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Abstract. A hidden Markov model is introduced for descriptive mod-
elling the mosaic–like structures of haplotypes, due to iterated recom-
binations within a population. Methods using the minimum description
length principle are given for fitting such models to training data. Pos-
sible applications of the models are delineated, and some preliminary
analysis results on real sets of haplotypes are reported, demonstrating
the potential of our methods.

1 Introduction

Hidden Markov models (HMMs) have become a standard tool in biological se-
quence analysis [8,2]. Typically they have been applied to modelling multiple se-
quence alignments of protein families and protein domains as well as to database
searching for, say, predicting genes.

In this paper we introduce HMM techniques for modelling the structure of
genetic variation between individuals of the same species. Such a variation is
seen in so–called haplotypes that are sequences of allelic values of some DNA
markers taken from the same DNA molecule. The single nucleotide polymor-
phisms (SNPs) are important such markers, each having two alternative values
that may occur in haplotypes of different individuals. The SNPs cover for ex-
ample the human genome fairly densely. The variation of haplotypes is due to
point mutations and recombinations that take place during generations of evolu-
tion of a population. Studying the genetic variations and correlating them with
variations in phenotype is the commonly followed strategy for locating disease
causing genes and developing diagnostic tests to screen people having high risk
for these diseases.

Several recent studies have uncovered some type of block structure in human
haplotype data [1,10,4,18,11,6]. However, the recombination mechanism as such
does not necessarily imply a global block structure. Rather, at least in old popu-
lations one expects to see a mosaic–like structure that reflects the recombination
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history of the population. Assume that the haplotypes of an observed popu-
lation have developed in generations of recombinations from certain ’founder’
haplotypes. Then the current haplotypes should consist of conserved sequence
fragments (possibly corrupted by some rare later mutations) that are taken from
the founder sequences. Our goal is to uncover such conserved fragments from a
sample set of haplotypes.

Unlike most earlier approaches for analyzing haplotype structures, the model
class introduced here has no bias towards a global block structure. Our model
is an acyclic HMM, capable of emitting equal length sequences. Each state of
the model can emit a sequence fragment that is to be put into some specific
location of the entire sequence. As the location is independent of the locations
of other states, the madel has no global block structure. The hidden part of
each state represents a conserved fragment, and the transitions between the
states model the cross–overs of recombinations. We distinguish a general variant
whose transition probabilities depend on both states involved, and a ’simple’
variant whose transition probabilities depend only on the state to be entered.

For selecting such a HMM for a given training data we suggest a method
based on the minimum description length principle (MDL) by Rissanen [12,13]
which is widely used in statistics, machine learning, and data mining [9,5]. An
approximation algorithm will be given for the resulting optimization problem of
finding a model with shortest description in the proposed encoding scheme. The
algorithm consists of two parts that are iterated alternatingly. The greedy part
reduces the set of the conserved fragments, and the optimizer part uses the usual
expectation maximization algorithm for finding the transition probabilities for
the current set of fragments.

Our idea of block–free modeling has its roots in [17] which gave a combi-
natorial algorithm for reconstructing founder sequences without assuming block
structured fragmentation of the current haplotypes. In probabilistic modelling
and using MDL for model selection we follow some ideas of [6]. Unfortunately
in the present block–free case the optimization problem seems much harder. Re-
cently, Schwartz [14] proposed a model basically similar to our simple model
variant. However, his method for model selection is different from ours. A non–
probabilistic variant of our model with an associated learning problem was in-
troduced in [7].

The rest of the paper is organized as follows. In Section 2 we describe the
HMMs for modelling haplotype fragmentations. Section 3 gives MDL methods
for selecting such models. Section 4 discusses briefly the possible applications of
our models. As an example we analyze two real sets of haplotypes, one from lac-
tose tolerant and the other from lactose intolerant humans. Section 5 concludes
the paper.

We assume basic familiarity with HMM techniques as described e.g. in [2].
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2 Fragmentation Models

2.1 Haplotype Fragmentation

We want to model by a designated HMM the haplotypes in a population of a
species of interest. The haplotypes are over a fixed interval of consecutive genetic
markers, say m markers numbered 1, 2, . . . , m from left to right. The markers
may be of any type such as biallelic SNPs (single nucleotide polymorphisms)
or multiallelic microsatellite markers. The alleles are the possible alternative
’values’ a marker can get in the DNA of different individuals of the same species.
A biallelic SNP has two possible (or most frequently occurring) values that
actually refer to two alternative nucleotides that may occur in the location of
the SNP in the DNA sequence. Hence each marker i has a corresponding set Ai

of possible alleles, and each haplotype over the m markers is simply a sequence
of length m in A1 × . . .×Am.

