes even in the same neuronal structure reflect different brain
states (Singer, 1993). Large neuronal populations can generate synchro-
nized oscillatory electrical activity that can be enhanced or suppressed
by tasks and stimuli, and the dynamics of brain oscillations associ-
ated with distinct brain states forms complex spatiotemporal patterns
(Buzsáki and Draguhn, 2004). Thus, to understand brain function
during real-world experiences, it seems necessary to interpret at the
same time the spatial, temporal and spectral signatures of brain activity.

Magnetoencephalography (MEG) has a millisecond-range temporal
resolution and has therefore potential to reveal detailed spectral and
temporal characteristics of distinct brain states induced by specific
tasks or stimuli. Nevertheless, decoding on the basis of MEG signals
cannot be expected to be an easy task. Several factors, including
the low signal-to-noise ratio (SNR) of single-epoch measurements
and the high dimensionality of whole-scalp recordings, make the
decoding based on MEG signals very challenging. In addition, MEG
signals do not vary only between different individuals under the same
experimental condition, but to some extent also within the same sub-
ject between repeated identical sessions, which makes it complicated
to construct a highly generalizable classifier across sessions and/or
individuals. However, training of the multivariate model based on
single-epochs provides inevitable advantages over a univariate analysis
based on averaged epochs. For instance, a decoding approach allows
finding combinations of the most discriminative features (or sensors)
among a high number of initial features, and provides a principled
way of assessing the goodness of the discrimination in terms of the es-
timated generalization accuracy.

Previously, Besserve et al. (2007) used band-limited power and
phase synchrony features to classify betweenMEGdata recorded during
a visuomotor task and rest condition. Rieger et al. (2008) used temporal
features and wavelet coefficients to predict the recognition of natural
scenes from single-trial MEG recordings. Ramkumar et al. (2013) used
both time-resolved and time-insensitive classifiers to decode from
single-epoch MEG low-level visual features in the early visual cor-
tex. Zhdanov et al. (2007) used temporal features together with the
regularized linear discriminant analysis (regularized LDA) to classi-
fy between two different visual categories (faces and houses) on
the basis of MEG signals. In the “Mind Reading from MEG” chal-
lenge organized in conjunction with the International Conference
on Artificial Neural Networks (ICANN 2011), the task was to design
a classifier to distinguish between different movie categories on the
basis of 204-channel gradiometer MEG data (Klami et al., 2011). The
data were recorded from a single subject who was shown five different
movie clips. Thewinners of the competition extracted statistical features
from time-domain signals and applied sparse logistic regression for
classification (Huttunen et al., 2012).

Decoding has also been applied to electroencephalographic (EEG)
signals. For instance,Murphy et al. (2011) and Simanova et al. (2010) suc-
cessfully decoded abstract semantic categories from EEG data. Moreover,
Chan et al. (2011) used temporal features in the classification
of MEG and EEG data recorded simultaneously while the subjects
performed visual and auditory language tasks.

Classification on the basis ofMEG signals has also been studied in the
context of brain–computer interfaces (BCIs), communicationpathwaysbe-
tween brains and external devices (Bahramisharif et al., 2010; Mellinger
et al., 2007; Santana et al., 2012; van Gerven and Jensen, 2009). A
successful BCI has to distinguish between brain signatures of the users in-
tentions, and both temporal and spectral features have been applied, often
selected based on specific a priori knowledge of the brain function. For in-
stance, preparation tomoveahand is associatedwith abrief suppressionof
the Rolandicmu rhythm that comprises 7–13 Hz and 15–25 Hz frequency
bands. The power estimates characterizing these specific oscillations
originating from the sensorimotor cortex have been successfully applied
to decode motor-imagery tasks, where an individual mentally simulates
different motor actions, such as hand movements (Pfurtscheller and
Neuper, 2001). Even though most of the BCI literature has concentrated
on classification on the basis of EEG, many technical advances in this
field may also benefit MEG-based decoding; see for instance Lemm et al.
(2011), Tomioka and Müller (2010), Dyrholm et al. (2007a), Liu et al.
(2010), Blankertz et al. (2011), Mellinger et al. (2007), Suk and Lee
(2013). On the other hand, the existing best BCI methods are not directly
applicable to our setting because the goals of the analyses and experimen-
tal conditions are different. In BCI, the only goal is maximum classification
accuracy, while in brain-function decoding, it is important to obtain a
decoder with a meaningful interpretation to advance understanding of
brain function. Consequently, many recent neuroimaging studies have
concentrated on the interpretation of the decoding models (Carroll et al.,
2009; de Brecht and Yamagishi, 2012; De Martino et al., 2008; Grosenick
et al., 2013; Rasmussen et al., 2012; Ryali et al., 2012; van Gerven et al.,
2009; van Gerven et al., 2010; Yamashita et al., 2008).

Here, we constructed a brain decoding system for MEG with the
explicit goal of providing an easily interpretable decoder, as well as a
general-purpose decoding toolbox for neuroscientific research. As an
example of this approach, we analyzed MEG data from an experiment
where the subjectswere exposed to blocks of auditory, visual and tactile
stimuli interspersed with rest blocks (Malinen et al., 2007; Ramkumar
et al., 2012). We aimed to decode four distinct brain states, that is, “au-
ditory”, “visual”, “tactile”, and “rest”.

The stimuli were complex, comprising video clips of people and
urban scenes, speech sounds and tone beeps, as well as tactile stimuli
to finger tips, all presented in brief blocks of varying duration within
the same session. Because sensory stimuli are known to activate dis-
crete projection areas, we considered this experiment well-suited for
the validation of our method. However, the applied complex stimuli
(speech and videos) may also activate higher-order processing. For in-
stance, although it is plausible that variations in oscillatory activity in
the visual cortex aremainly responsible for discriminating the visual cat-
egory from the other categories, higher-order brain processes may in-
volve additional neural activity in other brain regions, thereby
complicating the decoding task. On the other hand, the diversity of the
stimuli makes the decoding problem also more interesting, advocating
the use of data-driven approaches based on relativelyweak a priori infor-
mation. As our goal was to build a classifier to infer brain function in an
exploratory manner, we did not impose strong assumptions on spectral
contents or spatial locations of the underlying neural activity; instead,
we tried to capture the most relevant spectrospatial features automati-
cally from a large number (L = 204) of MEG channels across a relatively
wide frequency band (5–30 Hz).
Materials and methods

Naturalistic stimulation

We analyzed MEG data (306-channel Elekta Neuromag MEG
system (Elekta Oy, Helsinki, Finland), filtered to 0–200 Hz and
digitized at 600 Hz) from a previous experiment (Ramkumar et al.,
2012). Eleven healthy adults (6 females, 5 males; mean age 30 years,
range 23–41 years) were exposed to 6–33 s blocks of auditory, visual
and tactile stimuli. Similar to Ramkumar et al. (2012), data of only
nine of the eleven subjects were used in the analysis; data from two
subjects were discarded due to improper delivery of auditory stimuli.
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The stimulus blocks were interleaved with 15-s rest periods
(the entire session contained 24 rest periods). Two independent
12-min sessions were recorded from each subject. We exclusively
used the first session for classifier training and the second session
for the evaluation the performance of the classifier. Hence, the
training and test data sets were independent from each other.
Fig. 1A shows schematically the content of each 12-min stimulus
sequence and the four categories: A = “auditory”, V = “visual”,
T = “tactile”, and R = “rest”.

The design of visual, auditory and tactile blocks was adopted
from Malinen et al. (2007). Auditory stimuli consisted of 100-ms
tone bursts (at 250, 500, 1000, 2000, or 4000 Hz randomly varying
in the same block; presentation rate 5 Hz) and of pre-recorded
speech (a male voice narrating the history of the local university,
or the same male voice providing instructions on guitar fingering).
Speech and tones were presented in different blocks. Visual stimu-
lus blocks consisted of silent home-made video clips of buildings,
people with focus on hands, and people with focus on faces. Content
exclusively from one of these three types was presented in each block.
Tactile stimuli were delivered at 4 Hz using pneumatic diaphragms
attached to the index, middle, and ring fingers of both hands. All these
three fingers from both hands were stimulated within each tactile
block. The order of the stimulation was random but homologous left
and right fingers were always stimulated simultaneously. The alertness
of the subjects was not systematically controlled because the experi-
ment was relatively short and alerting, and it did not require notable
concentration.
Preprocessing

We used only the 204 planar gradiometers because of their focal
sensitivity patterns, which enables an easily interpretable visualization
on the sensor helmet; for magnetometers, we would have needed
a source model. We first applied the signal-space separation (SSS)
method (Taulu and Kajola, 2005) to raw MEG time series to reduce
artifacts and to perform head-motion correction. SSS is based solely
on the physics of the measured magnetic fields and is non-adaptive. It
decomposes the measured multi-channel signal to contributions from
sources inside (physiological signals) and outside (environmental inter-
ference) of the MEG sensor array by modeling both spaces with
specific multipole expansions. Using the generally recommended ex-
pansion orders (Linside = 8, Loutside = 3) and SSS basis optimization,
the effective dimensionality (rank) of the data was 64 after SSS
processing.
Fig. 1. Labeling and preprocessing of the data used in the decoding analysis: A) The 12-min stim
categories used in the decoding analysis were: A = “auditory”, V = “visual”, T = “tactile”, a
stimuli. “Visual” and “auditory” categories consisted of different subcategories, making the d
from the training data. Epochs falling on category boundaries were discarded to avoid ambig
category was made equal so that the chance level of the correct classification was 0.25 for each
We then computed time–frequency decompositions of the signals
based on short-time Fourier transform (STFT). We used rectangular
windowing to facilitate the estimation of the independent components
(ICs) in the later stage of the analysis. The length of the timewindow for
which Fourier coefficients were computed corresponded to the length
of the epoch. Hence, the choice of the time-window length and overlap
factor determined the number of epochs we obtained for training the
classifier. We investigated the decoding performance for five different
time-window lengths (1, 2, 3, 4, and 5 s) and for five different time-
window overlaps (the fraction of overlap between two consecutive
windows 0, 1/2, 2/3, 3/4, and 4/5). To optimize the estimation of classi-
fication accuracy and to keep test epochs as independent as possible, the
time windows for the test data did not overlap. We obtained category
labels based on the timing of stimuli. As we wanted each epoch to un-
ambiguously represent one of the four categories, we discarded epochs
on category boundaries (see Fig. 1B).

