
Fragments of order

Aristides Gionis
∗

Dept. of Computer Science
Stanford University

Stanford, CA, 94305, USA

gionis@cs.stanford.edu

Teija Kujala
HIIT Basic Research Unit

Dept. of Computer Science
University of Helsinki

P.O. Box 26, Teollisuuskatu 23
FIN-00014 Helsinki, Finland

Teija.Kujala@cs.helsinki.fi

Heikki Mannila
HIIT Basic Research Unit

Dept. of Computer Science
University of Helsinki

P.O. Box 26, Teollisuuskatu 23
FIN-00014 Helsinki, Finland

Heikki.Mannila@cs.helsinki.fi

ABSTRACT
High-dimensional collections of 0-1 data occur in many ap-
plications. The attributes in such data sets are typically
considered to be unordered. However, in many cases there
is a natural total or partial order ≺ underlying the variables
of the data set. Examples of variables for which such or-
ders exist include terms in documents, courses in enrollment
data, and paleontological sites in fossil data collections. The
observations in such applications are flat, unordered sets;
however, the data sets respect the underlying ordering of
the variables. By this we mean that if A ≺ B ≺ C are
three variables respecting the underlying ordering ≺, and
both of variables A and C appear in an observation, then,
up to noise levels, variable B also appears in this observa-
tion. Similarly, if A1 ≺ A2 ≺ · · · ≺ Al−1 ≺ Al is a longer
sequence of variables, we do not expect to see many obser-
vations for which there are indices i < j < k such that Ai

and Ak occur in the observation but Aj does not.
In this paper we study the problem of discovering frag-

ments of orders of variables implicit in collections of un-
ordered observations. We define measures that capture how
well a given order agrees with the observed data. We de-
scribe a simple and efficient algorithm for finding all the
fragments that satisfy certain conditions. We also discuss
the sometimes necessary postprocessing for selecting only
the best fragments of order. Also, we relate our method with
a sequencing approach that uses a spectral algorithm, and
with the consecutive ones problem. We present experimen-
tal results on some real data sets (author lists of database
papers, exam results data, and paleontological data).

∗Supported by a Microsoft Research Fellowship. Part of this
work was done while the author was visiting the HIIT Basic
Research Unit, Department of Computer Science, University
of Helsinki, Finland.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD ’03, August 24-27, 2003, Washington, DC, USA
Copyright 2003 ACM 1-58113-737-0/03/0008 ...$5.00.

Categories and Subject Descriptors
H.2.8 [Database management]: Database applications—
Data mining ; F.2.2 [Analysis of algorithms and prob-

lem complexity]: Nonnumerical algorithms and problems

Keywords
Novel data mining algorithms, discovering hidden orderings,
spectral analysis of data, consecutive ones property

1. INTRODUCTION
High-dimensional collections of 0-1 data occur in many

applications, such as in market basket analysis, telecommu-
nications networks, information retrieval, computational bi-
ology, and ecology. The attributes in such data sets are typ-
ically considered to be unordered. However, in many cases
there are ordering dependencies among the attributes. Con-
sider, for example, technical articles about database man-
agement systems, and the terms “database system”, “query”,
and “selectivity estimation”. A document can contain one
of them, all of them, or just the first two or last two. How-
ever, a document containing the terms “database” and “se-
lectivity estimation” but not “query optimization” seems
somewhat strange.

Indeed, searches on Citeseer1 using Google give the fol-
lowing numbers of hits:

database query selectivity hits
system estimation

1 1 1 49
1 1 0 1930
0 1 1 221
1 0 1 4

We indeed see that one particular pattern of occurrences of
terms is very rarely represented. Note that we are not look-
ing at the ordering of terms in individual documents. For
each document, we only look at whether the terms occur
in it or not. We aim at using this data to obtain informa-
tion about the ordering relationships between the attributes
(variables).

The reason for the asymmetry between the three terms
in the above example is that there is an underlying direc-
tionality in the terms. The term “selectivity estimation”
in the context of “database systems” is dependent on the

1http://citeseer.nj.nec.com

concept of “query”: selectivity estimation cannot be dis-
cussed without mentioning (sooner or later) queries. The
chain of concepts could be longer: for example, “histogram
technique” would probably fit to the end of the above chain.

What makes the above ordering

“database system” ≺ “query” ≺ “selectivity estimation”

interesting is that there are enough observations that con-
tain at least two of the terms (the fragment has high fre-
quency) and few observations have the first and last but do
not have the second one (the fragment has few violations).
We make these criteria specific in the next section.

In this paper we study the problem of discovering this
type of fragments of order from unordered 0-1 data. Such
orderings between smaller or larger sets of variables occur in
various types of data sets. For example, consider a data set
where the variables represent courses at a department and
rows represent students; a 1 indicates that the student has
passed the course. The prerequisites of courses show up in
fragments of order: if course Ai is needed for course Ai+1

for i = 1, . . . , l − 1, we assume that no student has passed
two courses Ai and Ak but not Aj for some i < j < k. Some
examples of observations conforming and violating the order
A ≺ B ≺ C ≺ D are given in the next table.

