
DEPARTMENT OF COMPUTER SCIENCE

SERIES OF PUBLICATIONS A
REPORT A-1998-2

Trading services in
open distributed environments

Lea Kutvonen

UNIVERSITY OF HELSINKI

FINLAND

DEPARTMENT OF COMPUTER SCIENCE

SERIES OF PUBLICATIONS A
REPORT A-1998-2

Trading services in

open distributed environments

Lea Kutvonen

To be presented,
with the permission of the Faculty of Science of the University of Helsinki,

for public criticism in Auditorium XII, Main Building,
on June 24th, 1998, at 12 o’clock noon.

UNIVERSITY OF HELSINKI

FINLAND

Contact information

Postal address:
Department of Computer Science
P.O.Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki
Finland

Email address: postmaster@cs.Helsinki.FI

URL: http://www.cs.Helsinki.FI/

Telephone: +358 9 708 51

Telefax: +358 9 708 44441

ISSN 1238-8645
ISBN 941-45-8223-3
Computing Reviews (1998) Classification: C.2.0, C.2.4, D.2.11
Helsinki 1998

Trading services in open distributed environments

Lea Kutvonen

Department of Computer Science
P.O. Box 26, FIN-00014 University of Helsinki, Finland
Lea.Kutvonen@cs.Helsinki.FI

PhD Thesis, Series of Publications A, Report A-1998-2
Helsinki, June 1998, viii + 231 + 6 pages
ISSN 1238-8645, ISBN 941-45-8223-3

Abstract

The current development of computing and telecommunication environments aims towards in-
teroperability across separate platforms and organisations in a world-wide fashion. Interoper-
ability means that software components can be exploited from arbitrary computers in such a way
that the service semantics is preserved. The mechanisms supporting interoperability at the ap-
plication level must mask heterogeneity of the compound computing environment.

The term ‘open distributed processing’ does not currently have a single, commonly accepted
interpretation. Therefore, the main system architecture models are critically analysed in order
to contrast the facilities for interoperation in each model. The focus of this dissertation is on
the problems arising when the interoperating computing systems are controlled by autonomous
organisations, i.e., problems of federated systems. Federations between sovereign systems in-
volve exploitation of open interfaces and run-time information about the system facilities. Open
systems, especially federated systems, must be based on a shared, very high level architecture
model. The Open Distributed Processing (ODP) framework standard has been developed to en-
able world-wide computing services to evolve. Among other specifications, the family of ODP
standards also identifies a set of fundamental services required from each participating system.

The trading service is one of the essential meta-information services of open systems. Trading
presents a global mediator for information about available services and their properties. This dis-
sertation presents work on the provision of the trading functionality. It analyses the requirements
of trading designs and the ways trading function interacts with the system environment. The
focus of this study is on federated trading, but trading problems in traditional distributed envir-
onments are also discussed. Furthermore, the design, implementation and performance of the
DRYAD trading system is presented. In addition, exploitation scenarios for trading functionality
in open distributed environments are analysed. Special attention is given for the use of trading
in the explicit exchange, negotiation, and contract establishment required for interoperation in
federated environments.

The trading functionality is a powerful tool to be used within the open infrastructure to support
controlled cooperation between autonomous organisations. It allows construction of a world-

wide computing environment that tolerates the constant evolution of services and applications.
The exploitation of such a world-wide system requires software engineering tools that are based
on the open system services. Therefore, major changes are expected in the areas of application
architectures and software development processes within the next few years.

Computing Reviews (1998) Categories and Subject Descriptors:
C.2.0 Computer-communication networks: General
C.2.4 Computer-communication networks: Distributed Systems
D.2.11 Software engineering: Software Architectures

General Terms:
Design, Experimentation, Standardisation

Additional Key Words and Phrases:
Open systems, distributed systems, federated systems, open distributed processing reference
model, trading function, middleware, distributed applications, software architectures

Acknowledgements

I would like to express my gratitude to my supervisors, professor Martti Tienari and Dr. Timo Alanko, for
watching over my studies.

The work leading to this dissertation was carried out at the Department of Computer Science of the
University of Helsinki. The department, headed by my supervisor professor Martti Tienari, has provided
me excellent working conditions.

The constructive parts of the work were programmed in DRYAD project. The financial support of the
Technology Development Center (TEKES), Telecom Finland, Helsinki Telephone Company, ICL Personal
Systems, Finnish State Computing Centre, and Center for Scientific Computing for this project is gratefully
acknowledged.

Involved to the DRYAD project were 22 of our undergraduate and M.Sc. students. I would like to
thank them for their effort and contributions to the project.

The text of the dissertation was written during my study leave in Helsinki Graduate School of Com-
puter Science and Engineering (HeCSE). The financial support of HeCSE is gratefully acknowledged.

I appreciate the occasional – but most useful – discussions about different research cultures and writing
styles with professor Heikki Mannila. I would like to thank Dr. Timo Alanko, Mr. Max Hamberg, Dr.
Teemu Kerola, Ms. Bonnie Kerola, Mr. Pekka Kähkipuro, Ms. Liisa Marttinen, professor Martti Tienari,
Dr. Henry Tirri, and Dr. Hannu Toivonen for taking turns in commenting the publications that finally
lead to this dissertation. Especially Timo has provided me with more than a handful of comments in the
margins.

I would also like to thank the Finnish follow-up group for ODP standardisation for its interesting dis-
cussions, closely related to my work. Especially, I would like to thank Liisa for taking me to my first stand-
ardisation meeting and chairing the follow-up group during the first years, and Pekka for co-authoring some
articles induced by the group discussions. I appreciate the cooperation of Finnish Data Communication As-
sociation (STY ry), Finnish standards organisation (SFS), and the steering committee of telestandardisation
with the ODP group.