We simplified the classifier learning and interpretation of the
classification results by balancing the number of epochs between the
categories by discarding “redundant” epochs (see Fig. 1C). To ensure
reliable estimation of the cross-validation (CV) classification accuracy
(see Cross-validation section on how we computed the CV accuracy),
we wanted to preserve the block structure of the epochs. Therefore,
we balanced the number of epochs between the four categories by pre-
serving the first Nmin epochs from each category and discarding the
others; Nmin was the total number of epochs in the category containing
the smallest number of epochs.

After computing the STFTs separately for each channel, we discarded
low- and high-frequency components from each Fourier-transformed
window to restrict our analysis to the range 5–30 Hz. A major reason
for discarding low-frequency components was that we wanted to avoid
decoding of the tactile category based on the 4-Hz frequency of stimulus
delivery. Higher frequency components were removed because of their
poor SNR; however, the limit was arbitrarily selected.

Next, we transformed the three-dimensional multichannel time–
frequency data (channel × time × frequency) into a two-dimensional
matrix by combining (collapsing) the time and frequency dimensions
into one. After this, we had a complex-valued data matrix X ∈ ℂL × NF

(one matrix for classifier training and one for testing), where L = 204
was the number of channels, N the total number of epochs, and F
the number of Fourier coefficients in each epoch after discarding com-
ponents outside of 5–30 Hz. We applied complex-valued indepen-
dent component analysis (ICA) to the data matrix of the training
session to obtain C = 64 ICs as described by Hyvärinen et al.
(2010); 64 was the effective dimensionality of the data matrix
after applying the SSS preprocessing method. The ICs for the test
ulus sequence (modified fromRamkumar et al. (2012) andMalinen et al. (2007)). The four
nd R = “rest”. White spaces denote rest blocks and other colors correspond to different
ecoding task more challenging. B) An illustration of the extraction of short-time epochs
uities in category labeling. C) After extracting the epochs, the number of epochs in each
class.
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data were obtained using the transformation estimated based on the
training data.

Note that we computed STFTs already before estimating ICs and not
vice versa. The reason is that the distribution of the MEG signals is
expected to become more sparse after the STFT, enhancing the estima-
tion of ICs (the ensuing method is called “Fourier-ICA”, see Hyvärinen
et al. (2010)). The method is related to Fourier-domain methods for
convolutive ICA (Anemüller et al., 2003; Dyrholm et al., 2007b) except
that the convolutive ICA estimates a separate mixing matrix for distinct
frequency bands whereas we estimated only one mixing matrix across
thewhole time–frequency representation. Further details of the estima-
tion are provided here:

1. Outlier removal: We rejected outliers to improve robustness of the
estimation of ICs fromX by setting all Fourier coefficients in a specific
epoch to zero if the logarithm of the norm of the data within it was
larger than the mean plus three standard deviations.

2. Dimension reduction and whitening: We used PCA to whiten the
data and to reduce the dimensionality from 204 to 64, which was
the effective dimensionality of the data after SSS.

3. Estimation: We estimated ICs from the whitened data using the
complex-valued FastICA algorithmbased on the logarithmicmeasure
of non-Gaussianity (Bingham and Hyvärinen, 2000). Estimation was
repeated three times using random initialization, and the solution
having the highest objective function value was selected as the final
one.

Classifier design

With Fourier-ICA, we decomposed the STFT data matrix as X = AS,
where A ∈ ℝL × C contains the spatial patterns and S ∈ ℂC × NF contains
the time–frequency decompositions of the C = 64 ICs (N and F depend
on the choices of the time-window length and of overlap parameters, as
well as on the selected frequency range of interest). The length of each
time window in the decomposition corresponds to the length of the
epoch we use in the classification.

For classification, we transformed ICs to three-dimensional multi-
channel time–frequency data (IC × time × frequency). Let us denote
the absolute values of the Fourier coefficients of the ith IC for the nth
time-window as zi(n). Then, a data “point” in the training dataset can
be given as follows:

Z nð Þ ¼ z1 nð Þ; z2 nð Þ;…zC nð Þ½ �T∈ RC� F
; forn ¼ 1;2;…;N; ð1Þ

where T denotes a non-conjugate transpose.We trained amulticategory
classifier using the matrices Z(n) and their corresponding binarized
category labels, given by:

ynk ¼ 1; if Z nð Þbelongsto the kth category
0; otherwise :

�
ð2Þ

We applied different feature transformations to matrices Z(n) prior to
classification which we denote as x(n). We extracted features utilizing
detailed spectrospatial information of theMEG signals. Basically, we es-
timated discriminative directions in the spectral domain of the ICs using
the LDA, and obtained the features by projecting the spectra on these di-
rections. For decoding,we adopted a symmetric version of the penalized
multinomial logistic regression classifier (Friedman et al., 2010). We
consider the use of logistic regression well-motivated because it
extends naturally to multicategory classification problems and allows
the use of suitable priors and kernel functions. Moreover, in our pilot
study with several classifiers (including non-linear and linear SVM,
minimum-distance classifier, k-nearest neighbor classifier, two-layer
nonlinear Perceptron and random forest classifier), logistic regression
yielded the best performance. Logistic regression has previously shown
very good performance in decoding problems based on MEG signals
(see e.g. Huttunen et al., 2012; Santana et al., 2012).

Spectral feature extraction
Because different brain states can be characterized by complex

spectrospatial neuronal patterns, it is important to extract features that
can capture this information. A plausible assumption is that different
neuronal sources of the MEG signals have specific spectral characteris-
tics, which may vary together with brain states. Hence, we allowed
each IC to have its own “spectral signature” that additionally depended
on the category. For each category and IC, we estimated spectral-weight
vectors as the direction of maximum discrimination between the given
category and other categories:

fki ¼ μki − μki; ð3Þ

where fkidenotes a spectral-weight vector (or a discriminative direction)
for ith IC and kth category, μki is the mean of the short-time spectra
belonging to category k, and μki is the mean of the short-time spectra
belonging to categories other than k. This estimation method coincides
with LDAunder the assumption that covariancematrices of the categories
are spherical (Blankertz et al., 2011). The method can also be seen as a
special case of regularized LDA, where the regularization term of the
within-class scatter matrix is infinitely large. Very heavy regularization
is expected to work well here because overlearning is a major concern
due to session-to-session variability of MEG. After estimating spectral
weights,we projected the short-time spectra of each IC to one dimension:

vi nð Þ ¼ fT1izi nð Þ; fT2izi nð Þ;…; fTKizi nð Þ
h iT

; ð4Þ

where K = 4 is the number of categories. We then formed the final
feature vectors by combining the information across ICs as

x nð Þ ¼ v1 nð ÞT ; v2 nð ÞT ;…; vC nð ÞT
h iT∈ RKC

:

Eq. (4) shows that each IC is transformed to K category-specific fea-
tures. For instance, if the spectrum of an IC is useful for discriminating
mth category from the other categories, the value of the mth feature
for this IC will be positive (by definition of the LDA). This feature will
contribute to the final classification performance more than the other
features and therefore a linear classifier is expected to give a positive
classification coefficient (for category m) for the mth feature and coeffi-
cient valueswith lowmagnitudes for the otherK − 1 features. The inves-
tigation of the spatial and spectral characteristics of the corresponding IC
as well as its associated spectral-weight vector may advance our under-
standing of neural processes in the brain. In practice, it is likely that the
learned model combines information from a combination of informative
ICs for each category.

Penalized symmetric multinomial logistic regression
We used the symmetric version of multinomial logistic regression

model to perform classification (Friedman et al., 2010). The symmetric
multinomial logistic model is:

pk x nð Þð Þ ¼ exp h θk;x nð Þð Þ þ bk½ �XK
j¼1

exp h θ j; x nð Þ
� �

þ bk
h i ; fork ¼ 1;2;…;K; ð5Þ

where pk(x(n)) is the posterior probability that features x(n) belong
to category k, bk is a bias term, and h(θk: x(n)) is a kernel function that
projects x(n) onto a real line ℝ. The kernel function depends on
category-specific coefficients θk which need to be estimated from the
training data together with bk. We used the most widely applied kernel
that projects features linearly onto ℝ.



Table 1
The summary of the evaluated classifiers ordered according to increasing spectrospatial complexity.

Name Features Key assumption(s)

Baseline Total energies Spectral information is irrelevant
Statistical Standard deviation of the spectra of the ICs Spectral information is relevant but unspecific in nature
Bilinear Entire spectrospatial matrix Spectral information is relevant; spectral information is specific to each category but common to each IC
Spectral PCA Projections based on PCA Spectral information is relevant; spectral information is common to each category but specific to each IC
Spectral LDA Projections based on LDA Spectral information is relevant; spectral information is both category- and IC-specific

2 http://www-stat.stanford.edu/~tibs/glmnet-matlab.
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To show explicitly how Spectral LDA depends on category-
and IC-specific spectral weights, we can write the kernel function
in terms of the Fourier-coefficients zij(n) as:

hðckmi i ¼ 1;2;…;C;m ¼ 1;2;…;K; x nð Þj Þ
¼ cTkx nð Þ ¼

XK
m¼1

XC
i¼1

XF
j¼1

ckmi f mijzij nð Þ; ð6Þ

where ck ∈ ℝKC are classification coefficients for category k to be
estimated and fmij are spectral weights estimated beforehand using
the LDA. The key observation here is that each spectralweight is specific
to both IC (index i) and category (index m). The index of the Fourier
coefficients is denoted by j.