Our HMM will be based on the following scanario of the structure of the
haplotypes as a result of the microevolutionary process that causes genetic vari-
ation within a species. We want to model the haplotypes of individuals in a
population of some species such as humans. Let us think that the observed pop-
ulation was founded some generations ago by a group of ’founders’. According to
the standard model of DNA microevolution, the DNA sequences of the current
individuals are a result of iterated recombinations of the DNA of the founders,
possibly corrupted by point mutations that, however, are considered rare. Simply
stated, a recombination step produces from two DNA sequences a new sequence
that consists of fragments taken alternatingly from the two parent sequences.
The fragments are taken from the same locations of the parents as is their tar-
get location in the offspring sequence. Hence the nucleotides of the parent DNA
shuffle in a novel way but retain their locations in the sequence.

The haplotypes reflect the same structure as they can be seen as subsequences
obtained from the full DNA by restriction to the markers. So, if haplotype R is
a recombination of haplotypes G and H, then all three can be written for some
c ≥ 0 as

R = G1H1G2H2 · · ·GcHc

G = G1G
′
1G2G

′
2 · · ·GcG

′
c

H = H ′
1H1H

′
2H2 · · ·H ′

cHc

where |Gi| = |H ′
i| > 0 for 1 ≤ i ≤ c, and |G′

i| = |Hi| > 0 for 1 ≤ i < c and
|G′

c| = |Hc| ≥ 0. Haplotype R has a cross-over between markers i and i + 1 if
the markers do not belong to the same fragment Gj or Hj for some j.

Assume that such recombination steps are applied repeatedly on an evolving
set of sequences, starting from an initial set of founder haplotypes. Then a hap-
lotype of a current individual is built from conserved sequence fragments that
are taken from the haplotypes of the founders. In other words, each haplotype
has a parse

f1f2 · · · fh
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where each fi is a contiguous fragment taken from the same location of some
founder haplotype, possibly with some rare changes due to point mutations. This
parse is unknown. Our goal is to develop HMM modelling techniques that could
help uncovering such parses as well as conserved haplotype segments.

To that end, we will introduce a family of HMMs whose states model the
conserved sequence fragments and the transitions between the states model the
cross-overs. The conserved fragments in the models will be taken from the se-
quences in A1 × · · · ×Am. The parameters of the HMM will be estimated from
a training data that consists of some observed haplotypes in the current pop-
ulation. We will apply the minimum description length principle for the model
selection to uncover the fragments that can be utilized in parsing several different
haplotypes of the training data. Our model does not make any prior assumption
on the distribution of the cross-over points that would prefer, say, a division of
the haplotypes into global blocks between recombination ’hot spots’.

2.2 Model Architecture

A hidden Markov model M = (F, ε, W ) for modeling haplotype fragmentation
consists of a set F of the states of M , the error parameter ε ≥ 0 of M , and the
transition probabilities W between the states of M .

Each state f ∈ F is actually a haplotype fragment by which we mean con-
tiguous segment of a possible haplotype between some start marker and some
end marker, that is, f is an element of As × · · · ×Ae where 1 ≤ s ≤ e ≤ m. We
often call the states f the fragments of M . The start and end markers of f are
denoted by s(f) and e(f), respectively.

The emission probabilities P (d|f) of state (fragment) f give a probability
distribution for fragments d ∈ As(f) × · · · × Ae(f) when the underlying founder
fragment is f . This distribution will include a model for mutation and noise
rates, specified by the noise parameter ε. It is also possible to incorporate a
model for missing data which is useful if the model training data is incomplete.
We adopt perhaps the simplest and most practical alternative, the missing–at–
random model. Let us write f = fs · · · fe and d = ds · · · de. Assuming that the
markers are independent of each other we have

P (d|f) =
e∏

i=s

P (di|fi),

where we define

P (di|fi) =






1 if di is missing
1− ε if di = fi

ε/(|Ai| − 1) otherwise.

We assume that a value for ε is a given constant and do not consider here its
estimation from the data. Therefore we omit ε from the notation and denote a
fragmentation model just as M = (F, W ).
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Fig. 1. A simple fragmentation model for haplotypes with 6 binary markers

Model M has a transition from state f to state g whenever f and g are
adjacent, that is, if e(f) + 1 = s(g). If this is the case, the transition probablity
W (f, g) is defined, otherwise not. The probabilities of the transitions from f
must satisfy

∑
g∈F W (f, g) = 1.