The international standardisation meetings have given me an excellent opportunity to discuss with the
experts in the area. I appreciate the leadership of Dr. Mirion Bearman, professor Peter Linington, and
Dr. Kerry Raymond in these intense and stimulating discussions. I thank Mirion also for encouraging my
participation and studies early on.

The final preparation of this dissertation appeared to be a surprisingly pleasant experience, due to the
good will of everyone involved. The practical cooperation worked seamlessly, and the feedback given on my
research proved to be both healthily critical and encouraging.

I would also like to thank all my colleagues and friends for their refreshing company and their pursuit
to interleave work and pleasure – often associated with impertinent and incisive discussions.

I take this opportunity to express loving and caring thanks to my parents, Rauno and Seija Summanen.
Above all, I thank my husband Petri for bearing my commitments and for encouraging me to bring

this dissertation to a conclusion. He has supported my work by playing all roles from computer support
organisation to co-authorship, not forgetting the care he has given me.

Helsinki, May 1998

Lea Kutvonen

Contents

I INTRODUCTION

1 Introduction 3
1.1 World-wide information services : 3
1.2 Federated computing : 4
1.3 Overview of the dissertation : 5
1.4 Research history : 6

II OPEN DISTRIBUTED COMPUTING ENVIRONMENTS

2 Design of non-centralised systems 11
2.1 Overview : 11
2.2 Networked systems : 13

2.2.1 Model for programming : 14
2.2.2 Meta-information : 14
2.2.3 Benefits : 14
2.2.4 Problems : 15

2.3 Traditional distributed systems : 15
2.3.1 Architectural characteristics : 16
2.3.2 Process and object models : 17
2.3.3 Middleware : 18
2.3.4 Model for programming and program design : : : : : : : : : : : : : : : 21
2.3.5 Meta-information : 24
2.3.6 Benefits : 25
2.3.7 Problems : 25

2.4 Federated systems : 26
2.4.1 Architectural characteristics : 26
2.4.2 Basic concepts : 28
2.4.3 Middleware : 31
2.4.4 Meta-information : 34
2.4.5 Model for software composition : 39
2.4.6 Model for channel composition : 40
2.4.7 Benefits : 41
2.4.8 Problems : 42

vi CONTENTS

3 The ODP reference model 43
3.1 Overview : 43
3.2 The ODP concepts : 44
3.3 ODP viewpoints : 54
3.4 ODP infrastructure : 57

4 Related work: Some distributed platform architectures 61
4.1 Relationship of open architectures : 61
4.2 TINA : 62
4.3 ANSA : 67
4.4 CORBA : 71
4.5 Comparison : 76

III TRADING

5 Trading mechanism 85
5.1 Characteristics of trading : 85
5.2 Trading concepts : 86

5.2.1 Trading community and trading domains : : : : : : : : : : : : : : : : : 87
5.2.2 Offers : 89
5.2.3 Offer storage : 91
5.2.4 Exporting, withdrawing and modifying offers : : : : : : : : : : : : : : : 92
5.2.5 Import : 94
5.2.6 Trader administration : 98

5.3 Cooperation of traders : 99
5.3.1 Trader federation vs. distributed trader : : : : : : : : : : : : : : : : : : 100
5.3.2 Federation establishment : 100
5.3.3 Distributed traders : 102
5.3.4 Distribution and federation of import : : : : : : : : : : : : : : : : : : : 103
5.3.5 Administration of trader cooperation : : : : : : : : : : : : : : : : : : : 107
5.3.6 Optimising the trader cooperation : 108

6 Support for trading mechanism 115
6.1 Naming : 115

6.1.1 Naming systems : 115
6.1.2 Scope of naming systems : 116
6.1.3 Naming concepts : 117
6.1.4 Federated name service : 119

6.2 Type repository services : 120
6.2.1 Federation of type systems : 120
6.2.2 Type related activities : 121
6.2.3 Type definitions : 121
6.2.4 Service type definitions : 122
6.2.5 Type definition manipulation : 123
6.2.6 Suggested realisation of service type repository : : : : : : : : : : : : : : 123

6.3 Storage : 124

CONTENTS vii

6.4 Operation invocation : 125
6.5 Security and trading service availability : 125

7 Realising trading functionality 127
7.1 Interworking model : 127
7.2 Federated model : 128
7.3 Channels between traders : 129
7.4 Performance considerations : 131
7.5 Global trading system organisation : 132

8 Discussion on some traders 133
8.1 ODP trader : 133

8.1.1 Trader object composition : 133
8.1.2 Query trader : 136
8.1.3 Simple trader : 138
8.1.4 Standalone trader : 140
8.1.5 Linked trader : 140
8.1.6 Proxy trader : 141
8.1.7 Full-service trader : 142
8.1.8 Exploitation relationship to other services : : : : : : : : : : : : : : : : : 142
8.1.9 Conformance testing : 143

8.2 DRYAD trader : 143
8.2.1 Trader object composition : 143
8.2.2 Internal type repository : 145
8.2.3 Internal policy repository : 146
8.2.4 Structure and contents of offer space : 146
8.2.5 Operational behaviour : 148
8.2.6 Administrative facilities : 150
8.2.7 Exploitation relationship to other services : : : : : : : : : : : : : : : : : 150
8.2.8 Performance aspects : 150

8.3 Other traders : 161
8.3.1 ANSA : 161
8.3.2 RHODOS : 163
8.3.3 MELODY : 165
8.3.4 TRADE : 167
8.3.5 Y : 167
8.3.6 TOI : 168
8.3.7 DSTC Object Trader : 169