The classification coefficients can be estimated by maximizing a
sample log-likelihood Lθ of Eq. (5); see Eq. (A.2) in the Appendix A for
the exact functional form of the sample log-likelihood. We controlled
overlearning of the classifier by incorporating a suitable regularization
term Pθ to the objective function besides log-likelihood. The objective
function then became:

Jθ ¼ Lθ−λPθ; ð7Þ

where the hyperparameter λ controls the extent of regularization
and needs to be fixed beforehand (see Cross-validation section how
we estimated λ). We used the ‘1-norm of the classification coefficients
as a penalty term:

Pθ ¼
XK
k¼1

ckk k1: ð8Þ

This penalization is called the least-absolute-shrinkage operator
(LASSO) and it makes the final classifier sparse by shrinking many
classification coefficients to zero (Tibshirani, 1996). The higher the
value ofλ, the sparserwill be thefinal classifier. Thebenefit of the sparse
model is that it is easier to interpret than themodel where classification
coefficients are nonzero. This property is especially important in func-
tional neuroimaging, where the goal is to extract neuroscientifically
interesting information from the trained classifier (Yamashita et al.,
2008). Another popular regularization method used in neuroimaging
studies is the so-called elastic net (Zou and Hastie, 2005), which uses
the combination of ‘1- and ‘1-norms as a penalty term. This regulariza-
tion allows the selection of the correlated features in the final model.
The use of the elastic net is justified in fMRI-based decoding studies,
where features correspond directly to spatially correlated voxels (Ryali
et al., 2010). The situation in our study is different because the features
are the spectral projections of the ICs. Our goal is tofindmost informative
ICs and investigate their spectral and spatial characteristics without
too much redundancy in the visualization (see Interpretation
of spectrospatial patterns section for details how we analyzed
the trained classifiers). Thus, for our data, it does not seem useful
or necessary to use several correlated features for the same
category.
Weused an optimization code based on coordinate descent (GLMNET
software package2 by Friedman et al. (2010)) for maximizing Eq. (7)
using the ‘1-norm penalty. After learning the classifier, we classified our
test data according to maximum a posteriori (MAP) rule to evaluate the
predictive performance of the classifier. More specifically, we selected
the optimal category k⁎ for an unknown test sample x(n) as:

k� ¼ arg max
k

h θk;x nð Þð Þ þ bkf g: ð9Þ
Alternative classifiers

We constructed four additional classifiers based on logistic regression.
They all utilize spectral information differently. By comparing the predic-
tionperformanceof different classifiers,we can inferwhat type of spectral
information is associated with the stimulus- or task-related processing in
the brain. The classifiers are presented here in the order of increasing
spectrospatial complexity, starting from the classifier that does not utilize
spectral information at all and ending with the classifier that uses IC-
specific detailed spectral information. Table 1 summarizes all these
classifiers.

The first classifier did not utilize spectral information of the MEG
signals but used as features the total energies of the ICs.More specifically,
for each epoch, we computed the feature vectors x(n) ∈ ℝC with the
elements:

xi nð Þ ¼
XF
j¼1

zij
2 nð Þ; for i ¼ 1;2;…;C; ð10Þ

where zij(n) stands for the absolute value of the jth Fourier coeffi-
cient for ith IC. Note that although we computed the total energies
from the frequency representations of the ICs, these features are
not frequency-specific since they can be equally computed from
the time-representations of the signals (see Parseval's Theorem
e.g. in Oppenheim et al. (1999)). After feature extraction, we esti-
mated the classification coefficients and biases by maximizing the
penalized log-likelihood model of Eq. (7) with the l1-norm penalty
using the GLMNET software package. This classifier served as our
baseline method when we investigated the importance of varying
degrees of spectral information in our decoding task. Hence, we call
this classifier “Baseline”.

Second, we investigatedwhether the incorporation of coarse spectral
information fromMEG signals to the classifier design is advantageous. To
this purpose, we computed the standard deviations of the power
spectra of the ICs and used them as features in the logistic regres-
sion classifier. We call this classifier “Statistical”. The rationale for
selecting these features was to coarsely characterize the spectrum
without being specific to any frequency. Also for thismodel,we estimated
the classification coefficients by maximizing the ‘1-norm penalized
logistic regression model using the GLMNET software package.

Third, we introduced a classifier utilizing spectrospatial information
in a more detailed form. We made the assumption that each stimulus

http://www-stat.stanford.edu/~tibs/glmnet-matlab
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category is associated with its own spectral signature that can be
described by F spectral weights. This signature can be present in several
ICs, and the contributions of each IC are captured by C classification
coefficients. We used logistic regression with a bilinear kernel to
build a classifier that fulfills these assumptions. A bilinear projection is
given by:

h
�
cki; f kjji ¼ 1;2;…;C; j ¼ 1;2;…; F;Z nð Þ

�
¼
XC
i¼1

XF
j¼1

cki f kjzij nð Þ¼cTkZ nð Þfk;
ð11Þ

where Z(n) ∈ ℝC × F is now an entire matrix given in Eq. (1), and
ck ∈ ℝC and fk ∈ ℝF denote the classification coefficients to be estimated
for each category k, respectively. Now, each spectral classification coeffi-
cient depends on the category (index k) but not on the IC (index i). The
index of the Fourier coefficients is denoted by j. A bilinear formulation of
the logistic regression has been discussed previously in the context of BCI
under the name bilinear component analysis (Dyrholm et al., 2007a).
The learning of this classifier is feasible even from rather limited training
data, because the total number of parameters to be estimated is only
K(C + F + 1) and not K(CF + 1) due to the assumption that spectral
coefficients and IC coefficients are separable. We call this classifier
“Bilinear”. We used a conjugate gradient method3 by Rasmussen
and Nickisch (2010) for maximizing the penalized log-likelihood,
because the GLMNET software package cannot handle a bilinear
kernel function. See Appendix A for details how we obtained the
gradient and the objective function for this classifier.

Fourth, we used an unsupervised learning method which leads to a
classifier similar in spirit to Bilinear classifier. While Bilinear classifier
is based on the mathematically attractive assumption that different ICs
share the same spectral characteristics for a given category, amore plau-
sible assumption is that each IC can have unique spectral characteristics.
To investigate whether the latter assumption would yield better pre-
diction performance, we constructed a classifier for which we estimated
spectral-weight vectors for each IC separately before estimating the
classification coefficients of the ICs, somewhat like in Spectral LDA. We
applied PCA to the short-time spectra of each IC and took the first princi-
pal directions as the estimates for spectral weights. We formed feature
vectors by projecting the short-time spectra to one dimension (similar
to Spectral LDA, but now we computed only one projection per ICs)
and estimated the classification coefficients and biases by maximizing
the ‘1-penalized logistic regression model of Eq. (7) using the GLMNET
software package. Since we used PCA to estimate the spectral-weight
vectors, we call this classifier “Spectral PCA”. To show explicitly how
Spectral PCA depends on the IC-specific spectral weights, we can write
the kernel function in the form:

h
�
ckiji ¼ 1;2;…C; x nð Þ

�
¼
XC
i¼1

XF
j¼1

cki f ijzij nð Þ ¼ cTkx nð Þ: ð12Þ

Here, ck ∈ ℝC are classification coefficients to be estimated for category
k, fij are spectral weights estimated using the PCA beforehand,
x(n) ∈ ℝC is a feature vector, j is the index of the Fourier coefficients,
and i is the index of the ICs. Note that spectral weights are not
category-specific since they do not depend on the category index unlike
the corresponding weights for Spectral LDA in Eq. (6) or for Bilinear
in Eq. (11).

Fig. 2 illustrates the differences between Bilinear, Spectral PCA and
Spectral LDA classifiers. All the classifiers assume that each category is
represented by a specific combination of some of the ICs (the classifier
finds these informative combinations; here, for simplicity, the found
combinations were expected to be the same for all three classifiers).
However, the way the spectral-weight vectors are estimated depends
3 http://www.gaussianprocess.org/gpml/code/matlab/util/minimize.m.
on the classifier. The spectral weights reflect the importance of different
frequencies in the classification and are illustrated by black solid curves
next to the spatial patterns. The shapes of the weight vectors depend
either on the category (Bilinear), the estimated source (Spectral PCA),
or both (Spectral LDA).

Cross-validation

We trained all the classifiers based on the penalized log-likelihood
objective function, which involves selecting a suitable hyperparameter
value λ that controls the extent of regularization. One possibility to
automatically determine λ is to aim at the best decoding performance
as measured by CV. Conventional CV procedures were not directly
applicable to our data because of the temporal dependencies between
successive time windows. However, time windows in different
stimulus/rest blocks can be assumed to be rather independent
due to the sharp onsets and offsets of the blocks. Thus, we can avoid
the problem of temporal dependencies by using a “leave-one-block-
out” CV procedure (Lemm et al., 2011). For this procedure, we used all
epochs fromone block for classifier validation and the rest of the epochs
extracted from all the other blocks for classifier training during one CV
loop.We trained the classifier and evaluated its performance using each
training and validation folds for several values of λ, and selected the
final value according to the highest average classification accuracy
across the results.

To avoid bias, we estimated ICs and spectral-weight vectors sepa-
rately for each CV data set. This procedure increased considerably the
computational cost of the classifier training but could still be performed
in a reasonable time. After we had estimated the hyperparameter value
through CV,we trained the final classifierwith this value using the entire
training data set. We emphasize that for this classifier we only used data
from the first session for classifier training (including hyperparameter
estimation through CV) and reserved the entire second session for eval-
uating the performance of the classifiers. Hence, the data used in the final
performance evaluation were independent from the training data.

Multisubject classifier

Decoding by utilizing data simultaneously from multiple subjects
could inform about the extent of across-subject similarities in the mod-
ulation of brain activity.We carried out amultisubject decoding analysis
by pooling the epochs of multiple subjects from both sessions and then
performing the estimation of ICs, spectral feature extraction and classifi-
er training as described previously. To assess the decoding performance,
we carried out leave-one-subject-out analysis, i.e., we assessed the clas-
sification accuracybased on the data set of one subjectwhichwas left out
from the training data set. We trained and tested the classifier 9 times so
that each subject was left out once of the training data set, and computed
themean decoding performance across the test results. We balanced the
number of category labels between the categories separately for each
subject to ensure that we had the same number of epochs per category
for classifier training from each subject.

Interpretation of Spectral LDA

Interpretation of spectrospatial patterns

Spectral LDA offers a possibility to investigate how spectral charac-
teristics of the rhythmic brain activity change according to stimulus
categories. Although the initial number of features in the model was
relatively high (=256), LASSO forced the coefficients of the useless
and/or correlated features to zero, thereby considerably simplifying
the interpretation of the classifiers.