A transition function W defined this way has the drawback of fairly large
number of probabilities to estimate. Therefore we consider the following simpli-
fied version. A fragmentation model is called simple if all probabilities W (f, g)
for a fixed g but varying f are equal. Hence g is entered with the same probabil-
ity, independently of the previous state f . Then we can write W (f, g) = W (g),
for short. A simple fragmentation model is specified by giving the fragments F ,
the transition probability W (g) for each g ∈ F , and the error parameter ε. From
now on, in the rest of the paper, we only consider the simple fragmentation
models.

An example of a simple fragmentation model over 6 (binary) markers is shown
in Figure 1. The fragments for the states are shown inside each rectangle, the
height of which encodes the corresponding transition probability. For example,
each of the three states whose start marker is 1 have transition probability 1/3,
and the three states with start marker 3 have transition probabilities 2/3, 1/6,
and 1/6. When ε = 0 this model generates haplotype 000000 with probability
1/3 · 2/3 · 1/2 = 1/9 (the only path emitting this sequence with non-zero prob-
ability goes through the three states with fragment 00), and haplotype 111111
with probability 0.

2.3 Emission Probability Distribution

Let us recall how a hidden Markov model associates probabilities to the sequences
it emits. A path through a simple fragmentation model M = (F, W ) over m
markers is any sequence (F1, . . . , Fh) of states of M such that s(F1) = 1, e(Fi)+
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1 = s(Fi+1) for 1 ≤ i < h, and e(Fh) = m. Let π be the set of all paths through
M .

Consider then the probability of emitting a haplotype H = H1 · · ·Hm. Some
allele values may be missing in H. The probability that H is emitted from path
(F1, . . . , Fh) is

P (H, (F1, . . . , Fh)|M) =
h∏

i=1

W (Fi)P (Hs(Fi) · · ·He(Fi)|Fi)

which simply is the probability that the path is taken and each state along the
path emits the corresponding fraction of H, the emission probabilities being as
already defined. The probability that M emits H is then

P (H|M) =
∑

(F1,...,Fh)∈π

P (H, (F1, . . . , Fh)|M). (1)

3 MDL Method for Model Selection

3.1 Description Length

Let D be our training data consisting of n observed haplotypes D1, . . . , Dn

over m markers. The minimum description length (MDL) principle of Rissanen
considers the description of the data D using two components: description of
the model M and description of the data D given the model. Hence the total
description length for the model and the data is

L(M, D) = L(M) + L(D|M)

where L(M) is the length of the description of M and L(D|M) is the length of
the description of D when D is described using M .

The MDL principle states that the desired descriptions of the data are the
ones having the minimum length L(M, D) of the total description. For a survey
of the connections between MDL, Bayesian statistics, and machine learning see
[9,5].

To apply this principle we have to fix the encoding scheme that will give
L(M) and L(D|M) for each particular M and D.

The model M = (F, W ) can be described by telling what are the fragments
Fi in F and where they start. The transition probabilities W (Fi) should also be
given. The error parameter ε is assumed constant and hence it needs not to be
encoded.

To encode fragment Fi we use

L(Fi) =
e(Fi)∑

j=s(Fi)

log |Aj |+ log m

bits where log |Aj | bits are used for representing the corresponding allele of Fi,
and log m bits are used for s(Fi). The probabilities W (Fi) are real numbers.
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Theoretical arguments [5] indicate that an appropriate coding precision is ob-
tained by choosing to use 1

2 log n bits for each independent real parameter of the
model; recall that n is the size of training data D. In our case there are |F | − t
independent probability values where t denotes the number of different start
markers of the fragments in F . One of the probabilities W (Fi) for fragments Fi

with the same s(Fi) namely follows from the others as their sum has to equal 1.
Thus the total model length becomes

L(M) =
|F |∑

i=1

L(Fi) +
|F | − t

2
log n

=
|F |∑

i=1

(
e(Fi)∑

j=s(Fi)

log |Aj |+ log m) +
|F | − t

2
log n. (2)

Using the relation of coding lengths and probabilities [5], we use

L(D|M) = − log
n∏

i=1

P (Di|M) = −
n∑

i=1

log P (Di|M) (3)

bits for describing the data D, given the fragmentation model M . Here proba-
bilities P (Di|M) can be evaluated using (1).