8.4 Comparison and conclusions : 169

IV EXPLOITING TRADING SERVICES

9 Federation transparent interoperation 179
9.1 System model : 179
9.2 Binding liaison representation : 182
9.3 Requirements for channels : 183

viii CONTENTS

9.3.1 Federation transparency : 184
9.3.2 Selective transparencies : 184
9.3.3 Quality of service management : 185
9.3.4 Dynamicity of channels : 186

9.4 Federated binding process : 187
9.4.1 Creation of a potential contract : 187
9.4.2 Contract negotiation : 188
9.4.3 Contract establishment : 188
9.4.4 Binding factories : 189

9.5 Discussion on some binding models : 189
9.5.1 ANSA model for cross-domain interactions : : : : : : : : : : : : : : : : 190
9.5.2 Sumo model for stream interface bindings : : : : : : : : : : : : : : : : : 191
9.5.3 DRYAD prototype for operation invocations : : : : : : : : : : : : : : : : 194

9.6 Conclusion : 197

10 Trading at open markets 199
10.1 Electronic commerce framework : 200
10.2 Evolution aspects : 201
10.3 Realisation strategy : 201
10.4 Problems in EC framework evolution : 203
10.5 Open solution strategies : 204

10.5.1 Contract repositories : 205
10.5.2 Service type repositories : 205
10.5.3 Traders as server repositories : 206
10.5.4 Trader supported merchandises : 207

10.6 Conclusion : 208

V CONCLUSION

11 Conclusions and consequences 211

12 Further prospects 215

References 217

APPENDICIES

A English-Finnish ODP Dictionary

Part One

INTRODUCTION

Chapter 1

Introduction

1.1 World-wide information services

During recent years, demand for a highly integrated and world-wide information processing
network has grown. Examples of services in such a network can be easily found in everyday life:
bank services, shopping, and travel agencies. Communication services, such as mail, telephone
and fax, are already being replaced with electronic mail and video-conferencing. Even those who
are not educated as computer professionals have skills for using electronic mail and access to such
services. Moreover, during the last two years, the wide audience has been accustomed to TV and
newspaper reports about the Internet and information services on it. In future, we can expect this
tendency to expand. Perhaps information retrieval services offered by traditional libraries will
become complemented with electronic libraries and even widened towards telepresence systems.

As information services are slowly being adopted as everyday utilities, the clients require
that services are integrated and easily accessible throughout the world. An international money
transfer system is an example of world-wide service integration. People even expect that the
integrated services will be reachable via multiple alternative access technologies. For example,
the demand for mobile phone access to Internet services is increasing. Moreover, people want to
negotiate about the quality of service and to have a possibility to choose between several service
providers. For example, when in a hurry, a user is ready to pay more for a fast service. In addition,
the competition between service providers contributes to the overall quality of available services.

The software producers are not yet, even technically, able to fulfil the user requirements for
world-wide services. While the users require world-wide service integration, exploitation of new
technology, competitive choice of service providers and access technology, and negotiable quality
of service, the software vendors and service providers try to answer these requirements. They try
to embed new technology within their architecture solutions, and develop advanced services for
the users. They aspire to these goals via cooperation in vendor consortia, and by developing more
efficient tools for software production. The software producers work together in various vendor
consortia in order to achieve shared recommendations and interface standards.

World-wide cooperation between computing systems and telecommunication facilities re-
quires that the overall system architecture covers situations where services are supported by inde-
pendent organisations in a multi-vendor computing environment. Such a system is continuously
evolving: new services are created, and existing services are offered by a varying set of service

4 1 INTRODUCTION

providers. Furthermore, the history of the systems involved is different, thus introducing dif-
ferences, for example in information contents, expressions, interfaces and processing technology.
The major design problems in the multi-organisational environment are related to the cooperation
mechanisms between the services supported by the sovereign organisations and their computing
systems.

Combining the architecture goals of interoperation among sovereign systems, support for ser-
vice evolution, and support for independent system administration lead to a situation where the
public availability of interface specifications is not adequate. A set of infrastructure services is re-
quired for exchanging meta-information between sovereign cooperating systems about available
services and their properties.

Traditionally, a unifying middleware layer is assumed. The middleware allows autonomy of
each component system in many respects, but still, shared platform architecture, identical applic-
ation service behaviour and interfaces, and expressions for meta-level information are expected.
The decisions on system capabilities, such as the supported service interfaces, are external to the
system and applied to all parts of the global system.

In order to achieve durable solutions, services need to be based on sovereign systems that are
able to adapt to various cooperation schemes. In contrast to middleware architectures, a sovereign
system has an independent administration that is able to select the used technology and strategies,
e.g., operating and networking systems, implementation languages, communication protocols,
access rights, application service behaviour and policies, remuneration, expressions for meta-
level information about the system, and even interfaces. The decisions about system capabilities
are captured in the system as meta-information. The system infrastructure includes functionality
that allows exchange of meta-information with other sovereign systems, and also allows further
decisions to be made based on that meta-information.

It is important that the multi-organisational system architecture model also captures the latest
technical facilities developed in the areas of telecommunication and computing. The architecture
should promote, for example, mobile computing and multi-media services.

1.2 Federated computing

In order to support evolution and system independence, the interoperating systems need inter-
face information at run-time. Publicity of interfaces is a basic requirement, but not sufficient.
Both evolution and sovereignity of systems require that information about services can be up-
dated with a consistent, run-time mechanism throughout the integrated network.