A B C D ok?
1 1 1 0 yes
0 1 1 0 yes
0 1 1 1 yes
1 0 1 1 no
1 0 0 1 no
1 0 1 0 no
0 1 0 1 no

Note that if an observation violates some order, it also vio-
lates the order obtained by reversing the direction of all the
precedence relationships.

As a third example, consider paleontological data about
fossil remains of animals. The variables are different sites
(in different locations) from which fossils have been found,
and the observations represent the taxa (species or genera).
If variable A is set for observation t, this means that taxon t

has been found at site A. Each site represents fossils from a
relatively brief interval in geological time. The goal for this
type of data is to find the order corresponding to the ages of
the sites. For a fragment of order A ≺ B ≺ C relating three
sites, an observation t that violates this order corresponds
to the so-called Lazarus phenomenon: a taxon that is extant
at A, extinct for B, and reappears at C.

The rest of this paper is organized as follows. In Section 2
we review work related with the problem we consider here.
In Section 3 we describe the formal definitions of fragments
of order and give the problem statement for finding all frag-
ments from a dataset. We focus on finding fragments of
order, and not total orders, as the real-life data sets seldom
allow for nice orderings of attributes that would be compat-
ible with most of the data. Section 4 describes a simple A
priori-like algorithm for finding the fragments, and it shows
how we can do some postprocessing to select the best frag-
ments. Section 5 is a quick introduction to spectral cluster-
ing, a method that can be used to yield total orderings of
all the attributes minimizing some stretch measures. Sec-
tion 6 gives the empirical results, and Section 7 is a short
conclusion.

2. RELATED WORK
We are not aware of a lot of related work. Our work is of

course heavily influenced by the work on association rules
[1]: the idea of looking at all possible patterns from a con-
cept class that satisfy certain frequency counts has proved
to be very useful (e.g., sequential patterns [2, 15]). Here,
however, the concepts are slightly less straightforward: an
observation with all 1s does not contribute to all patterns,
as it does for normal frequent pattern type of concepts.

Some of the approaches of postprocessing association rules
(see, e.g., [10, 19]) aim at finding graphs of attributes from
0-1 data. However, the semantics there typically are quite
different from ours. Mannila and Meek [14] provide an algo-
rithm for finding a partial order for the full set of variables
in an dataset consisting of observation in each of which the
variables are ordered; in our setting, the observations are
sets, not sequences. The work of Popescul et al. [17] has
somewhat similar goals to ours, but in their paper they con-
sider the context of linked documents. In computational
biology, e.g., in sequence assembly (see [8]), one encounters
the task of totally ordering a set of variables so that so sort
of breaks are minimized. This is fairly closely related to
the method of spectral clustering. Again, our emphasis is
on finding fragments of order, not a single best order, and
hence many of the techniques from computational biology
are not directly applicable. Our problem is also related to
the consecutive ones property [4]; we will discuss the rela-
tionship in Section 5.

3. PROBLEM STATEMENT
In this section we introduce some notation and define more

formally the problem of discovering the fragments of order.
Let R = {A1, . . . , An} be the set of 0-1 attributes of the
dataset. A dataset D = {r1, . . . , rm} consists of m observa-
tions each of which is a subset of attributes from R. Equiv-
alently, an observation can be viewed as a record with n

attributes {A1, . . . , An} taking values in {0, 1}. This gives
rise to the common data representation as a 0/1 matrix with
m rows corresponding to observations and n columns corre-
sponding to attributes.

We are interested in cases where there is an underlying
ordering of a subset of the attributes of R. We denote such
an ordering using the symbol ≺, and we write Ai ≺ Aj to
say that Ai precedes Aj in the ordering. A sequence of at-
tributes F = 〈A1, . . . , Al〉 defines a fragment of order, or just
a fragment, if the attributes of F form a chain with respect
to the ordering ≺, i.e., if it is the case that A1 ≺ . . . ≺ Al.
We say that fragment F is of length l. We sometimes write
F = 〈A1, . . . , Al〉 and in other cases we use the notation
A1 ≺ · · · ≺ Al.

Orderings on the data attributes like the above can be
implicitly induced by a hidden variable associated with the
attributes, or by a semantic interpretation of the attributes.

The central observation in our paper is that there is enough
information in the data to recover the underlying ordering
of the attributes, or at least to obtain some clues regarding
this ordering. This is accomplished by noticing that, given
an ordering, certain observations respect it and some violate
it.

As an example, consider a potential fragment F = 〈Ai, Aj , Ak〉
of length 3, i.e., the ordering Ai ≺ Aj ≺ Ak. We say that an
observation t violates F if t[Ai] = t[Ak] = 1 and t[Aj] = 0.

An observation t violates a potential fragment F of length
l > 3, if it violates any fragment F ′ of length exactly 3 which
is subsequence of F , i.e., there are three attributes Ai, Aj ,
and Ak in the ordering such that

Ai ≺ · · · ≺ Aj ≺ · · · ≺ Ak

and we have t[Ai] = t[Ak] = 1 and t[Aj] = 0. We say that
an observation respects a potential fragment if it does not
violate it.