We concentrated on the visualization of the ICs (both their spectral
and spatial characteristics) which corresponded to the positive classifi-
cation coefficients only. As explained earlier, it is plausible to assume

http://www.gaussianprocess.org/gpml/code/matlab/util/minimize.m


Fig. 2. Schematic illustration of the classifiers Bilinear, Spectral PCA and Spectral LDA. (A) A schematic brain with three estimated ICs. (B) Classifier Bilinear assumes the same spectral-
weight vector for each IC within each category, but each category has unique weights (see the similarities and differences in the shapes of the weight vectors). (C) Spectral PCA assumes
a unique weight vector for each IC but the vectors are shared across categories (see especially the shape of the vector of a shared pattern #3 that remains fixed across categories).
(D) Spectral LDA is themost flexible classifier, as it assumes unique spectral-weight vectors for each IC, similar to Spectral PCA, but the spectral weights are also category-specific, similar
to Bilinear: weights in the column denoted by 1 (or 2) are specific for discriminating category 1 (or 2) from the other categories. We assume that the classifier automatically captures
category-specific spectral information by assigning positive classification coefficients to informative spectral projections (the two arrows emphasize the columns which are expected
to be associated with high positive classification coefficients).
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that a positive classification coefficient for some category is associated
with those ICs and spectral weights that are estimated by discriminating
the given category from the other categories (because LDA maximizes
the class separation in the projected space by definition). On the other
hand, because the decrease in the value of this same projection means
that the given category becomes less probable with respect to other
categories, negative classification coefficients do not have interesting
interpretation in this model.

The spectral weights themselves can be either positive or nega-
tive. A positive value of a certain frequency bin means that an in-
crease in the power at this frequency band makes the category of
the corresponding classification coefficient more probable. Similarly, a
negative value means that a decrease in the power at this frequency
increases the probability of the category. To make the interpretation
of the results meaningful, we normalized all classification coefficients
and spectral weights by the standard deviation of the input data corre-
sponding to each coefficient.

Across-subject cluster analysis

In Spectral LDA, each classification coefficient is associated with one
spectrospatial pattern given by the corresponding IC. It is convenient to
visualize this pattern using three adjacent plots: one for the spatial
pattern, one for the spectral-weight vector, and one for the real spec-
trum. If the classifier contains several positive classification coefficients,
it is obvious that the interpretation of thefindings becomes complicated
due to the high number of plots. For some subjects and categories,
the number of positive classification coefficients was so low that the
findings were relatively easy to interpret. However, for other subjects
and categories, the number of positive classification coefficients was
higher (e.g. more than 10), making the interpretation of the findings
more difficult. One possible strategy to simplify interpretations is to in-
vestigate features associated with the highest classification coefficients
only. The drawback of this approach is that it is not always obvious
that high classification coefficients are related to the most interesting
findings. For instance, it is possible that some of the coefficients with
high magnitude are related to suppression of noise whereas some coef-
ficients with a lowmagnitude are related to neuroscientifically interest-
ingphenomena (Blankertz et al., 2011). Perhaps amore reliable strategy
for simplifying the interpretation is to visualize the most consistent
features across subjects. To enhance such visualization, we designed a
clustering procedure to find similar features across subjects for each
category. The procedure consisted of the following steps:

1. Construction of the similarity matrix:
We first identified the spectral-weight vectors associated with posi-
tive classification coefficients and pooled them across the classifiers
of the subjects (separately for each category). Then, for each category
k, we formed a similaritymatrix by computing the pairwise similarities
between the weight vectors based on a cross-correlation sequence,
that is, cross-correlations computed when one of the spectra is
shifted towards lower and higher frequencies. We computed the
cross-correlations to account for individual variability in peak fre-
quencies in the rhythmic oscillatory activity. For each vector pair
fm, fn (the subscripts of the category and IC are omitted here for con-
venience), we computed the cross-correlations across the frequency
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Fig. 3.Mean (SEM) classification accuracy across the subjects for the five classifiers:
C1 = Baseline, C2 = Statistical, C3 = Bilinear, C4 = Spectral PCA, and C5 = Spectral
LDA. The shown significance levels (marked by asterisks) refer to the comparison of the
classifiers against Baseline.
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range [−2.5 Hz 2.5 Hz], and normalized the values so that the auto-
correlations at zero lag were identically 1.0. We selected the maxi-
mum value as the similarity value and set all the negative cross-
correlations to zero because we were interested in positive correla-
tions. Hence, the elements of the similarity matrix were numbers
between zero and one given by:

hsim m;nð Þ ¼ max 0; max xcorr fm; fnð Þ½ �f g; ð13Þ

where xcorr() denotes the normalized cross-correlation sequence
between the two vectors as described above.

2. Adding spatial constrains to clustering:
We required that only spatially similar ICs can be clustered together.
To this aim, we computed a spatial binary similarity matrix by
thresholding themagnitudes of the spatial patterns of the ICs (corre-
sponding to the pooled spectral-weight vectors) and investigated
pairwise whether the thresholded patterns overlapped. In this ma-
trix, the value one denoted overlap between the patterns (at least
in one channel) and the value zero meant that the patterns did not
overlap. We also accounted for the hemispheric symmetry of the
brain by flipping one pattern from each pair across the midline into
the opposite hemisphere and investigated a possible overlap with
another pattern (and gave a value 1 also in the case of symmetric
“overlap”). As a result, we obtained a binary matrix with elements
b(m, n) denoting the pairs of spatially similar ICs. We then weighted
the similarity matrix of the LDA weight vectors with this matrix and
transformed the resulting similarity matrix to a dissimilarity matrix.
Hence, the elements of the final dissimilarity matrix used for cluster-
ing were given by:

h m;nð Þ ¼ 1−hsim m;nð Þb m;nð Þ: ð14Þ

We constructed one dissimilarity matrix for each category.
3. Clustering and post-processing:

We clustered the data based on the obtained dissimilarity matri-
ces using the average-linkage agglomerative hierarchical cluster-
ing algorithm (Hastie et al., 2009).4 A clustering cutoff value
and a threshold for the spatial patterns were manually adjusted
so that the spectrospatial characteristics of different clusters became
visible. After clustering, it was possible that clusters contained more
than one pattern from single subjects. To simplify interpretation,
in each cluster we retained only the pattern corresponding to
the highest classification coefficient for each subject. Hence, after
post-processing, the maximum number of spectrospatial patterns
in each cluster was nine: one pattern per subject.

4. Visualization:
We visualized the spectral-weight vectors and spatial patterns
within the clusters on top of each other using a distinct color for
each subject. To facilitate the overall interpretation of the findings,
we sorted the clusters according to their size from the largest to the
smallest.

Results

Classification performance

Fig. 3 presents the mean classification accuracy of the classifiers
across subjects. Themean accuracy is shown together with the standard
error of mean (SEM). We report results obtained with 4-s window
length and 2/3 window overlap, since these parameters yielded the
highest performance across all classifiers.5 Themean classification accu-
racy for all classifiers was well above the chance level (0.25). Spectral
4 We used the implementation from the Statistics Toolbox of Matlab.
5 This window parameter combination did not yield the highest accuracy for Spectral

LDA, but it was used to avoid bias in the comparison of the results.
LDA provided the best performance with the mean accuracy of 0.686
(i.e., 68.6% of the epochs were correctly classified for the test data).
The result was significantly higher (at α = 0.001, Bonferroni corrected)
comparedwith that of Baseline (mean performance 0.546; paired t-test;
p = 0.0002). Also the result of Spectral PCA (mean performance 0.659)
was statistically significant (at α = 0.05, Bonferroni corrected) com-
pared with that of Baseline (p = 0.0076). The corresponding result
of Bilinear (mean performance 0.629) was not statistically significant
after the Bonferroni correction (p = 0.0188). The result of Spectral
LDA was significantly higher (at α = 0.05, Bonferroni corrected) in the
comparison against Bilinear (p = 0.0024) but not in the comparison
against Spectral PCA (p = 0.3198). The classifier Statistical performed
considerably worse (mean performance 0.453) than any other classifier.

Fig. 4 shows the subject-wise classification results (ordered from the
highest to the lowest based on the classification accuracies of Spectral
LDA). The classification accuracy varied considerably between individuals
for all classifiers. Note that Spectral LDA yielded relatively good perfor-
mance for all subjects (the results varied between 0.485 and 0.838)
whereas Spectral PCA yielded very good results for some subjects but
relatively poor results for some others (the results varied between
0.382 and 0.882).

To test whether Spectral LDA would also work at single-individual
level, we compared its classification accuracy with the performance
of a random classifier which assigns the data points to the classes ran-
domly, with equal probabilities. The results of Spectral LDA were signif-
icantly above the chance level (at α = 0.001, Bonferroni corrected) for
all subjects (p b 8 × 10−6 for all the subjects); see Pereira et al. (2009)
for details of the test.

Table 2 presents the confusion matrices of the classifiers, with the
rows denoting the true and the columns the estimated categories. The
Spectral LDA provided the highest mean classification accuracies for
the categories “auditory” (0.575) and “visual” (0.830). Bilinear yielded
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Fig. 4. Accuracies of the tested classifiers for individual subjects. The subjects are ordered
according to the individual mean classification accuracy.
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the best mean accuracy for the category “tactile” (0.804). Both Spectral
LDA and PCA provided the highestmean accuracy for the category “rest”
(0.549). For classifiers Baseline, Statistical, and Bilinear, the most
Table 2
Average confusion matrices across subjects for all classifiers. Rows denote the true and
columns the estimated category. The reported values are mean classification accuracies
across subjects, and the corresponding standard errors are given inside parentheses. The
correct classification results are shown in bold.