A temporary interoperation relationship between independently administered and thus sov-
ereign software components or subsystems is called federation. A federation involves two or
more independent software components each fulfilling a similar application functionality on their
local administrative domain. Having a local and independent service provider at each domain
guarantees locally the continuity of service. The software components can then act as clients
to each other, for cooperation between the domains. If the software components themselves are
aware of their administrative and technical differences and take care of necessary transformations
in their communication, they are said to interwork. If the software components are supported by
infrastructure services so that they do not need to be concerned about system boundaries, the
communication form is called interoperation.

1.3 Overview of the dissertation 5

Federation requires implicit or explicit contracts between the cooperating entities. The con-
tract includes agreements of

� the communication semantics;
� information representation;
� data exchange protocols;
� quality of service, such as timeliness, trustworthiness, and precision;
� security related information; and
� failure semantics and recovery protocols.

The contracts can be established on two system levels, between application level objects and
between platform level objects. The mechanisms for establishing federations are different on these
layers. For federated computing, the focus of interest is on the establishment of application level
federations on a platform that is composed from federated platform services.

Federation establishment between application objects requires supporting services that me-
diate contract related information, meta-information, within and across system boundaries. One
of these services is trading service. The trading function is a mechanism that can be used to ex-
change interface information. The trading mechanism allows advertising of available services,
service providers, and their interface properties, and supports retrieval of service provider in-
formation.

When cooperation contracts are explicitly expressed, the trading mechanism can be used for
contract negotiation. Each potential partner in a federation can advertise its interface properties,
location, and preconditions for the contract. When an initiative for establishing the federation is
made, the trading mechanism can pick suitable candidates for the federation. The properties and
the preconditions of the selected candidates are then merged to the contract, and the candidates
are promoted to federation partners. The federation partners obey the regulations agreed in the
contract.

1.3 Overview of the dissertation

This dissertation studies the architectural evolution of open distributed systems and the provision
of trading functionality in such system environments. Special attention is given for federated
systems.

Part II develops and analyses the federated system environment in contrast to traditional
distributed and networked systems. The discussion points out the semantical differences in the
founding concepts of each system model. The essential concepts and mechanisms for open sys-
tems are adopted from the Open Distributed Processing Reference Model, RM-ODP [91]. The
ODP model is a joint standardisation effort of ITU (International Telecommunication Union) and
ISO (International Organisation for Standardisation). The goal of RM-ODP is the coordination of
existing platforms in order to make the integration of the platforms possible. The framework is
based on the idea that the computing platforms cannot be forced to share their structures, to offer
all the same services, or to share a single object paradigm. Part II includes an introduction to the
RM-ODP and a comparison of major platform architectures against the ODP reference model.

Part III focuses on the trading mechanism. The trading concepts and implementation related
aspects of the trading functionality are analysed. Also, the differences of trading service designs
in traditional distributed environments and in federated environments are discussed. Finally,

6 1 INTRODUCTION

various trading realisations and specifications are compared; we analyse the ODP trading func-
tion standard, and discuss the trader software produced by the DRYAD project.

Part IV studies exploitation scenarios for trading. Chapter 6 defines a generic binding process
between objects in a federated environment. The federated binding protocol is compared to the
corresponding solution in a traditional distributed environment. Chapter 7 discusses the use of
traders in an electronic commerce environment.

Part V concludes the dissertation and presents future work. The system model presented has
consequences on the suitable application architectures for federated environments, and in addi-
tion, it also supports distribution of software engineering processes. We also discuss the effects
meta-information services may have on distributed programming patterns and frameworks, as
federation-transparent communication primitives are promoted.

1.4 Research history

The work described in this dissertation consists of both conceptual development and software
construction. Some of the conceptual ideas presented in this dissertation have been published as
articles [129, 124, 123] in international conferences. Also, an early version of this monograph was
published as licentiate thesis [126]. The conceptual work has also served as a basis for contribu-
tions to the standardisation of the ODP reference model since 1994.

The implementation work in the DRYAD project has largely been done as undergraduate stu-
dent work [113, 71, 19, 68] under the author’s supervision. Some further software design ideas
have been drawn out as master thesis work [244, 245, 259, 178]. The software design and some per-
formance measures have been reported in a conference article [125] and in a journal article [130].

The research work has been done in liaison with educational and standardisation efforts. One
of the concerns has been to evolve the understanding of open system architectures and to develop
national vocabulary for discussing such architectures. Therefore, an ODP dictionary has been de-
veloped (Annex A.) Major parts of the dictionary were in test use in an ODP related seminar [235]
during the spring semester of 1997 at the University of Helsinki. The ODP concepts and view-
points were in practical use in one of the student projects [68], and the subject of study in a master
thesis [67].

In the following, the international publications are commented on in chronological order.
The early model of trading covered, in addition to the current trading functionality, also bind-

ing and service invocation functionalities. Thus the first article [129] discusses a technique to
integrate trading-based service invocation functionality into traditional distributed systems (‘im-
plicit trading’). The article also sets the federation concepts as the goal of the research work by
stressing the importance of sovereignity of trading domains, and denial of direct control or access
to other traders information contents.

The federation theme was continued in the second article [124] by the introduction of the
concept of ‘service interface autonomy’. In this dissertation this concept is termed ‘interface het-
erogeneity’. The article discusses service invocation functionality, exploitation of trading within
it, and explains ideas of liaisons and contracts.

Participation in the international standardisation work on the ODP trader raised some ques-
tions that called for suggestions. One of these questions was that of a policy concept and a policy
framework. Those concepts were tried out [123] and were used as input to the standardisation
work. The policy framework of the ODP trading function standard has been through several

1.4 Research history 7

evolution steps since. The article also discusses concepts of federation and the need for standard-
ising a single federation protocol. Important points were also made on concepts of domain and
federation.