We are left with designing an algorithm that solves the MDL minimization
problem. One has to find an M = (F, W ) for a fixed error parameter ε that
minimizes L(M) + L(D|M) for a given data D.

3.2 Greedy Algorithms for MDL Optimization

As solving the MDL optimization exactly in this case seems difficult we give a
greedy approximation algorithm. The algorithm has to solve two tasks that are
to some degree independent. First, one has to find a good fragment set F for
the model. Note that the model length L(M) depends only on F (and on n).
Second, for a fixed F one has to find a good W such that L(D|M) is minimized.

Let us consider the second task first. Given F and D, we will use the well-
known expectation maximization (EM) algorithm for finding W that gives (lo-
cally) maximum P (D|M) from which we get minimum L(D|M); see e.g. [2, pp
63–64]. The EM algorithm, delinated as Algorithm 1 below, starts with some ini-
tial W and then computes the expected number of times each state of the model
with the current W is used when emitting D. These values are normalized to
give updated W . The process is repeated with the new W until convergence
(or a given number K of times). When converged, local maximum likelihood
estimates for W have been obtained.

Algorithm 1. EM–algorithm for finding W for a model M = (F, W ).

1. Initialize W somehow.
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2. (E–step) For each training data sequence Di ∈ D and fragment f ∈ F ,
compute qi(f) as the probability that M emits Di,s(f) · · ·Di,e(f) from f .
This can be done using the standard Forward and Backward algorithms for
HMMs.

3. (M–step) For each fragment f , let q(f)←∑n
i=1 qi(f). Finally set

W (f)← q(f)∑
f ′∈F (s(f)) q(f ′)

where F (s(f)) denotes the subset of F that consists of all fragments having
the same start marker as f .

4. Repeat steps 2 and 3 until convergence (or until a given number of iterations
have taken).

We will denote by EM(F ) the W obtained by Algorithm 1 for a set F of frag-
ments.

To analyze the running time of Algorithm 1, assume that we have precom-
puted the probabilities P (Di,s(f) · · ·Di,e(f)|f) for each f ∈ F and Di ∈ D.
Then the Forward and Backward algorithms in step 2 just spend a constant
time per each fragment when they scan F from left to right and from right to
left, respectively. This happens for each Di. Hence step 2 needs time O(n|F |).
This obviously dominates the time requirement of step 3, too. So we obtain the
following remark.

Proposition 1. Algorithm 1 ( EM algorithm ) for M = (F, W ) takes time
O(Kn|F |) where K is the number of iterations taken.

Let us then return to the first task, selecting fragment set F . According to
our definition of fragmentation models, set F should be selected from the set of
all possible fragments of the sequences in A1×· · ·×Am. As this search space is of
exponential sixe in m, we restrict the search in practice to the fragments that are
present in D. Let us denote as Φ(D) = {Di,j · · ·Di,k |Di ∈ D, 1 ≤ j ≤ k ≤ m}
the initial set of frgments obtained in this way. Then |Φ(D)| = O(nm2).

We select F from Φ(D) using a simple greedy strategy: delete from Φ(D) the
fragment whose elimination maximally improves the score L(M) + L(D|M). If
a fragment is deleted, then one has to remove also all other fragments that the
deletion makes isolated. A fragment is isolated if no path through the model
can contain it, which is easy to test. Repeat deletions until the score does not
improve. The remaining set of fragments is F . This method is given in more
detail as Algorithm 2.

Algorithm 2. Basic greedy MDL learning

Notation: M(−f) = the model that is obtained from the current model M =
(F, W ) by deleting fragment f and all fragments that become isolated as a side–
effect of the removal of f from F and by updating W by Algorithm 1 such that
L(D|M(−F )) is minimal.
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1 Initialize M = (F, W ) as F ← Φ(D); W ← EM(Φ(D))
2 Return Greedy(M) where procedure Greedy is as follows.