Auditory Visual Tactile Rest

Baseline
Auditory .477 (.124) .092 (.049) .157 (.052) .275 (.106)
Visual .092 (.037) .654 (.097) .150 (.049) .105 (.069)
Tactile .209 (.073) .059 (.035) .529 (.064) .203 (.075)
Rest .235 (.067) .124 (.048) .118 (.037) .523 (.116)

Statistical
Auditory .379 (.107) .118 (.071) .288 (.081) .216 (.071)
Visual .118 (.040) .444 (.100) .294 (.105) .144 (.038)
Tactile .222 (.054) .111 (.055) .490 (.068) .177 (.040)
Rest .163 (.051) .157 (.051) .183 (.075) .497 (.067)

Bilinear
Auditory .490 (.077) .092 (.037) .216 (.045) .203 (.049)
Visual .105 (.036) .752 (.067) .065 (.025) .078 (.035)
Tactile .085 (.026) .052 (.029) .804 (.049) .059 (.022)
Rest .255 (.056) .137 (.028) .137 (.056) .471 (.070)

Spectral PCA
Auditory .556 (.110) .137 (.070) .150 (.048) .157 (.056)
Visual .072 (.027) .804 (.064) .059 (.033) .065 (.030)
Tactile .118 (.046) .078 (.029) .726 (.090) .078 (.033)
Rest .261 (.066) .059 (.020) .131 (.039) .549 (.064)

Spectral LDA
Auditory .575 (.078) .059 (.024) .137 (.045) .229 (.052)
Visual .098 (.045) .830 (.045) .033 (.014) .039 (.022)
Tactile .105 (.036) .033 (.017) .791 (.061) .072 (.045)
Rest .222 (.046) .131 (.040) .098 (.037) .549 (.065)
difficult category to decode was “auditory”, and epochs from this cate-
gory were often classified either as “tactile” or “rest”. For Bilinear, Spec-
tral PCA and Spectral LDA, the most difficult category to decode was
“rest”, which was most often confused with the “auditory” category.
The “auditory” category was difficult to decode also with these
classifiers.

Interpretation of spectrospatial patterns

Figs. 5 and 6 show two examples of spectrospatial patterns learned
by the Spectral LDA (the confusion matrix of the results of this subject
is shown in Table 3). Fig. 5 (Subject 4, visual category) is an example
of an extremely sparse solution, where only two classification coeffi-
cients in the final classifier were nonzero for the given category. The
spectrospatial pattern associated with the higher classification coeffi-
cient (in the first row) shows that the suppression (reflected by the
negative sign of the spectral weights) of the 10-Hz power in the occip-
ital cortex increased the probability of the visual category. The phenom-
enon can be verified from the real spectrum on the right: the 10-Hz
activity was strongly present when the visual stimulus was absent
but suppressed when the stimulus was present. The finding can be
related to the classic alpha rhythm originated in the posterior cortex
and known to be suppressed during visual processing or attention
(Hari and Salmelin, 1997).

The second pattern shows that the increase of the 12-Hz power in
the Rolandic areasmade the visual categorymore probable. This pattern
may not bedirectly related to theprocessing of the visual input but rath-
er to the absence of processing tactile stimuli. It likely reflects the well-
known Rolandic mu rhythm that is known to be suppressed during tac-
tile stimulation and sensorimotor activity (Hari and Salmelin, 1997).
Note that the classification coefficient of the “visual pattern” is much
larger (2.52) than that of the “Rolandic pattern” (0.18), indicating that
the suppression of the occipital alpha was a by far more discriminative
feature. Although the finding may seem obvious, we want to point
out that the classifier found it automatically from high-dimensional
MEG recordings without any assumptions about the spatial location of
the feature, and the frequency-band of interest was only coarsely
specified.

Fig. 6 shows the corresponding results for the category "rest" for the
same subject. Overall, these results are more difficult to interpret than
the plots of Fig. 5, which is not surprising given themuch lower classifi-
cation accuracy of "rest" (0.647) than "visual" (0.941) in this subject.
The first pattern shows increased occipital alpha, likely due to decreased
visual processing and attention during the rest periods. Note that in con-
trast to the plot in Fig. 5, the positive sign of the spectral-weight vector
now suggests increased 10-Hz activity. The increase in the power can be
verified from the true spectrum on the right. An interesting component
is IC #4 inwhich the 10-Hz activity is decreased during "rest" compared
with stimulation; it is somewhat puzzling that the spatial pattern over-
laps strongly with the pattern of IC #1. From the viewpoint of decoding
methodology, particularly interesting are ICs #5 and #6. Again, the de-
coder finds that decreases in rhythmic activity are predictive to "rest";
however, in these components the differences in the spectra (on the
right) are not clear, and the decoding methodology may be necessary
to find this connection. Regarding the remaining components, ICs #2
and #7 seem to be similar to #1 in the sense of connecting "rest"with in-
creased rhythmic activity in sensory cortices, but now close to Rolandic
(#2) and temporal (#7) areas. IC #3 is presumably an artifact.

Figs. 7–10 show across-subject clustering results for the Spectral
LDA for the categories “auditory”, “visual”, “tactile” and “rest”, respec-
tively. Three largest clusters are shown for each category. The most
interesting finding for the auditory category (Fig. 7) is the second
cluster, which indicates suppression of the band power (at 10–14 Hz,
depending on the subject) in the left temporal cortex that would
agree spatiallywith the generation site of the temporal-lobe tau rhythm
which however has been reported to occur at slightly lower frequencies
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Fig. 5. Spectrospatial patterns (ICs and their associated LDA weight vectors) found for Subject 4 for the category “auditory”. Rows denote all the found patterns in the order of decreasing
classification coefficients (the values of the classification coefficients are shownon the left), and columns denote the spectrospatial characteristics of each pattern: the spatial pattern of the
IC on the sensor helmet viewed from left, back, and right (leftmost column), the LDAweight vector associatedwith the IC (middle column), and the “real” spectra of the IC at a logarithmic
scale (rightmost column). In the rightmost column, the black color of the real spectrum denotes the average spectra computed across the epochs belonging to the category of interest, and
the red color indicates the corresponding spectrum computed across all the other categories. See Interpretation of spectrospatial patterns section on how to interpret themodel coefficients.

Fig. 6. Spectrospatial patterns found for Subject 4 for the category “rest”. See the caption
of Fig. 5 for the meaning of the plots and Interpretation of spectrospatial patterns section
on how to interpret the model coefficients.
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of 8–10 Hz (Lehtelä et al., 1997). The first and the third clusters seem to
show increases in the Rolandic mu and occipital alpha rhythms, respec-
tively. The signs of the spectral weights are plausible because the tactile
and visual stimuli were not present.

The first cluster of the visual category (Fig. 8) indicates strong sup-
pression of the occipital alpha rhythm, suggesting involvement of visual
processing. The second cluster was also located in the posterior cortex,
with increase in power in the 8–10 Hz band, implying that alpha
rhythms of different center frequencies may behave functionally differ-
ently. The third cluster, withweak (0.09)weight overlapswith Rolandic
areas and suggests suppression of the twomain frequency components
of the mu rhythm.

The clusters of the tactile category (Fig. 9) were all located around
the Rolandic areas. The first cluster showed suppression at around
10–13 Hz as well as at 19–22 Hz (however, one subject showed sup-
pression already at 7 and 13 Hz). These findings could reflect suppres-
sion of the Rolandic mu rhythm due to the tactile stimuli, here with
considerably stronger weights than in the lowest panel of Fig. 8.
Also the second and the third cluster indicated suppressed activity in
two distinct frequency bands, but the frequencies were lower than in
the first cluster (the approximate frequency bands were 6–10 Hz and
14–17 Hz). Because the subjects of the second and third cluster were
different from those of the first cluster, also these findings may reflect
Rolandicmubutwith notable intersubject variation in the characteristic
frequencies. In any case, most of these findings agree with the current
literature because the mu rhythm typically contains both 8–13 Hz and
15–25 Hz frequency bands (Hari and Salmelin, 1997).

The largest cluster of the category “rest” (Fig. 10) showed variable
spectral characteristics across a wide frequency band (5–25 Hz) in
the parietal cortex, mainly indicating increased oscillatory activity.
This result may be related to increased Rolandic mu due to the absence
of tactile stimuli, or it might reflect spontaneous variations not related
Table 3
The confusion matrix of the subject 4 whose spectrospatial features are shown in Figs. 5
and 6. Rows denote the true and columns the estimated category memberships. The cor-
rect classification results are shown in bold.

Subject 4 Auditory Visual Tactile Rest

Auditory .941 0 0.059 0
Visual 0 .941 0.059 0
Tactile 0.177 0.118 .706 0
Rest 0.177 0.117 0.059 .647
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Fig. 7. Across-subject clustering results for the auditory category. Rows denote clusters
and columns denote the spectrospatial characteristics of each cluster: the spatial patterns
of the ICs on the sensor helmet viewed from left, back, and right (leftmost column),
the spectral-coefficient vectors associated with the ICs (middle column), and the “real”
spectra of the ICs at a logarithmic scale (rightmost column). Colors of the spatial patterns
and spectral-coefficient vectors correspond to different subjects according to the color
map (the values of the classification coefficients are shown below the helmets using the
same color code). In the rightmost column, the black color of the real spectra denotes
the average spectra computed across the epochs (and subjects) belonging to the category
(and cluster) of interest, and the red lines show the corresponding spectra computed
across all the other categories. See Interpretation of spectrospatial patterns section on
how to interpret the model coefficients.

Fig. 8. Across-subject clustering results for the visual category. See the caption of Fig. 7 for
the meaning of the plots and Interpretation of spectrospatial patterns section on how to
interpret the model coefficients.
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to tasks or stimuli. The second cluster could be related to increased
occipital alpha power due to decreased visual attention. The origin of
the pattern in the third cluster is unclear. Note that the sign is negative,
i.e. the decoder found suppression specifically related to "rest", and thus
it is possible that the results reflect increased activation (and decreased
rhythmic activity) in the Rolandic cortex.
Multisubject classifier

Themean classification accuracy across subjects for themultisubject
Spectral LDA classifier was 0.46 (SEM = 0.03). The results of individual
subjects were all statistically significantly higher than the results of
a random classifier (at α = 0.05, Bonferroni corrected; binomial test;
the p-values were between 2.66 × 10−10 and 0.0064), but the result
was significantly worse (alpha = 0.001) than that obtained by the
subject-specific classifiers (paired t-test, p = 0.00013). Table 4 presents
the confusion matrix of the classification results. Similar to single-
subject classifiers, the categories “visual” and “tactile” were the easiest
categories to decode. The classification of epochs belonging to the “rest”
category was completely random.
Assessment of Spectral LDA design

We evaluated the contribution of the key design steps for Spectral
LDA, including the selection of the optimal windowing parameters,
the use of spatial filtering using ICA, the use of regularization in the
estimation of the spectral-weight vectors, and the effect of frequency
band on the decoding performance. The evaluation of these steps is
important especially for future studies.