The journal article [130] discusses a more technical problem: how to support service offer
objects within the DRYAD trader. The analysis of the repository requirements showed that the
traditional database management system was not suitable, and therefore we selected a special-
purpose database management system (Debbie). In this paper, the analysis and the performance
measures are reported. Accompanying performance results reported in the licentiate thesis [126]
and also further in this dissertation. The article also gives encouraging results on the feasibility of
trading in TINA environment.

The technical design of the DRYAD trader software is described in article [125]. This article
also gives a relationship between the concepts of contract and liaison to the technical structures
of service offers and bindings.

The major change from the licentiate thesis [126] to this monograph is the inclusion of a feder-
ated system model description. The federation ideas are further applied to application manage-
ment in a recent conference article [127]. The article expresses a concern that open service specific-
ations and management specifications seem to be drifting too far apart in relation to federation
aspects. The article also describes how trading mechanism can be exploited for homogenising the
access view to a heterogeneous technology environment.

Part Two

OPEN DISTRIBUTED
COMPUTING ENVIRONMENTS

The term ‘open distributed processing’ does not currently have a single, commonly accepted interpretation,
but the interpretations vary depending on the goals of the term’s user. Therefore, in this part, we identify
three models for open distributed computing. This study is formulated as a ladder from networked systems,
through traditional distributed systems, to federated systems. Although the ladder reflects the evolution
history of the system architectures, all designs are still in use and needed today. At each step of the ladder,
more demanding requirements have been raised, and the solutions are each time built on the services realized
by the previous step.

Chapter 2 discusses the problems and the design of open distributed systems according to the three
system models. This introduction sets some specific vocabulary for open systems – reflecting the current
vocabulary in the area and bridging between the terminology used for distributed and federated systems.
The chapter also briefly introduces the trading function, the focus of this dissertation, and its role in fed-
erated system environments as a meta-information exchanger. Meta-information is information about the
capabilities of the systems themselves.

Chapter 3 reviews the standardised reference model of open systems, RM-ODP. The reference model
stands for the current open system architecture and responds to the requirements of distributed and fed-
erated systems. The review defines the basic concepts, the design methodology of the reference model, and
the ODP computing environment. This introduction focuses on features necessary for federated systems,
whereas some other tutorials are biased on more traditional systems. We can expect the ODP reference
model to have significant effects on the long-term plans of system vendors.

In this dissertation, we expand the facilities for the federated architecture, especially for the support
of system flexibility and system evolution management. Software vendors should gradually move towards
federative architectures. Some of this movement is already visible. Chapter 4 discusses the three well-
known, distributed platform architectures: CORBA, TINA and ANSA. We study the concepts and services
of these platforms and compare them to the requirements of federated systems and also to the requirements
set by the ODP reference model.

Chapter 2

Design of non-centralised systems

The computing industry has for a couple of decades searched for savings and prospected profits
by integration of individual computers to form an interconnected network. The benefits of shar-
ing hardware and software are commonly acknowledged, as well as the profits through increased
availability and reliability. Furthermore, the productivity of programmers has increased together
with the expressive power of the programming tools.

In this chapter, we develop the idea of a federated system architecture as a next step on a
ladder where networked systems and traditional distributed systems also appear. This ladder
reflects on one hand the evolution history of non-centralised systems, on the other hand a hier-
archy of abstract computing layers used together. In the historical perspective, the ladder reflects
a continuum. Especially, the borderline drawn around distributed systems is arbitrary and aims
at clarifying the areas of concern in each case.

The development of federated system architecture ideas presents a need for meta-information
services in the system. Therefore, we analyse the available meta-information in each system
model. The increase of available meta-information is related to the evolution of object models.
Object models have evolved simultaneously with non-centralised systems, although the evolu-
tion lines were not closely interrelated. We can identify a typical object model used together
with each system model, although such classification leaves out many interesting solutions. The
discussion of object models indicates suitable software development and programming tools, al-
though such tools are not studied in this dissertation. The main goal of this theme is to explicate
the special characteristics of the object model selected for the federated system model.

2.1 Overview

In the evolution of computer networks we can discern three major design models starting from
networked systems, leading through distributed systems, and culminating to federated systems.
Although all three designs in general acquire benefits from joining computers together, there are
major differences in the goals of these designs. The networked systems plainly allow remote
access from one computer to another. The system includes loosely-coupled hardware with non-
integrated software. The difficulty of using networked systems necessitated the development of
distributed systems with integrated software in control. The distributed systems trust in a shared
software layer that homogenises the computing environment from the point of view of program-

12 2 DESIGN OF NON-CENTRALISED SYSTEMS

mers and end-users. The assumptions of homogeneous environment and a shared control over
systems owned by independent organisations are not realistic when world-wide information ser-
vices are aspired. Therefore, a federated system architecture is needed.

In each design model, the ultimate goal of computer interconnection is interoperation. Al-
though the required semantic level of interoperation varies between the models, and the service
components involved in the interoperation vary, we can still give a general definition 2.1. The in-
terpretation of this definition in each design is discussed in the following sections, together with
the definition of service in each case.

Definition 2.1 "Interoperability: The ability of two or more computer and/or information service com-
ponents of such systems to exchange information and to mutually use the information that has been ex-
changed" [104].

In each design model, interoperability is based on ‘openness’ of the system components.
However, the evolution of the models has forced the definition of open system to gradually
change. Initially, open system was one that used shared assumptions about the services and the
environment, later on open system was expected to include services that reveal such assumptions.

We give the following three definitions for open systems:

Definition 2.2 Open system (networked systems): "An open system is one that is prepared to communic-
ate with any other open system by using standard rules that govern the format, contents, and meaning of
the messages sent and received. These rules are formalised as protocols" [221].