Given a fragment F = 〈A1, . . . , Al〉, with l ≥ 2, the fre-
quency f(F,D) of F on dataset D is the fraction of rows r

in D in which at least two attributes of F appear, i.e., for
some i and j with i 6= j we have r[Ai] = r[Aj] = 1. We de-
note by R(F,D) the collection of rows that have the above
property; thus f(F,D) = |R(F,D)|. If fragment F ′ is a per-
mutation of F , then F and F ′ have the same frequency. The
violation fraction v(F,D) of F on D is the fraction of rows
r of R(F,D) that violate F . For a fragment F of length 2
we define v(F,D) = 0 for all D. Note that the frequency
of F is the fraction from all rows, while the violation frac-
tion is the fraction of violating rows from the R(F,D) rows
contributing to f(F,D).

We want to search for orders that are good in the sense
that they have few violations. This condition, however, is
not sufficient for the ordering to be interesting. A database
in which all observations are empty (i.e., there are no 1s)
has violation fraction of 0 for all orderings. This, obviously,
is not what we want: we want to also have positive evidence
that the attributes occurring in the order are used.

As an example, consider the dataset

A B C D

1 1 0 0
0 1 1 0
0 0 1 1

All the rows in this table contribute to the frequency of
the ordering A ≺ B ≺ C ≺ D, and this ordering has no
violations The same is true for the reverse ordering D ≺
C ≺ B ≺ A. All the other 22 orderings of the four attributes
have also frequency 1, but each has at least one violation.

A frequency threshold σ is used in combination with the
violation threshold τ in order to obtain fragments that ap-
pear frequently in the dataset and have a small number of
violations. In particular, given thresholds σ, τ ∈ [0, 1] we
define the set T0(D, σ, τ) to consist of the fragments that
are σ-frequent and not τ -violated, i.e.,

T0(D, σ, τ) = {F fragment of R | f(F,D) ≥ σ, v(F,D) ≤ τ}.

Note, however, that this definition does not require that
all attributes contribute to the frequency of the fragment.
Consider the dataset

A B C D

1 1 1 0
1 1 1 0
1 1 1 0

The frequency of the ordering A ≺ B ≺ C ≺ D is 1 and
there are no violations. Obviously, D is not contributing to
the order. Thus we augment our definition by requiring that
all subfragments of F also have to belong to the collection:

T (D, σ, τ) = {F | f(F,D) ≥ σ, v(F,D) ≤ τ,

all subfragments F
′ of F of size ≥ 2

satisfy f(F ′
,D) ≥ σ, v(F ′

,D) ≤ τ}.

According to this definition, the fragment A ≺ B ≺ C ≺ D

does not belong to T (D, σ, τ) for any σ > 0, as the frequency
of, e.g., fragment A ≺ D is 0.

One can worry whether our criteria for interesting frag-
ments is too weak. Consider the following data set.

A B C D

1 1 1 1
1 1 1 1
1 1 1 1

Every ordering of the four attributes has frequency 1 and vi-
olation fraction 0, so they would belong to the set T (D, σ, τ)
for all choices of σ and τ . In Section 4.2 we show how we se-
lect between the orderings among the same set of attributes.
Basically, the strategy is to look at the number of violations:
if there is an ordering F that has clearly less violations than
the other orderings then that implies that F is more infor-
mative than other orderings among the same attributes.

In Section 4 we describe an efficient algorithm to compute
the set T (D, σ, τ), and we show how the best orderings can
be found in the case where there are several permutations
of the same subset of variables in the collection T (D, σ, τ).

4. DISCOVERING FRAGMENTS OF ORDER
In this section we describe an algorithm for computing the

set T (D, σ, τ) for given D, σ and τ .
The algorithm consists of two phases. The first is a fairly

standard levelwise computation of the set T (D, σ, τ). This
can be done efficiently in fashion similar to A priori algo-
rithm, since the collection T (D, σ, τ) is downward closed by
definition.

One characteristic of the set T (D, σ, τ) is that it might
be possible (and indeed this is typically the case) to contain
many fragments of the same subset of attributes. First, for
any fragment 〈A1, . . . , Al〉 that belongs in the set T (D, σ, τ)
it is true that the reverse fragment 〈Al, . . . , A1〉 belongs in
the set, as well. This is true because the two fragments have
exactly the same frequency and violation fraction. In other
words, the data D is oblivious with respect to the direction
of attribute orderings.

In addition to reversed fragments, it is possible that many
more permutations of the same subset of attributes belong
in the set T (D, σ, τ). Imagine, for example, a dataset D for
which there is a subset S of attributes such that in each
row of D either all of the attributes of S appear together or
none. In this case, it is feasible that all fragments that are
derived as permutations of S are members of T (D, σ, τ).