Effect of windowing parameters
We first evaluated the effect of window length and window step

size (which controls window overlap) on the classification performance.
While computing the results for different window lengths, we did not
change the window step size so that the number of windows for classi-
fier training was kept constant. In addition, we always evaluated the
test performance based on non-overlapping windows. Fig. 11A shows
that window length had notable effect on the classification results:
the 1-s time window yielded a mean accuracy of 0.553 which with
the 4-s timewindow improved to 0.686 (change statistically significant
at α = 0.001; paired t-test; p = 0.00005).

Increasing thewindow length from 4 to 5 s did not anymore change
significantly the classification accuracy. It is possible that the 5-s win-
dow was suboptimal because the number of independent epochs used
in the classifier training decreased as the window length was increased.
Another possible explanation is that the non-stationarity of the time-
series within the category-blocks started to degrade the classification
performance.

We examined both these possibilities in more detail. First, we found
that even when exactly the same number of independent training
epochswas used, the classifier trained on 5-s epochs did not outperform
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Fig. 9. Across-subject clustering results for the tactile category. See the caption of Fig. 7 for
the meaning of the plots and Interpretation of spectrospatial patterns section on how to
interpret the model coefficients.

Fig. 10. Across-subject clustering results for the rest category. See the caption of Fig. 7 for
the meaning of the plots and Interpretation of spectrospatial patterns section on how to
interpret the model coefficients.
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the classifier trained on 4-s epochs (mean performances 0.662 and
0.680, respectively). Second, to find out the effect of non-stationarity
of the MEG signals, we trained one classifier with epochs appearing
immediately (0–3 s) after the onset of each stimulus/rest block and
another with epochs appearing later (3–6 s after the onset of each
block). We used 3-s time-windows because the duration of the shortest
blocks was 6 s and we wanted to ensure that we had exactly the
same number of epochs for training both classifiers and that at least
one epoch was extracted from each block. The accuracies did not differ
(mean performances 0.493 and 0.470 for classifiers using early and
late information, respectively; paired t-test; p = 0.19).

Fig. 11B shows the effect of time-window overlap on classification
performance. The maximum performance, with mean accuracy of 0.711,
was attained with 2/3 overlap; this performance tended to be higher
than our original mean accuracy of 0.686 (α = 0.05; paired t-test, p =
0.055). The tendency in the results is that the classification accuracy
first increases and then decreases as a function of the window overlap.
Thus it seems that some time-window overlap is useful.
Table 4
The mean (SEM) confusion matrix of the leave-one-subject-out analysis carried out with
the Spectral LDA. Rowsdenote the true and columns the estimated categorymemberships.
The correct classification results are shown in bold.

All subjects Auditory Visual Tactile Rest

Auditory .439 (0.047) 0.216 (0.056) 0.164 (0.036) 0.199 (0.036)
Visual 0.193 (0.050) .567 (0.079) 0.135 (0.037) 0.123 (0.037)
Tactile 0.140 (0.047) 0.076 (0.022) .632 (0.096) 0.170 (0.061)
Rest 0.316 (0.043) 0.257 (0.053) 0.205 (0.032) .240 (0.046)
Effect of spatial filtering
Fig. 12A shows the impact of ICA and the number of estimated

ICs on the decoding performance. Without spatial filtering, i.e., when
we trained and tested the classifiers for each subject directly based
on preprocessed signals from the 204 gradiometer channels, the mean
accuracywas 0.619 (bar on the left). The use of ICA (training and testing
the classifier after estimating 64 ICs from 204 gradiometer signals)
improved the mean classification accuracy to 0.686 (α = 0.05; paired
t-test; p = 0.014).
Fig. 12B shows the classification results as a function of the number
of estimated ICs. The mean classification accuracy tended to increase
together with the number of ICs until 40 ICswere reached (the accuracy
was significantly higher with 40 than 10 ICs at α = 0.01; paired t-test;
p = 0.0012). Above 40 ICs, the resultsfluctuatedmore but the decoding
performance remained high (the highest mean performance 0.701 was
obtained using 60 ICs; this result was not significantly higher than
the one based on 40 ICs; paired t-test; p = 0.364). Note that although
the number of gradiometer channels was 204, the effective dimension
of the data after the SSS preprocessingwas 64, rendering the estimation
of a higher number of ICs meaningless.
Effect of regularization
The estimation of spectral-weight vectors in our study was based

on a heavily regularized version of LDA, where the covariance matrix
was effectively assumed spherical. When spectral-weight vectors were
estimated using the LDAwithout regularization, themean classification
accuracywas0.472. Our original result (themean classification accuracy
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Fig. 11. The effect of window parameters on the classification performance of Spectral
LDA: (A) the effect of window length, and (B) the effect of window step size (presented
as fractions of the overlap between two successive windows). For instance, window
overlap = 0 means that successive windows did not overlap at all (but are adjacent to
each other), and window overlap = 1/2 indicates 50% overlap between the successive
windows.
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0.686) was significantly better than the unregularized one at α = 0.001
(paired t-test; p = 0.00026). The poor performance of the unregularized
LDA was not surprising, because the dimension of the short-time spectra
Fig. 12. The effect of ICA on the classification performance of Spectral LDA. A) mean
classification accuracieswithout (a left bar labeled as “chan.”) andwith (a right bar labeled
as “ICs”) applying ICA to the 204 gradiometer signals. B) The effect of the estimated number
of ICs from 10 to 64 on the classification accuracy.
was roughly equal to the number epochs, making the estimation of the
inverse of the covariance matrix unstable.

Effect of frequency range
We limited our analysis to frequencies below 30 Hz because we

assumed that higher frequencies might not be useful in our decoding
task due to their low SNR. Because the limit was arbitrary, we tested
whether the decoding accuracy would improve if we extended the
frequency range of interest to contain the gamma-band (frequencies
up to 80 Hz). The classification accuracy based on the 5–80-Hz range
(mean performance 0.662) was not higher than based on our original
5–30-Hz range (mean performance 0.686). The visual inspection of
the LDA weight vectors verified that category-discriminative informa-
tion was dominantly present below 30 Hz (the values of the weights
above 30 Hz were zero or close to zero).

Discussion

In this paper, we introduced a novel general-purposeMEG decoding
method, Spectral LDA, for the investigation of whole-brain rhythmic
activity during distinct conditions. We assessed the usefulness of the
method in a naturalistic setup comprising visual, auditory and tactile
stimuli. Spectral LDA assumes that distinct brain activations (sources)
are characterized by unique spectral patterns of cortical rhythms.
Spectral LDA also assumes that the spectral patternsmay vary according
to the brain state. Although these assumptions are rather obvious as
far as brain function is concerned (see e.g. Singer, 1993; Buzsáki and
Draguhn, 2004), decoding of different brain states and different applied
stimuli from the very noisy and relatively short single-trialMEG traces is
far from trivial. However, Spectral LDA performed very well in this
difficult task and was superior to three out of four classifiers based on
more restrictive assumptions concerning spectrospatial information in
the data (Figs. 3, 4; these three classifiers were Baseline, Statistical,
and Bilinear). The better performance of Spectral LDA compared with
Baseline implies the usefulness of the spectral content of MEG signals
in the given decoding task. In addition, detailed spectral information
was more useful than unspecific spectral information (as Spectral
LDA performed better than Statistical). The results also indicate that
it is wise to estimate spectral signatures separately for distinct ICs
instead of estimating a common spectral feature for each category and
using thatwith each IC (Spectral LDAwas better than Bilinear). Spectral
PCA provided comparable classification accuracy with Spectral LDA, but
the visualization of the final results is more meaningful with Spectral
LDA.

The investigation of the trained classifiers showed that the Spectral
LDA can provide neuroscientifically relevant information about state-
dependent changes of rhythmic brain activity. To make the investiga-
tion of the spectrospatial features across subjects easier, we developed
a clustering method that took into account some functional and ana-
tomical differences across individuals. The cluster analysis revealed
that many subjects shared similar spectrospatial features (Figs. 7–10).
The spatial patterns of the dominant clusters agreed with functionally
meaningful brain areas. Naturally, the verification of different findings
will require additional studieswith newdata sets collected froma larger
number of subjects. In any case, already these findings are neurophysi-
ologically encouraging, because themethod seeks patterns in an explor-
atory manner based on minimal a priori assumptions concerning the
brain areas and frequencies of interest.

The decoding performance of the classifier trained with the data
of several subjects and tested with a subject not included in the training
data showed that Spectral LDA was capable of utilizing common
spectrospatial features across subjects. However, the multisubject clas-
sifier was not competitive against the single-subject classifiers,
suggesting notable interindividual variation in the rhythmic brain activ-
ity. Across-subject clustering results supported this view: cluster
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analysis revealed similar spectrospatial characteristics across subjects,
but each cluster contained data only from a subset of subjects.

The choice of the time-window length is a key design parameter in
the type of analysis presented here because it determines the spectral
and temporal resolution of the analysis. We found that the window
length had a notable effect on the classification performance, the 4-s
time window yielding the best results (although not significantly
different from those with a 5-s window). Non-stationarity of the
MEG time-series possibly explained the lack of further improvement
of the classification performance with longer than 4-s time windows.
Using at least some time-window overlap turned out to be beneficial
(the best results were obtained with 2/3 overlap), but the selection of
the amount of overlap was not critical.

Because the signal captured by each gradiometer sensor is a mixture
of activity from different neuronal sources, we assumed that linear
unmixing of the 204 gradiometer signals using ICA would map the
data closer to the sources and thus improve decoding performance. To
investigate the usefulness of ICA in our decoding task, we trained Spec-
tral LDA also using the 204 gradiometer signals as inputs and compared
the results with those obtained using ICA. The direct decoding based on
the gradiometer signals degraded the classification accuracy significant-
ly, showing that spatial filtering is an important part of the classifier de-
sign. In our original design, we estimated 64 ICs, corresponding to the
dimension of the data after preprocessing using the SSS method. The
decoding performance using a much smaller number of ICs (10–30)
was considerably worse, implying that discriminative information was
distributed across many ICs. On the other hand, once a sufficiently
high number of ICs was estimated, the decoding results remained high
even when more ICs were estimated. This result was expected because
of the efficient regularization with LASSO which was capable of remov-
ing redundant and uninformative components. Thus, the selection of
the number of ICs is not critical as long as the number is high enough.
One benefit of ICA is that it provides an easily interpretablemodel. How-
ever, in the future we will also assess the suitability of other spatial fil-
ters, such as those based on common spatial pattern (CSP) (Blankertz
et al., 2008), for Spectral LDA.