In the case of networked system, the major requirement is the availability of coding rules for
messages exchanged.

Definition 2.3 Open system (distributed systems): "A comprehensive and consistent set of international
information technology standards and functional standards that specify interfaces, services and supporting
formats to accomplish interoperability and portability of applications, data and people" [104].

Where

Interface: "A shared boundary between two computer systems, or the components of such systems, or such
systems and users" [104].

In the case of traditional distributed systems, the requirement covers not only the message
encoding but also the semantics of the functionality indicated by the message. Still, the publishing
mechanism of interfaces and interface related information is external to the system.

Definition 2.4 Open system (federated systems): An open system is one that

� is prepared to interoperate with other open systems,
� is able to restrict the interoperation to such services and to such interoperating systems that are

acceptable by the open system administration, and
� is prepared to negotiate about the interoperation technique in terms of available services, interfaces,

protocols, remuneration, and quality of service (QoS).

2.2 Networked systems 13

In the case of federated systems, the requirement explicates that the publishing mechanism
for interfaces and interface related information must be supported by the system. Furthermore,
the system is required not only to enable interoperation but also to control and even restrict in-
teroperation relationships based on externally applied policies in each participating system. The
policies are expressed in terms of meta-information on the open system services. In the case of
federated systems, more categories of meta-information are available than in the other two system
models.

A major difference in open system design models is the use of the information about the
interfaces available at a computer, i.e., meta-information. Therefore, we introduce the term meta-
information to capture this idea in general:

Definition 2.5 Meta-information is information about the service interfaces supported by an open system.
The meta-information describes the supported service types, interface locations, protocols suitable for the
interfaces, and quality of service offers. Meta-information may represent either the entities producing a
service or the types of those entities.

Examples of meta-information are given later, separately for each system model.

2.2 Networked systems

From generally accepted descriptions [221, 64, 35, 222], we can summarise the following definition
for a networked system:

Definition 2.6 A networked system is composed of a set of independent computers that are connected to
each other with a (local area) network. The operating systems of the computers may be similar or different,
however, the selected communication protocols must be consistent and open.

The goal of networked systems is simply to allow access via the network from a remote com-
puter. Each computer has its private set of users and its private access control. In addition,
each computer supports protocols for remote sessions. Each user normally works on designated
computers, and using a different computer requires a new session to that computer. Also, each
computer has a private file system, and the users must themselves move files between computers
with explicit file transfer commands. The users are themselves responsible for all remote tasks,
and therefore, they must be aware of the networked system configuration.

Interoperation in networked systems is restricted to the exchange of files and acceptance of
sessions initiated from a remote computer instead of a local terminal. Thus we can define the
networked system services as follows:

Definition 2.7 Service: Networked system services include operating system services and protocols. The
operating system supports

� creation, suspension, continuation and termination of processes;
� accessing and locking files;
� memory management; and
� checking of access rights.

The protocols accept requests for performing remote programs. Especially interesting programs include
remote login, file transfer, remote printing, electronic mail and news transfer.

14 2 DESIGN OF NON-CENTRALISED SYSTEMS

Only the protocols can be considered to support a form of interoperation. However, the user
of the system must be aware of the differences of the local services in each node, as well as of the
topology of the network.

The computers can be workstations, PC’s and server computers. Examples of the networked
systems include UNIX with Sun RPC [201, 18] – or OSF/DCE [180] for OSF/1 [179], for UNIX, or
for MS-Windows [152].

2.2.1 Model for programming

The applications that use networked systems are controlled from a single point. Cooperation
between computers can be implemented using file transfer as a communication mechanism. A
typical client-server configuration includes a set of workstations requesting files, even start-up
files, from a dedicated file-server computer.

More sophisticated solutions have been implemented on top of the transport protocol layer
with finer grain software components. In these solutions, the communicating components are
processes instead of programs, and communication entities are protocol messages instead of files.
A client-server configuration now consists of a client process that sends a request to a remote
server process which in turn sends a reply message. The request-reply protocol is often connec-
tionless, in order to avoid overhead [221]. The communication protocols provide reliable delivery
of messages between the computers. The concepts required for such operations include ports or
sockets for communication together with transport level protocols, such as TCP, UDP, or OSI.

The request-reply protocol can be extended to a full RPC protocol (remote procedure call [18])
for the use of programmers. The RPC protocol is a request-reply protocol between client and
server processes, but the messages may contain meta-information about the representation format
of the procedure parameters. We discuss the process model and the inter-process communication
via message passing in more detail in Section 2.3, because the development of RPC leads towards
distributed systems.

2.2.2 Meta-information

There is little need for explicit meta-information exchange and thus very little meta-information
available in the networked systems at operation time. Interoperation is governed by decisions
made at system configuration time.

We can, however, find some examples. The first set of examples covers facilities designed for
end-users. The UNIX command ‘ping’ (supported by ICMP echo service) allows users to study
whether a communication line exists between two computers and whether the remote computer
is in working condition. Also, end-users can remotely query for processor load. The second
set of examples covers facilities for communication protocols. Domain Name Service, DNS [159,
160], allows query of the IP address of a named computer, and ARP queries (address resolution
protocol) [188] allow the computers to find out Ethernet identifiers based on their IP addresses.

2.2.3 Benefits

The benefits of interconnecting individual computers together are straightforward: There are
plenty of tasks that can be performed with cheap microcomputers, such as management of elec-
tronic mail. However, the tasks often require that the results are communicated to remote loc-

2.3 Traditional distributed systems 15

ations. For example, a department store can use microcomputers to collect credit card events
during the day, but communicates the events to the credit card company in the evening.