This motivates the second phase of our algorithm, which is
a peer selection phase. We would like to distinguish between
fragments that correspond to a true ordering of attributes,
versus fragments that appear in T (D, σ, τ) just because they
are frequent itemsets. The intuition of the algorithm for
discovering true ordering is to test how a fragment stands
out among its peers, where peer is any other fragment which
is a permutation of the same attributes. This is explained
in detail in Section 4.2

4.1 Levelwise phase
As we mentioned in the previous section, the algorithm

for computing the set T (D, σ, τ) is an A priori type method
based on the monotonicity property of the collection T (D, σ, τ).
Note that the frequency of a fragment is not monotonic with

respect to subsequences: the frequency of 〈A, B, C, D〉 can
be higher than the frequency of 〈A,B, C〉.

The algorithm starts by forming all fragments consisting
of exactly two attributes from R. These are marked as can-
didate fragments of length 2. At the k-th step, candidate
fragments of length k have been formed. The algorithm
proceeds by dropping all fragments that do not satisfy the
frequency and violation fraction thresholds, and by forming
candidate fragments of length k+1. The inbuilt monotonic-
ity of T (D, σ, τ) guarantees that no fragment will be missed.

The next three functions provide a detailed description of
the levelwise algorithm.

LevelWise(D, σ, τ)
C2 = R×R
. C2 now contains all ordered pairs
k = 2
while Ck 6= 0

do Lk = Evaluate(D, σ, τ, Ck)
Ck+1 = Candidates(Lk)
k = k + 1

Candidates(L)
. L is a set of equal-length sequences from R
for X, Y ∈ L

do if X = Az and Y = zB

then AzB is a potential candidate
for all potential candidates W = B1 . . . Bk+1

do for i ← 1 to k + 1
do S = B1 . . . Bi−1Bi+1 . . . Bk+1

. S is subsequence of W of length k

if S ∈ L
then add W to the result

Evaluate(D, σ, τ , C)
. C is a collection of sequences over R
for all F ∈ C

do compute f(F,D)
compute v(F,D)
if f(F,D) ≥ σ and v(F,D) ≤ τ

then add F to the result

The complexity of the algorithm is O(mn(|T |+C)), where
m is the number of observations in the data, n is the number
of variables, and C is the number of candidate fragments
considered which turn out not to belong to T . Thus the
method is linear in the size of the data and scales nicely to
large data sets.

The frequency and violation fraction for a fragment or a
set of fragments can be computed from the data by sim-
ple sequential scan. The counts can also be written by us-
ing the inclusion-exclusion principle in the form f(F,D) =
P

i cifr(Xi,D), where the sets Xi are subsets of the frag-
ment, fr(Xi,D) is the frequency of the set Xi in the asso-
ciation rule sense [1], and ci is a positive or negative inte-
ger. However, these expressions can be exponentially large
in the number of elements in F , so we in our experiments
compute the frequencies directly from the data. However,
the use of expressions of the above form gives the possibility
of taking advantage of the wealth of fast association rules
algorithms [10] for our problem, as well.

4.2 Selection among peers
The second phase of the algorithm for discovering the best

fragments of order is to test whether a fragment is a true
order that stands by its own. As we mentioned before, if
a set of attributes occur always together we do not want
to take a single or all permutations of this set as a result.
In this case we would probably like to say that the trivial
partial order is the right answer.

Suppose that a fragment F belongs to T (D, σ, τ). This
means that the ordering of attributes given by F is not vi-
olated too often. We still have to test that the actual order
is significantly different from other possible orders of the
attributes occurring in F .

If, for example, for three attributes A, B, and C we have
that the association rules AB → C, AC → B, and BC → A

all have accuracy 1 in the data, then all 6 permutations of
ABC have the same frequency and violation fraction. (Note
the similarity to concepts such as closed sets.)

Next we describe a simple probabilistic model for estimat-
ing the likelihood of orders (somewhat in the spirit of [14]).
The model gives in the end the expected result: the best
ordering is the one that has the fewest violations.

Given a fragment F = 〈A1, . . . , Al〉, consider the set of all
possible permutations of the attributes of F , that is

S(F) = {Z | Z is a permutation of A1 . . . Al}

For a fragment F , the likelihood L(D|F) expresses the
probability that the dataset D comes from a model where
F is a true order on the attributes. We assume that

L(D|F) ∝ exp(−v(F,D)), (1)

i.e., the logarithm of the likelihood is proportional to the
violation fraction. The reason for this assumption can be
obtained, e.g., from MDL type of arguments.

Assume that L(D|Z) is computed for all Z ∈ S(F), and
furthermore assume that the fragments in S(F) is the com-
plete set of models for which we are interested in distinguish-
ing the likelihood of the data. Then, by applying Bayes’ rule
we can write

Pr(F |D) =
Pr(Z)L(D|Z)

Pr(D)
=

Pr(Z)L(D|Z)
P

W∈S(F) Pr(W)L(D|W)

We are assuming that Pr(Z) = 1
|S(F)|

for all Z ∈ S(F),

since we have no reason to favor a particular permutation.
For the choice of L(Z|D) as specified in Equation (1) we
have

Pr(Z|D) =
exp(−v(Z,D))

P

W∈S(F) exp(−v(W,D))

One should immediately observe that the denominator in
the above formula does not depend on the permutation Z,
thus, for selecting the best permutation, we only have to
consider the term exp(−v(Z,D)). The log of the latter is
proportional to v(Z,D), i.e., the number of violations of
fragment Z in the dataset D.