Amajor challenge inMEG-based decoding of spontaneous activity is
the variability of the statistical properties of the MEG signals between
sessions and subjects. The session-to-session variability can be partially
alleviated by using appropriate regularization to avoid overlearning of
the classifier. In Spectral LDA design, we applied regularization at two
stages:first as a part of LDA in the estimation of spectral-weight vectors,
and then in the training of the logistic regression classifier using the
sparsity-enforcing ‘1-norm penalty. We used a heavily regularized ver-
sion of LDA to estimate spectral weights for each IC by assuming that the
covariancematrices of the class-conditional distributions of the estimat-
ed short-time spectrawere spherical. Even though this assumptionmay
not be realistic, the regularization improved the classification perfor-
mance significantly, suggesting that the prevention of overlearning is
a critical requirement for successful classification when the training
and test data sets come from independent sessions. The use of the
sparsity-enforcing penalty in the final classifier training was important
not only in the prevention of overlearning, but also for automatic selec-
tion of important features in the final model.

In the current study, we limited the frequency range of interest to
5–30 Hz. Extending this range to the gamma band (up to 80 Hz) did
not improve classification, possibly because the highest SNR for MEG
signals and their changes due to sensory stimuli occurs below the
gamma band.

Besides Spectral LDA, also two other classifiers utilizing detailed
spectral information (Spectral PCA and Bilinear) performed well in
this study. Spectral PCA yielded even higher classification accuracy
for some individual subjects than Spectral LDA, suggesting that the
unsupervised estimation of the spectral weight-vectors may, in some
cases, be less prone to overfitting comparedwith the supervised estima-
tion. On the other hand, poor results of Spectral PCA for other subjects
indicate that the directions of the maximal variances in the short-time
spectra of the ICs could not always capture category-discriminative
information. The classification performance of Bilinear was inferior to
Spectral LDA and PCA but nevertheless also this classifier performed
relatively well. In the current study, we used a bilinear model imposing
rank = 1 constraint on the fully parameterized model. This choice
was well-motivated because we wanted to test a classifier which as-
sumes that spectral characteristics in the brain are category-
specific but not IC-specific. The use of constraints with rank N 1,
similar as in Dyrholm et al. (2007a), is an important topic for future
research.

One limitation in the current studywas the relatively short duration
of the 12-min sessions, which provided only a limited number of (inde-
pendent) epochs per category for training the classifier. In the future, it
would be important to perform similar experimentswith longer record-
ings tomake the training of the classifiermore accurate. It would also be
useful to analyze recordings containing a more diverse set of different
stimulus blocks compared with the current experiments. In this case,
one could try to decode even a higher number of categories. In our
current data, the categories “visual” and “auditory” consisted of differ-
ent subcategories. However, we did not intend to decode these catego-
ries because the limited amount of the available data.

Wewould like to emphasize that the proposedmethod is not limited
to the type of experiments presented here, but can be applied to
any MEG or EEG decoding problem. High classification performance
and meaningful spectrospatial patterns provided by the classifier
indicate that the analysis of MEG signals using Spectral LDA can be an
interesting alternative to fMRI-based decoding studies, in which
detailed spectral information cannot be utilized due to the poor tempo-
ral resolution of the fMRI. We provide all the implemented methods as
a free Matlab toolbox6 and hope them to be useful in advancing
neuroscience.
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Appendix A. Multicategory bilinear logistic regression

Here, we present the objective function and the gradient for the
bilinear logistic regression classifier. Gradient for the classifier with a
bilinear kernel has been presented earlier (Dyrholm et al., 2007a), but
the analysis was restricted to two-category classification. Although it
is possible to solvemulticategory problems usingmultiple binary classi-
fiers (e.g. by using one-versus-rest discriminations), the multicategory
extension is useful because it allows optimal assessment of performance
based on a singlemodel rather than on constructs of several two-category
classifiers.

We used ‘2-norm of the classification coefficients as a penalty
term because it is a differentiable function and therefore suitable
for gradient-based optimization. The use of this penalty did not force
the classification coefficients corresponding to distinct ICs to zero as
was the case with our other classifiers which were optimized using
the linear kernel function and ‘1-norm penalty. However, this was not
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a major concern because we were solely interested in the prediction
performance (and not interpretability) of the bilinear classifier in this
study.

We found the gradients separately for the log-likelihood and
the penalty terms of the penalized objective function Jθ = Lθ − λPθ,
and then computed the final gradient as ∇Jθ = ∇Lθ − λ∇Pθ. The
components of the gradient of the penalty term are:
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For the bilinear classifier, observations are matrices Z(n). Under the
assumptions that Z(n) are independent and category labels ynk follow a
multinomial distribution with a parameter pk(Z(n)), the log-likelihood
of the symmetric logistic regression model is:
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where we have used knowledge that ∑ k = 1
K ynk = 1. With bilinear

kernel function, Eq. (A.2) becomes:
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and the elements of the gradient are partial derivatives of this function
with respect to parameters ck, fk, and bk. These are given by:
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where zij(n) are the elements of the matrix Z(n).

References

Anemüller, J., Sejnowski, T.J., Makeig, S., 2003. Complex independent component analysis
of frequency-domain electroencephalographic data. Neural Networks 16, 1311–1323.

Bahramisharif, A., Van Gerven, M., Heskes, T., Jensen, O., 2010. Covert attention allows
for continuous control of brain–computer interfaces. Eur. J. Neurosci. 31, 1501–1508.

Besserve, M., Jerbi, K., Laurent, F., Baillet, S., Martinerie, J., Garnero, L., 2007. Classification
methods for ongoing EEG and MEG signals. Biol. Res. 40, 415–437.

Bingham, E., Hyvärinen, A., 2000. A fast fixed-point algorithm for independent component
analysis of complex valued signals. Int. J. Neural Syst. 10, 1–8.

Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Müller, K.R., 2008. Optimizing spatial
filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25, 41–56.

Blankertz, B., Lemm, S., Treder, M., Haufe, S., Müller, K.R.R., 2011. Single-trial analysis and
classification of ERP components — a tutorial. NeuroImage 56, 814–825.

Buzsáki, G., Draguhn, A., 2004. Neuronal oscillations in cortical networks. Science 304,
1926–1929.
Carroll, M.K., Cecchi, G.A., Rish, I., Garg, R., Rao, A.R., 2009. Prediction and interpretation of
distributed neural activity with sparse models. NeuroImage 44, 112–122.

Chan, A.M., Halgren, E., Marinkovic, K., Cash, S.S., 2011. Decoding word and category-
specific spatiotemporal representations from MEG and EEG. NeuroImage 54,
3028–3039.

Cox, D.D., Savoy, R.L., 2003. Functional magnetic resonance imaging (fMRI) brain reading:
detecting and classifying distributed patterns of fMRI activity in human visual cortex.
NeuroImage 19, 261–270.

de Brecht, M., Yamagishi, N., 2012. Combining sparseness and smoothness improves
classification accuracy and interpretability. NeuroImage 60, 1550–1561.

De Martino, F., Valente, G., Staeren, N.l., Ashburner, J., Goebel, R., Formisano, E., 2008.
Combining multivariate voxel selection and support vector machines for mapping
and classification of fMRI spatial patterns. NeuroImage 43, 44–58.

Dyrholm, M., Christoforou, C., Parra, L.C., 2007a. Bilinear discriminant component analysis.
J. Mach. Learn. Res. 8, 1097–1111.

Dyrholm, M., Makeig, S., Hansen, L.K., 2007b. Model selection for convolutive ICA
with an application to spatiotemporal analysis of EEG. Neural Comput. 19,
934–955.

Friedman, J.H., Hastie, T., Tibshirani, R., 2010. Regularization paths for generalized linear
models via coordinate descent. J. Stat. Softw. 33, 1–22.

Grosenick, L., Klingenberg, B., Katovich, K., Knutson, B., Taylor, J.E., 2013. Interpretable
whole-brain prediction analysis with GraphNet. NeuroImage 72, 304–321.

Hari, R., Kujala, M.V., 2009. Brain basis of human social interaction: from concepts to brain
imaging. Physiol. Rev. 89, 453–479.

Hari, R., Salmelin, R., 1997. Human cortical oscillations: a neuromagnetic view through
the skull. Trends Neurosci. 20, 44–49.

Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., Malach, R., 2004. Intersubject synchronization of
cortical activity during natural vision. Science 303, 1634–1640.

Hasson, U., Furman, O., Clark, D., Dudai, Y., Davachi, L., 2008. Enhanced intersubject corre-
lations duringmovie viewing correlate with successful episodic encoding. Neuron 57,
452–462.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd edition. Springer, New York.

Haynes, J.D., Rees, G., 2006. Decodingmental states from brain activity in humans. Nature
Rev. Neurosci. 7, 523–534.

Hejnar, M.P., Kiehl, K.A., Calhoun, V.D., 2007. Interparticipant correlations: a model free
fMRI analysis technique. Hum. Brain Mapp. 28, 860–867.

Huttunen, H., Manninen, T., Kauppi, J.P., Tohka, J., 2012. Mind reading with regularized
multinomial logistic regression. Mach. Vision Appl. 2012, 1–15.

Hyvärinen, A., Ramkumar, P., Parkkonen, L., Hari, R., 2010. Independent component analy-
sis of short-time Fourier transforms for spontaneous EEG/MEG analysis. NeuroImage
49, 257–271.

Kamitani, Y., Tong, F., 2005. Decoding the visual and subjective contents of the human
brain. Nature Neurosci. 8, 679–685.