In the form described in this section, the networked systems are too simple for extensive dis-
tributed computing. However, the networked model serves as a starting point for true distributed
systems.

Currently, typical systems combine features of networked and distributed systems. A typical
system can include, for instance, a set of UNIX workstations, connected with NFS (Network File
System) [215] to a large UNIX file server. Additional services may include software distribution
to support system maintenance, automated backup for user file systems; USENET news access,
WWW browsers; RPC programming tools, and tools for object oriented programming.

2.2.4 Problems

For networked systems, the facilities for interoperation are founded by standardisation and estab-
lished through implementation of standard interfaces. Changes in such an environment are very
slow and costly. Furthermore, the protocol standards allow several optional features. Combina-
tions of such features are called ‘profiles’. In some cases, internal policies of organisations force a
certain profile to be used in all communication. Unfortunately, it is possible that interoperation is
not possible between all profiles of a standard.

Heterogeneity in the implementation of operating and networking system services is to some
extent allowed, but each heterogeneous solution requires that the end-users of the joint system
understand the differences in the cooperating systems. In practice, this leads to a wish that each
node should support a similar, shared environment. Only such configurations allow end-users
and programmers to experience a homogeneous and comfortable working environment. A homo-
geneous environment can be achieved only through the cooperation of all node administrations.
Thus, the node administrations would lose autonomy on selecting local operational policies.

It is typical that a networked system has little or no support for fault tolerance, except the
recovery mechanisms of the communication protocols used. The platform gives, for example,
little support for building replication groups or using multi-cast communication, and thus, in
practice, redundancy is not exploited in normal systems.

The interconnection mechanism restricts the possibilities of preserving privacy and autonomy
of the nodes. The authorisation control of each node is based only on access control of user
accounts. If a user needs any access to a node, an account is required, but then most procedures
and resources are accessible.

2.3 Traditional distributed systems

Traditional distributed systems are designed to have integrated, consistently administered soft-
ware that controls a set of interconnected computers. From the literature, we have selected the
following definition:

Definition 2.8 "A distributed system is a collection of independent computers that appear to the users of
the system as a single computer" [221].

A distributed system ensures that end-users and programmers view a distributed system
as a virtual uniprocessor, and they do not see differences between local and remote resources.

16 2 DESIGN OF NON-CENTRALISED SYSTEMS

However, the components of a distributed system may be heterogeneous. Therefore, the devel-
opment and maintenance of software for distributed systems are difficult and expensive.

The interoperation model within distributed systems is based on the concepts of processes
and inter-process communication. While networked systems interoperate between computers,
the distributed systems interoperate between processes. Therefore, we need to introduce a dis-
tinction between the terms service and server:

Definition 2.9 Service: The specification of the primitives, parameters and actions available for a client.
Service is an interface description and does not define the implementation of the activity offered.

Definition 2.10 Server: A server is a process that runs on a single computer and implements the service
or part of the service [218].

Thus, a service is an abstraction of a functionality that can be invoked at the system, while a
server is a specific implementation that can be executed at the system. For simplicity, we have here
chosen to use such a definition for server that does not allow a single server to be split to several
nodes. This choice was made because many distributed object management systems allow object
components to reside in different nodes and exploit a kind of interoperability interface for com-
munication. Such solutions are further discussed in Section 2.3.4. A server, as defined here, can be
used as an object component. A service must always be accessed through an interface available at
a node, and thus composition of several servers to support a service does not essentially change
the model. The localised servers are also easy to map on the interprocess communication model
discussed in Section 2.3.3.

Typical platform services in distributed systems are distributed file systems [218], global name
services [135], directory services (like X.500 [105]), distributed time services [134], and transaction
management [45]. The communication services are extended by broadcast and multi-cast.

Example systems include Amoeba [223], Clouds [41], OSF/1 [179], Mach [195],
SunOS/Solaris [216], OSF/DCE [180], MS-Windows NT [153], and OS/2 [80].

2.3.1 Architectural characteristics

In order to achieve a virtually unified computing environment, the programmers need a homo-
geneous interface to the whole system. This requires that the system supports distribution trans-
parency, i.e., includes functionality that masks heterogeneity and remoteness of system compon-
ents from programmers and end-users by automatic mechanisms and selected conventions.

As part of the distribution transparency notion, the following aspects are considered import-
ant [221]:

� Location transparency hides the location of hardware and software resources from the
users. For example, adjoint file system names like uhecs:/usr2/summanen/.profile
are not allowed because they in fact reveal the allocation of the files to separate computers.

� Migration transparency allows resources to move between locations and still keep their
names unchanged.

� Replication transparency masks, from a user, the existence of additional copies of resources
(e.g., files) created by the system. Usage of replications can improve system performance
and fault tolerance.

� Concurrency transparency hides, from a user, the existence of other simultaneous users of
the same resource.

2.3 Traditional distributed systems 17

� Parallelism transparency hides, from a user, the existence and the use of multiple processors
for parallel executing (parts of) a single service.

These transparency terms are widely used in literature with the above described meaning.
Nevertheless, in Section 2.4 we will define standardised transparency terminology used in RM-
ODP, and some of the terms are redefined with higher requirements. From Section 2.4 on we
will use only the RM-ODP definitions. The transparency terms are first introduced here in order
to avoid the potential confusion created by the differing use of the same terms at closely related
areas.

Another important goal in the development of traditional distributed systems is the flexibil-
ity of the system, i.e., the modifiability of the system with a reasonable cost. Flexibility can be
increased by the correct modularisation of the operating system. An attempt for this is the micro-
kernel model [221, 223]. In the micro-kernel model, most of the traditional operating system tasks
are externalised to user-level processes that can be allocated to any processor in the system. The
micro-kernel itself is run on all system processors. The micro-kernel architecture has the benefit of
allowing multiple implementations of a service to be present simultaneously, for example, mul-
tiple file servers for different file structures. Because the micro-kernel supports communication,
it has also a major role in building the system dependability. Dependability should cover both
availability of the system services, and fault tolerance of the operating system.