Motivated by the above discussion, we suggest that the
selection among peers (say, 〈ABC〉 and all permutations of
it) should be based on the number of violations for each per-
mutation. We consider the number of violations just as a
(e.g., binomially distributed) random variable. Given such
a set of random variables we select the (one or several) per-
mutations with the less number of violations as candidate

best fragments. To decide if these candidates are indeed best
fragments we need to verify that the values of their violation
fractions cannot be attributed to randomness and noise in
the data. This can be done easily with a standard anova

test. The selection phase algorithm is summarized below.

SelectAmongPeers(T)
. T is set of fragments computed at the previous phase
. We assume that for each F ∈ T we know v(F,D)
Partition T into groups of peers {P1, . . . , Pd}
for each group of peers Pi

do for each fragment F ∈ Pi

do Compute Pr(F,D) using v(F,D)
S fragments in Pi using anova

We assume that the violation fractions v(F,D) are known
since they have been computed in the previous phase of
the algorithm. The complexity of the selection phase is
O(|T | log |T |). This is because the most expensive step –
partitioning T into groups of peers – can be accomplished
by lexicographic sorting of all fragments in T .

5. SPECTRAL ALGORITHMS FOR ORDER-
ING

In this section, we describe an ordering algorithm based on
spectral methods. Spectral algorithms are important tools
for solving graph partitioning problems, and they have been
used in a wide range of applications, such as solving linear
systems [18], domain decomposition [6], scientific numerical
algorithms [20], and clustering problems [16]. Spectral algo-
rithms have also been used for ordering vertices in a graph,
and in particular for the linear arrangement problem, as dis-
cussed in [13].

The spectral algorithm we discuss in this section is at-
tractive because of its simplicity and its intuitive appeal.
However, one should note that formally the spectral algo-
rithm does not correspond to the same problem that we
defined in Section 3. The main difference is that the spec-
tral algorithm provides a single total ordering, instead of
many, perhaps overlapping, fragments of order. Similarly,
the concepts of frequency and violation fraction thresholds
are not used by the algorithm. In the rest of the section,
we give some background for the spectral method in general
and then we describe our spectral ordering algorithm.

Consider an undirected graph G = (V, E) where each
(i, j) ∈ E has weight wij . Let A be a matrix whose (i, j)-
th entry is equal to wij if (i, j) ∈ E and 0 otherwise. The
Laplacian of graph G is defined to be the symmetric and
zero-sum matrix L = D − A, where D is a diagonal ma-
trix whose (i, i)-th entry is di =

P

(i,j)∈E
wij . Let v be

the eigenvector of L that corresponds to the second smallest
eigenvalue. One can show (e.g., [7]) that v is the vector that
minimizes the quadratic form

X

(i,j)∈E

wij · (vi − vj)
2 (2)

subject to: ||v||2 = 1

Vector v is also known in the literature as the Fiedler vector.
It can be viewed as a mapping from a node i ∈ V to the
value vi, that is, as an embedding from graph nodes to the 1-
dimensional line. If we use Equation (2) to define a “stretch”

energy function associated with this embedding, then the
Fiedler vector has the property that it minimizes this energy
function.

This has clearly an ordering interpretation. However, it
goes beyond simple ordering since it also assigns real num-
ber values to nodes and therefore distances between them.
If one is looking for an ordering it is more natural to search
for a bijection π : V → {1, . . . , n} that minimizes the ar-
rangement cost

X

(i,j)∈E

wij · |π(i)− π(j)|

This NP -hard problem is studied in [13] and various heuris-
tics are proposed. In this paper, we use such a heuristic
to obtain an approximate total orderings on the dataset at-
tributes. This is done as follows:

We consider each attribute A ∈ R to be a node in a graph
GD. For each pair of attributes (Ai, Aj), we consider the
weight of this edge in GD to be the frequency of the itemset
{Ai, Aj}. The Laplacian matrix of GD is formed and the
Fiedler vector is computed. Then, the algorithm outputs all
the attributes in order of ascending (or descending) value of
their Fiedler coordinates.

The spectral algorithms have interesting connections to
the consequtive ones property. A matrix of 0s and 1s has
the consequtive ones property, if there is a way of permuting
the attributes so that for each row all the 1s are consequtive.
Testing whether a matrix has the consequtive ones property
can be done in linear time using PQ-trees [4, 5, 11]. The
relationship of spectral methods and the consequtive ones
property is studied in more detail in [3].