procedure Greedy(M), where M = (F, W )
do

L← L(M) + L(D|M)
∆← maxf∈F (L− [L(M(−f)) + L(D|M(−f))])
f∆ ← arg maxf∈F (L− [L(M(−f)) + L(D|M(−f))])
if ∆ > 0 then M ←M(−f∆)

until ∆ ≤ 0
return M

end Greedy

To implement Algorithm 2 efficiently one has to precompute the coding
lengths of all the fragments in Φ(D). This can be done in time O(|Φ(D)|) as the
length only depends on the location of the fragment but not on the content. Then
L(M) can be evaluated for any M = (F, W ) in time O(|F |) = O(|Φ(D)|). Train-
ing a new M(−f) by Algorithm 1 can be done in time O(Kn|F |) = O(Kn|Φ(D)|)
where K is the parameter limiting the number of iterations. To find ∆ and f∆

in procedure Greedy, a straightforward implementation just tries each f ∈ F ,
taking time O(Kn|Φ(D)|2). This will be repeated until nothing can be deleted
from the set of fragments, i.e., O(|Φ(D)|) times. The total time of Algorithm 2
hence becomes O(Kn|Φ(D)|3) = O(Kn4m6).

As Algorithm 2 can be practical only for very small m and n, we next de-
velop a faster incremental version of the greedy MDL training. This algorithm
contructs intermediate models using the initial segments of the sequences in D,
in increasing order of the length. A model, denoted Mj+1 for the initial segments
of length j + 1 will be constructed by expanding and retraining the model Mj

obtained in the previous phase for the initial segments of length j.
Let Φj(D) = {Di,k · · ·Di,j | Di ∈ D, 1 ≤ k ≤ j} be the set of fragments of

D that end at marker j. To get Mj+1, fragments Φj+1(D) are added to Mj and
then the useless fragments are eliminated as in Algorithm 2 by procedure Greedy
to get Mj+1. Adding the fragments in such smaller portions to the optimization
leads to a faster algorithm.

A detail needs additional care. Adding Φj+1(D) alone to the set of fragments
may introduce isolated fragments that have no possibility to survive in the MDL
optimization because they are never reached although they could be useful in
encoding the data. To keep the new set of fragments connected we therefore
also add fragments that bridge the gaps between the old fragments inherited
from Mj and the new fragments in Φj+1(D). We use the following bridging
strategy that by adding only the shortest bridges keeps the number of bridging
fragments relatively small. We say that the set γ(F ) of the gaps of a fragment
set F consists of all pairs (k, h) of integers such that k − 1 = e(f) for some
f ∈ F but there is no f ∈ F such that k ≤ e(f) ≤ h. Then define Φj(D, F ) =
Φj(D) ∪ {Di,k · · ·Di,h |Di ∈ D, (k, h) ∈ γ(F ), h < j}. Now, we add for the new
round the set Φj+1(D, Fj) where Fj is the fragment set of Mj .
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Algorithm 3. Incremental greedy MDL learning

Notation: Procedure Greedy as in Algorithm 2.

1. Initialize M = (F, W ) as F ← ∅; W ← ∅
2. for j ← 1, . . . , m do

(F, W )← Greedy(F ∪ Φj(D, F ),EM(F ∪ Φj(D, F ))

3. return M = (F, W ).

For a running time analysis of Algorithm 3 assume that the greedy MDL
optimization is able to reduce the the size of the fragment set in each phase to
O(mn). This is a plausible assumption as the size of D is mn. Then the size
of each F ∪ Φj(D, E) given to procedure Greedy in step 2 stays O(mn). Hence
Greedy generates O(m2n2) calls of Algorithm 1, each taking time O(Kmn2).
This is repeated m times, giving altogether O(m3n2) calls of Algorithm 1 and
total time O(Km4n4) for Algorithm 3.

Adding new fragments into the optimization in still smaller portions can in
some cases give better running times (but possibly at the expense of weaker
optimization results). One can for example divide Φj(D) into fractions Φk,j(D)
consisting of equally long fragments which start at marker k and end at j. The
greedy MDL optimization is performed after adding the next Φk,j(D) and the
necessary bridging fragments.

4 Using the Fragmentation Models

Once we have trained a model M , the numerous possibilities of applying such
an HMM become available. We delineate here some of them.

1. Parsing haplotypes. Given some haplotype H, the path through M that has
the highest emission probability of H is called the Viterbi path of H. Such a
path can be efficiently found by standard dynamic programming, e.g. [2]. The
fragments on this path give a natural parsing of H in terms of the fragments
of M . The parse is the most probable decomposition of H into conserved pieces
as proposed by M . Such a parse can be visualized by associating a unique color
with each fragment of M , and then showing the parse of H with the colors of
the corresponding fragments. Using the same color for conserved pieces seems a
natural idea, independently proposed at least in [15,17].