Kauppi, J.P., Jääskeläinen, I.P., Sams, M., Tohka, J., 2010. Inter-subject correlation of brain
hemodynamic responses duringwatchingamovie: localization in space and frequency.
Front. Neuroinform. 4, 5 (10 pp.).

Kauppi, J.P., Huttunen, H., Korkala, H., Jääskeläinen, I.P., Sams, M., Tohka, J., 2011. Face
prediction from fMRI data during movie stimulus: strategies for feature selection.
Artif Neural Networks and Mach Learn — ICANN. Springer, pp. 189–196.

Klami, A., Ramkumar, P., Virtanen, S., Parkkonen, L., Hari, R., Kaski, S., 2011. ICANN/
PASCAL2 challenge: MEG mind reading — overview and results. Proceedings
of ICANN/PASCAL2 Challenge: MEG Mind Reading. Aalto University Publication
series SCIENCE + TECHNOLOGY 29/2011 Espoo, Finland, pp. 3–19.

Kriegeskorte, N., 2011. Pattern-information analysis: from stimulus decoding to
computational-model testing. NeuroImage 56, 411–421.

Lahnakoski, J.M., Glerean, E., Salmi, J., Jääskeläinen, I.P., Sams, M., Hari, R., Nummenmaa, L.,
2012. Naturalistic fMRI mapping reveals superior temporal sulcus as the hub
for the distributed brain network for social perception. Front. Hum. Neurosci. 6, 233
(14 pp.).

Lehtelä, L., Salmelin, R., Hari, R., 1997. Evidence for reactive magnetic 10-Hz rhythm in the
human auditory cortex. Neurosci. Lett. 222, 111–114.

Lemm, S., Blankertz, B., Dickhaus, T., Müller, K.R., 2011. Introduction to machine learning
for brain imaging. NeuroImage 56, 387–399.

Liu, G., Huang, G., Meng, J., Zhu, X., 2010. A frequency-weighted method combined with
common spatial patterns for electroencephalogram classification in brain–computer
interface. Biomed. Signal Process. 5, 174–180.

Malinen, S., Hlushchuk, Y., Hari, R., 2007. Towards natural stimulation in fMRI — issues of
data analysis. NeuroImage 35, 131–139.

Mellinger, J., Schalk, G., Braun, C., Preissl, H., Rosenstiel, W., Birbaumer, N., Kübler, A.,
2007. An MEG-based brain–computer interface (BCI). NeuroImage 36, 581–593.

Mitchell, T.M., Hutchinson, R., Niculescu, R.S., Pereira, F., Wang, X., Just, M.A., Newman,
S.D., 2004. Learning to decode cognitive states from brain images. Mach. Learn. 57,
145–175.

Murphy, B., Poesio, M., Bovolo, F., Bruzzone, L., Dalponte, M., Lakany, H., 2011. EEG
decoding of semantic category reveals distributed representations for single concepts.
Brain Lang. 117, 12–22.

Oppenheim, A.V., Schafer, R.W., Buck, J.R., et al., 1999. Discrete-Time Signal Processing,
vol. 5. Prentice Hall, Upper Saddle River.

Pereira, F., Mitchell, T., Botvinick, M., 2009. Machine learning classifiers and fMRI: a
tutorial overview. NeuroImage 45, S199–S209.

Pfurtscheller, G., Neuper, C., 2001. Motor imagery and direct brain–computer communi-
cation. IEEE Proc. 89, 1123–1134.

Ramkumar, P., Parkkonen, L., Hari, R., Hyvärinen, A., 2012. Characterization of
neuromagnetic brain rhythms over time scales of minutes using spatial independent
component analysis. Hum. Brain Mapp. 33, 1648–1662.

http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0005
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0005
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0010
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0010
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0015
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0015
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0020
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0020
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0030
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0030
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0025
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0025
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0040
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0040
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0045
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0045
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0050
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0050
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0050
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0055
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0055
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0055
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0035
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0035
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0060
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0060
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0065
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0065
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0070
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0070
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0070
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0075
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0075
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0095
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0095
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0100
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0100
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0105
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0105
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0115
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0115
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0110
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0110
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0110
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0275
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0275
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0120
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0120
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0125
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0125
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0130
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0130
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0135
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0135
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0135
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0140
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0140
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0280
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0280
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0280
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0285
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0285
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0285
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0290
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0290
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0290
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0290
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0145
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0145
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0295
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0295
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0295
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0150
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0150
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0155
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0155
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0160
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0160
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0160
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0165
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0165
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0170
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0175
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0175
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0180
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0180
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0180
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0300
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0300
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0185
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0185
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0190
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0190
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0200
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0200
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0200


936 J.-P. Kauppi et al. / NeuroImage 83 (2013) 921–936
Ramkumar, P., Jas, M., Pannasch, S., Hari, R., Parkkonen, L., 2013. Feature-specific informa-
tion processing precedes concerted activation in human visual cortex. J. Neurosci. 33,
7691–7699.

Rasmussen, C.E., Nickisch, H., 2010. Gaussian processes for machine learning (GPML)
toolbox. J. Mach. Learn. Res. 11, 3011–3015.

Rasmussen, P.M., Hansen, L.K., Madsen, K.H., Churchill, N.W., Strother, S.C., 2012. Model
sparsity and brain pattern interpretation of classification models in neuroimaging.
Pattern Recogn. 45, 2085–2100.

Richiardi, J., Eryilmaz, H., Schwartz, S., Vuilleumier, P., Van De Ville, D., 2011. Decoding
brain states from fMRI connectivity graphs. NeuroImage 56, 616–626.

Rieger, J.W., Reichert, C., Gegenfurtner, K.R., Noesselt, T., Braun, C., Heinze, H.J.J., Kruse, R.,
Hinrichs, H., 2008. Predicting the recognition of natural scenes from single trial MEG
recordings of brain activity. NeuroImage 42, 1056–1068.

Ryali, S., Supekar, K., Abrams, D.A., Menon, V., 2010. Sparse logistic regression for whole
brain classification of fMRI data. NeuroImage 51, 752–764.

Ryali, S., Chen, T., Supekar, K., Menon, V., 2012. Estimation of functional connectivity
in fMRI data using stability selection-based sparse partial correlation with elastic
net penalty. NeuroImage 59, 3852–3861.

Santana, R., Bielza, C., Larrañaga, P., 2012. Regularized logistic regression and multiobjective
variable selection for classifying MEG data. Biol. Cybern. 106, 389–405.

Simanova, I., van Gerven, M., Oostenveld, R., Hagoort, P., 2010. Identifying object
categories from event-related EEG: toward decoding of conceptual representations.
PloS One 5, e14465 (12 pp.).

Singer, W., 1993. Synchronization of cortical activity and its putative role in information
processing and learning. Annu. Rev. Physiol. 55, 349–374.

Spiers, H., Maguire, E., 2007. Decoding human brain activity during real-world experiences.
Trends Cogn. Sci. 11, 356–365.
Suk, H.I., Lee, S.W., 2013. A novel Bayesian framework for discriminative feature
extraction in brain–computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 35,
286–299.

Taulu, S., Kajola, M., 2005. Presentation of electromagnetic multichannel data: The signal
space separation method. J. Appl. Phys. 97, 124905 (10 pp.).

Tibshirani, R., 1996. Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Series B
(Stat. Meth.) 58, 267–288.

Tomioka, R., Müller, K.R., 2010. A regularized discriminative framework for EEG analysis
with application to brain–computer interface. NeuroImage 49, 415–432.

Tong, F., Pratte, M.S., 2012. Decoding patterns of human brain activity. Annu. Rev. Psychol.
63, 483–509.

van Gerven, M., Jensen, O., 2009. Attention modulations of posterior alpha as a control
signal for two-dimensional brain–computer interfaces. J. Neurosci. Methods 179, 78–84.

van Gerven, M., Hesse, C., Jensen, O., Heskes, T., 2009. Interpreting single trial data using
groupwise regularisation. NeuroImage 46, 665–676.

van Gerven, M.A., Cseke, B., De Lange, F.P., Heskes, T., 2010. Efficient Bayesian multivariate
fMRI analysis using a sparsifying spatio-temporal prior. NeuroImage 50, 150–161.

Wolf, I., Dziobek, I., Heekeren, H.R., 2010. Neural correlates of social cognition in naturalistic
settings: a model-free analysis approach. NeuroImage 49, 894–904.

Yamashita, O., Sato, M.A., Yoshioka, T., Tong, F., Kamitani, Y., 2008. Sparse estimation
automatically selects voxels relevant for the decoding of fMRI activity patterns.
NeuroImage 42, 1414–1429.

Zhdanov, A., Hendler, T., Ungerleider, L., Intrator, N., 2007. Inferring functional brain states
using temporal evolution of regularized classifiers. Comput. Intell. Neurosci. 52609 (8
pp.).

Zou, H., Hastie, T., 2005. Regularization and variable selection via the elastic net. J. R. Stat.
Soc. Series B (Stat. Meth.) 67, 301–320.

http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0195
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0195
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0195
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0205
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0205
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0210
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0210
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0210
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0215
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0215
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0220
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0220
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0230
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0230
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0225
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0225
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0225
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0235
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0235
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0305
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0305
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0305
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0240
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0240
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0245
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0245
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0250
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0250
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0250
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0310
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0310
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0315
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0315
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0255
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0255
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0260
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0260
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0085
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0085
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0080
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0080
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0090
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0090
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0265
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0265
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0270
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0270
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0270
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0320
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0320
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0320
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0325
http://refhub.elsevier.com/S1053-8119(13)00781-7/rf0325

	Decoding magnetoencephalographic rhythmic activity using spectrospatial information
	Introduction
	Materials and methods
	Naturalistic stimulation
	Preprocessing
	Classifier design
	Spectral feature extraction
	Penalized symmetric multinomial logistic regression

	Alternative classifiers
	Cross-validation
	Multisubject classifier

	Interpretation of Spectral LDA
	Interpretation of spectrospatial patterns
	Across-subject cluster analysis

	Results
	Classification performance
	Interpretation of spectrospatial patterns
	Multisubject classifier
	Assessment of Spectral LDA design
	Effect of windowing parameters
	Effect of spatial filtering
	Effect of regularization
	Effect of frequency range


	Discussion
	Acknowledgments
	Appendix A. Multicategory bilinear logistic regression
	References