The relationship between spectral clustering and finding
fragments of order is interesting. Consider the case when
the input data has the consequtive ones property. Then by
the results of [3] the spectral method (used for the Lapla-
cian matrix of GD) produces an ordering which satisfies the
consequtive ones property. Furthermore, in this case this or-
dering has in our terms frequency 1 and no violations. Thus
in the case of consequtive ones property the output from our
method would be of exponential size, as all subsequences of
the order would qualify. Thus one can see our technique as
more applicable to situations in which the underlying order
does not have long paths.

6. EXPERIMENTS
In this section we briefly describe some of the experiments

we have done on real data using the fragment discovery al-
gorithm.

We report some results from a students exam results data
set, from author lists of database papers, from titles of
database papers, and from paleontological databases.

6.1 Generated data
We also ran experiments on generated data, by generating

random orderings of subsets of the set of attributes and gen-
erating data by selecting consequtive attributes from these
orderings. The data was corrupted by adding noise. The
results on these data sets showed that the method was able
to find the generating orderings up to a fairly high level
of noise, and that the number of superfluous fragments re-
mained small. We omit the details.

σ τ Max l |T | α β

(in %) (in %) (in %) (in %)
20 0 3 2 96.3 99.5
20 2.5 5 578 48.6 70.5
20 5 6 1528 40.0 66.0
20 10 7 4476 29.3 59.3
15 0 3 28 89.9 98.6
15 2.5 6 1934 46.8 78.2
15 5 7 5158 38.9 72.3
15 10 8 16884 28.0 64.9
10 0 3 222 76.9 97.7
10 2.5 6 6390 45.1 81.1
10 5 8 19716 35.0 73.9
10 10 9 82116 18.7 65.1

Table 1: Results on the exam results data. σ:

the frequency threshold; τ : the violation fraction

threshold. Max l is the maximum length of a frag-

ment in the result. |T | is the total number of frag-

ments found. α, β: see text.

6.2 Exam results data
We considered a data set from the Department of Com-

puter Science at the University of Helsinki. The data set has
2953 observations (corresponding to students), 5684 vari-
ables (corresponding to courses), and 72395 exam results.
The average number of 1s per row is 24.5, with a minimum
of 1 and maximum of 131.

For this data, we ran experiments on the fragment find-
ing algorithm. In this case, we have two ways of relating
the resulting fragments to the data. First, we know the rec-
ommended ordering among the courses; see Figure 1 for a
partial view of this. Second, we have in the original data
set information about the times in which the students have
taken each course. So we can compare how well the discov-
ered fragments correspond with official policy and with the
real data.

Table 1 gives some results on how the fragments are re-
lated to the actual known order in which each student has
passed the courses. To compare how well the fragments cor-
respond with the actual order of courses, we computed two
coefficients. The score α is computed by looking at each
fragment and each observation that contains at least all the
variables occurring in that fragment. We test whether the
order of the courses in the observations is the same (or re-
verse) from that in the fragment; α is the fraction of cases
in which this happens. The score β is computed by looking
at each fragment and each observation containing at least 2
courses appearing in the fragment, and by checking whether
the order in the observation corresponds to the order in the
fragment (or its reverse); β is the fraction of cases in which
this happens. (Note that β has the bias that no observation
with at most 2 courses can cause a violation.)

Visual comparison of the discovered fragments against the
ordering shown in Figure 1 shows that the correspondence is
good, especially for small thresholds of the violation fraction.
When up to 40 % of violations are allowed, one sees also
fragments that are not compatible with the partial ordering
in the figure.

As a single example, we found the fragment

〈Programming,
Computer Organization,

Programming Databases

Management
Database Database

Application
Project

Programming

Project

Data Structures

Project
Computer
Organization

Software
Engineering

Project

Scientific

Writing

Figure 1: Recommended ordering among 9 courses

in the exam results data.

Programming Project,
Data Structures Project,
Scientific Writing〉

which had frequency 1361, and violation fraction 3.2%. There
were 464 students who had attended all these 5 courses, and
278 had passed them in exactly the above order. When the
course Computer Organization took away from the above
order, the frequency was 1222 and violation fraction 0.9%.
The same 464 students who had attended all those 4 courses,
but 439 (94.6%) had passed them in exactly the above order.

The results show that the fragment discovery algorithm
manages to capture a surprising amount of the order actu-
ally existing in the data. In [14] an algorithm was given
that reconstructed a partial order for the courses, given the
ordered observations; what we show here is that the frag-
ments describing the same ordering to a high degree can be
reconstructed from unordered data.

6.3 Authors of database papers
We studied the bibliographies of VLDB, SIGMOD, and

PODS available at the Collection of Computer Science Bib-
liographies2 , and extracted the lists of authors from each
paper. A selection of the papers with at least 2 authors
yielded 3109 rows (papers) with a total of 9538 authors,
i.e., 3.1 authors per paper. There are 3398 authors in total.
The numbers of orderings obtained for various thresholds
are shown in Table 2.

From the results in Table 2 we note that the number of
elements in the answer set increases rapidly with decreas-
ing frequency threshold σ and increasing violation fraction
threshold τ . One should observe, however, that it is easy to
find values of σ and τ that produce outputs of desired size.