2. Cross–over and fragment usage probabilities. The probability that M assigns
a cross–over between the markers i and i + 1 of haplotype H can be computed
simply as the fraction between the probability of emitting H along paths having
a cross–over in that point and the total probability P (H|M) of emitting H
along any path. Similarly, the probability that a certain fragment of M is used
for emitting H is the fraction between the emission probability of H along paths
containing this fragment and P (H|M).
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3. Comparisons between populations and case/control studies. Assume that we
have available training data sets Di from different populations. Then the corre-
sponding trained models M i can be used for example for classifying new hap-
lotypes H on the basis of emission probabilities P (H|M i). The structure of the
models M i may also uncover interesting differences between the populations.
For example, some strong fragments may be characteristic of a certain popula-
tion but missing elsewhere. Also, the average length of the fragments should be
related to the age of the population. An older population has experienced more
recombinations, hence its fragments should be shorter on average as those of a
younger population.

To demonstrate our methods we conclude by analyzing two real datasets
related to the lactase nonpersistence (lactose intolerance) of humans [16]. Lactase
nonpersistence limits the use of fresh milk among adults. The digestion of milk is
catalyzed by an enzyme lactase (also called lactase–phlorizin hydrolase or LHP).
Lactase activity is high during infancy but in most mammals declines after the
weaning phase. In some healthy humans, however, lactase activity persists at
high level throughout adult life, and this is known as lactase persistence. People
with lactase nonpersistence have a much lower lactose digestion capacity than
those with lactase persistence. A recent study [3] of a DNA region containing
LCT, the gene encoding LHP, revealed that in certain Finnish populations a
DNA variant (that is, an SNP), C/T−13910, almost 14 kb upstream from the
LCT locus, completely associates with verified lactase nonpersistence.

The datasets we analyse consist of haplotypes over 23 SNP markers in the
vicinity of this particular SNP. The first dataset D+, the persistent haplotypes,
consists of 38 haplotypes of lactase persistent individuals, and the second dataset
D−, the nonpersistent haplotypes, consists of 21 haplotypes of lactase nonper-
sistent individuals. We trained models for datasets D−, D+, and D+∪D− using
Algorithm 3 with ε = 0.001 and K = 3 iterations of the EM algorithm. Figures
2, 3, and 4 show the result. The fragments are shown as colored rectangles. Their
height encodes the transition probability somewhat differently from the encod-
ing used in Fig. 1. Here the height of fragment f gives the value W̃ (f) = q(f)/n
where q(f) is as in Algorithm 1 after the last iteration taken, and n is the number
of haplotypes in the training data. Hence the height represents the avarage us-
age of f when the model emits the training data. The measure W̃ (f) describes
the importance of each fragment for the training data better than the plain
transition probability W (f).

We observe that the model for persistent haplotypes has on average longer
fragments than the model for nonpersistent haplotypes. This suggests, consis-
tently with common belief, that lactase persistence is the younger of the two
traits. When analyzing the Viterbi paths in the model for D+∪D−, we observed
that all such paths for persistent haplotypes go through the large fragment in
the middle of the model (number 4 from the top), while none of the Viterbi
paths for the nonpersistent haplotypes includes it.

We also sampled two thirds of D+ and D− and trained models for the
two samples. Let M+ and M− be the two models obtained. We then com-
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Fig. 2. A fragmentation model for nonpersistent haplotypes.
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Fig. 3. A fragmentation model for persistent haplotypes.
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Fig. 4. A fragmentation model for the union of persistent and nonpersistent haplotypes
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puted for all test haplotypes H outside the training samples the quantity
Q(H) = log10 P (H|M+)/P (H|M−). One obviously expects that Q(H) > 0 when
H is a persistent haplotype and Q(H) < 0 otherwise. Satisfyingly we found out
in this experiment, that Q(H) varied from 6.0 to 11.8 for persistent test haplo-
types and from -2.6 to -44.7 for nonpersistent test haplotypes.

5 Conclusion

While our experimental evaluation of the methods suggests that useful results
can be obtained in this way, many aspects still need further work. More exper-
imental evaluation on generated and real data is necessary. We only used the
simple models but also the general case should be considered. The approxima-
tion algorithm for the MDL learning seems to work quite robustly but theoretical
analysis of its performance is missing. Also faster variants of the learning algo-
rithm may be necessary for larger data. It may also be useful to relax the model
such that the fragments of the model are not required to cover the haplotypes
entirely but small gaps between them are allowed.
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