Recall that for each fragment also the reverse fragment
has the same frequency and violation fraction. Thus the
algorithm for finding fragments find produces all fragments
basically twice. The column N in Table 2 shows how many
distinct subsets there are. We discussed previously the case

2http://liinwww.ira.uka.de/bibliography/

σ τ Max l |T | N P

(in %) (in %)
0.3 0 6 58 29 0
0.3 10 6 96 41 7
0.3 20 8 132 56 9
0.3 30 8 134 56 9
0.3 40 8 134 56 9
0.2 0 8 268 133 1
0.2 10 9 684 273 19
0.2 20 11 1466 681 47
0.2 30 14 2546 1153 110
0.2 40 16 4928 1955 394

Table 2: Number of elements in T (D, σ, τ) for var-

ious values of σ and τ for the authors of database

papers data set. Max l is the maximum length of

a fragment in the result. |T | is the total number of

fragments found. N is the number of different sub-

sets of attributes present in the output, and P is the

number of subsets for which more than two different

orderings belong to T .

of a tightly connected set of attributes. This case occurs
fairly rarely in the database. One nice example is the triple

〈R.Agrawal, T.Imielinski, A.Swami〉

which satisfies the above condition!3

A converse case is observed for the triplet

〈D.Florescu, A.Levy, D.Suciu〉

which has a frequency of 15. This ordering has no violations,
while the other orderings have either 1 or 4 violations. Thus
we can say that the above ordering is the best among these
three authors.

As an example of a long fragment, we have

〈P.Deshpande, J.Naughton, D.DeWitt, M.Carey,
M.Livny, R.Ramakrishnan, D.Srivastava S.Sudarshan,
S.Seshadri, R.Rastogi, M.Garofalakis〉

which has a frequency of 3.3 %: at least two of these au-
thors are authors in 104 papers, while there are 18 violations
(17 %). Many of the long fragments, as the one above, are
very intuitive for readers of the database literature.

We also tested the spectral clustering method on this data
set. The technique cannot be applied to the whole data set,
as there are several disconnected components in the under-
lying graph, i.e., authors who have no chain of coauthorship
connections with the other authors. Thus we had to limit
the data set by taking the 20 most common authors and
including all papers in which at least one of them was an
author. The spectral ordering for the top 20 authors pro-
duced was

〈C.Faloutsos, R.Rastogi, A.Silberschatz, Y.Ioannidis,
S.Sudarshan, H.Jagadish, M.Stonebraker, M.Livny,
M.Carey, R.Agrawal, D.Srivastava, D.DeWitt,
R.Ramakrishnan, H.Pirahesh, J.Naughton,
S.Chaudhuri, J.Widom, S.Abiteboul, J.Ullman,
D.Agrawal〉

3The authors are joint authors in 5 papers in the database,
but there is no paper in which only two of them would be
authors. There are lots of papers in which one of them is an
author, of course.

One of the longer orders produced by the fragment finding
algorithm is

〈K.Shim, R.Rastogi, S.Sudarshan, D.Srivastava,
R.Ramakrishnan, M.Livny, M.Carey, M.Franklin,
S.Zdonik, S.Acharya, V.Poosala, P.Gibbons,
Y.Matias〉

It has a frequency of 3.2 % (99 observations) and only 3
violations (3%). We see close similarity between the above
fragment and the spectral clustering result.

We also tested the similarity of the discovered fragments
against the spectral ordering. The results show, as expected,
that the fragments mostly capture the same type of order-
ing information as the spectral method. However, there are
many cases in which the fragments yield a more intuitive
collection of orders against the forced single order of the
spectral method. We omit the details.

We also used the algorithm to find fragments from the
titles of the papers in the bibliography. An example frag-
ment is

〈association, mining, data, management〉

which has a frequency of 116, and 3 violations.

6.4 Paleontological data sets
In the paleontological dataset (see [12]) the variables are

different sites (in different locations) from which fossils have
been found; there are 674 of these. As observations, we used
the presence or absence of genera, of which there are about
300. The sites have been classified into so-called MN classes;
the MN class of a site corresponds roughly to the age of the
site. We ran the fragment discovery algorithm to see (1)
how well are the fragments compatible with the MN classifi-
cation, and (2) whether any exceptions can be found. Again,
we found that the fragments correspond relatively well with
the existing order of the variables. Of the approximately
2000 triplets found with σ = 0.01 and τ = 0.2, about 1800
where compatible with the MN classes, about 200 had a dif-
ference of 1 (e.g., the fragment was A ≺ B ≺ C, but the
MN classes were 7,8, and 7, respectively). One triplet had
a difference of 2: for the fragment A ≺ B ≺ C the MN
classes were 15, 17, and 15. The existence of the fragment
indicates, e.g., that no genera was present in A and C but
absent in B, and thus the assignment of MN class 17 to B
is suspect. This was confirmed by an investigation of the
background for the assignment [9].

7. CONCLUSIONS
We have defined the concept of a fragment of order. Such

a fragment is an ordering of a subset of variables in a 0-1
dataset. We described the criteria, frequency and violation
fraction, to be used for finding potentially interesting frag-
ments of order. We gave a simple A priori-like algorithm for
discovering all fragments of order that satisfy the thresholds,
and describe how further pruning can be done by selection
among peers, if necessary.

We gave preliminary empirical results on several datasets.
The results on the course enrollment data set showed that
the method is able to find large fractions of the underlying
structure of the curriculum. The results on the bibliographic
database demonstrated that the method also yields intu-
itively appealing results in the case where there is no known

underlying order. We also studied briefly the relationship
of the fragments to an ordering of the variables obtained by
spectral methods. Even the first results on paleontological
data were strong enough to lead to the discovery of an error
in the original data set.

Obviously, a lot remains to be done. We are currently
conducting a much larger set of experiments, and also de-
vising methods for estimating the recall and precision of a
set of fragments with respect to a known partial order.

A possible extension of the above framework is to con-
sider the discovery of partial orders. This leads to interest-
ing issues. Consider for example a partial order in which
A ≺ B, A ≺ C, B ≺ D and C ≺ D. What constitutes a
violation of this order? If we see A and D in an observation,
do we require that both or at least one of B and C is also
seen? The first interpretation is conjunctive, and it yields a
fairly well behaving concept class, which has several mono-
tonicity properties. The second, disjunctive interpretation,
on the other hand, gives a concept class which fails many
monotonicity test both in theory and practice. Finding a
well-behaving class of partial orders would be of interest.

8. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining

association rules between sets of items in large
databases. In P. Buneman and S. Jajodia, editors,
Proceedings of ACM SIGMOD Conference on
Management of Data (SIGMOD’93), pages 207 – 216,
Washington, D.C., USA, May 1993. ACM.

[2] R. Agrawal and R. Srikant. Mining sequential
patterns. In Proceedings of the Eleventh International
Conference on Data Engineering (ICDE’95), pages
3 – 14, Taipei, Taiwan, Mar. 1995.

[3] J. E. Atkins, E. G. Boman, and B. Hendrickson. A
spectral algorithm for seriation and the consecutive
ones problem. SIAM Journal on Computing,
28(1):297–310, Feb. 1999.

[4] K. S. Booth and G. S. Lueker. Linear algorithms to
recognize interval graphs and test for the consecutive
ones property. In ACM, editor, Conference record of
Seventh Annual ACM Symposium on Theory of
Computing: papers presented at the Symposium,
Albuquerque, New Mexico, May 5–May 7, 1975, pages
255–265, New York, NY, USA, 1975. ACM Press.

[5] K. S. Booth and G. S. Lueker. Testing for the
consecutive ones property, interval graphs, and graph
planarity using P-Q tree algorithms. J. of Comp. and
Syst. Sci., 13:335–379, 1976.

[6] T. F. Chan and D. C. Resasco. A framework for the
analysis and construction of domain decomposition
preconditioners. Technical Report CAM-87-09, UCLA,
1987.

[7] F. R. K. Chung. Spectral Graph Theory. CBMS
Regional Conference Series in Mathematics, 1997.

[8] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison.
Biological Sequence Analysis: Probabilistic Models of
Proteins and Nucleic Acids. Cambridge University
Press, Cambridge, 1998.

[9] M. Fortelius. Private communication. 2003.

[10] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann, 2000.

[11] Hsu. A simple test for the consecutive ones property.

Journal of Algorithms, 43, 2002.

[12] J. Jernvall and M. Fortelius. Common mammals drive
the evolutionary increase of hypsodonty in the
neogene. Nature, 417:538–540, 2002.

[13] Y. Koren and D. Harel. Multi-scale algorithm for the
linear arrangement problem. Technical Report
MCS02-04, Faculty of Mathematics and Computer
Science, The Weizmann Institute of Science, 2002.

[14] H. Mannila and C. Meek. Global partial orders from
sequential data. In Proceedings of the sixth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), Boston, MA,
pages 161–168. ACM Press, 2000.

[15] H. Mannila, H. Toivonen, and A. I. Verkamo.
Discovery of frequent episodes in event sequences.
Data Mining and Knowledge Discovery,
1(3):259 – 289, Nov. 1997.

[16] A. Ng, M. Jordan, and Y. Weiss. On spectral
clustering: Analysis and an algorithm. In In Advances
in Neural Information Processing Systems, 2001.

[17] A. Popescul, G. W. Flake, S. Lawrence, L. H. Ungar,
and C. L. Giles. Clustering and identifying temporal
trends in document databases. In ADL 2000, pages
173–182, 2000.

[18] A. Pothen, H. Simon, and L. Wang. Spectral nested
dissection. Technical Report CS-92-01, Pennsylvania
State University, Department of Computer Science,
1992.

[19] R. Ramakrishnan and J. Gehrke. Database
Management Systems (2nd ed.). McGraw-Hill, 2001.

[20] H. D. Simon. Partitioning of unstructured mesh
problems for parallel processing. Computing Systems
in Engineering, 2, 1991.