Finally, the communication mechanism should be scalable, i.e., the selected communication
model should have good performance, even if the number of processors in the system is consid-
erably increased. The design task is difficult, because the global information required for optim-
isation. Decentralised algorithms cannot expect any computer to have complete information of
the system state but allow each computer to make decisions based on local information. Further-
more, no global time can be expected. Of course, the algorithms must behave reasonably, even if
some of the computers fail to participate in the protocol [221].

In order to achieve the above mentioned design goals, the distributed system must include
some additional services on top of the operating systems of each node. These services take care
of communication within the distributed system and control the global behaviour of the sys-
tem. These controlling services are jointly called middleware. For programmers the middleware
supports concepts of transparency. Especially when the hardware or the operating systems are
heterogeneous it is convenient that an extra software layer homogenises the interface used by the
programmers (a locally known example is AHTO [1]).

The interesting distributed system mechanisms include

� management of distributed processes: remote interprocess communication, synchronisa-
tion, naming and process management, and

� resource management: resource allocation, detection of deadlocks, protection and security,
and types of services to be provided.

The following sections discuss these mechanisms.

2.3.2 Process and object models

A distributed system can be designed either using a process model or an object model [64]. At
the logical level, the models can be mapped to each other, but on the technical level, there are
differences for example in organising access to data, and synchronisation.

18 2 DESIGN OF NON-CENTRALISED SYSTEMS

For the purposes of discussing distributed systems, we define a process to consist of one or
more execution threads of program code that can access a single, colocated memory space. The
definition allows parallel processing to take place, thus enabling a good level of throughput and
performance within a computer. The process management functions include process creation,
termination, allocation to a processor, suspension, and reactivation.

With the process model all the operating system functions and applications are constructed as
sets of processes that interact by sending and receiving messages. Messages are received at ports
representing message queues, and can be denoted with a protocol specific address format.

An object is a programmer-defined abstract model of a resource that encapsulates a data struc-
ture [109]. It consists of internal data, the object state, and presents methods that operate on the
object state. To access or modify the internal state, the client process must invoke one of the meth-
ods. This property is called information hiding [186]. The object concept provides a mechanism
to replace the actual data manipulation with more abstract method calls. Instead of including the
data manipulation code to the client processes, the code is captured together with the data struc-
ture within the object. Therefore, object-based systems are, in principle, easier to modify than
process-based systems where the data structures can be manipulated by client processes without
an intermediate abstraction. These kinds of objects are never active, and there must always be a
client process to invoke methods on them.

We did not formulate the descriptions of objects as definitions at this point, because we will
later introduce an object concept more suitable to the federated systems we are interested in.
The object concept that was discussed in this section is later on referred as an encapsulated data
structure.

We continue the discussion of typical object models for distributed systems in Section 2.3.4.

2.3.3 Middleware

The term ‘middleware’ has come to mean any facilities that support communication between ap-
plication layer clients and server processes. An attempt to particularise the middleware definition
can be found in [204]: "Middleware is software that allows elements of applications to interop-
erate across network links, despite differences in underlying communications protocols, system
architecture, operating systems, databases, and other application services".

This definition concentrates on the communication facilities of the system. However, in most
commercial cases, the components of middleware can currently be considered to cover not only
the communication software, but also the rest of the execution environment (name management,
security, and other core services; and application specific services like transaction management
and SQL optimisation) and deployment facilities (administration tools like configuration and per-
formance management) [204, 16]. This interpretation is consistent with a view that middleware
services are general-purpose services that are able to exploit operating system services of various
vendor architectures and support a considerably large variety of applications [16].

In the following, we review the concerns of middleware services in traditional distributed sys-
tems. We start by discussing the process management problems, covering aspects on processors
and memory under a consistent control through the distributed system middleware, and continue
with discussion on interprocess communication, covering aspects of security.

2.3 Traditional distributed systems 19

Process management

In the distributed system, a new process is allocated to one of the processors available. Several
processor allocation algorithms have been developed, differing in the way processor load inform-
ation is used, and the members of the decision making. The allocation algorithms use the private
process (and thread) management methods and information of each operating system involved.
After the process allocation, each process is controlled by the local operating system, i.e., the pro-
cess scheduling is normally a local functionality. In some cases, the application is composed in
such a way, that a special co-scheduling scheme is required to avoid unnecessarily high network
load.

In a distributed environment, process persistence is a preferred property. Persistent processes
survive temporary failures of the operating system or the network system services. Persistence
can be maintained either by replicating the processes or by storing and recovering intermedi-
ate state information in non-volatile storage. A well-known system with persistent processes is
ISIS [17]. The ISIS system also supports process migration, as the same communication mechan-
ism can be used for trapping a lost connection and for reconstructing it to a new location.

The memory management activities in a distributed system are dependent on the system or-
ganisation. Usually, traditional distributed systems are built as multicomputers (each CPU has its
own private memory). In a multicomputer environment, execution of a task induces interprocess
communication. In order to ease frequent message passing scenarios, distributed shared memory
concept was introduced [138, 139]. To the basic mechanism, several optimisations have been
suggested. Especially, organising the shared memory to shared variables (e.g., [15]), or shared
object space (e.g., [62]) improves the system performance. These optimisation methods reduce
the amount of shared data, and simultaneously increase the amount of meta-level information
that can be used for further optimisation.

Interprocess communication

The basic interaction form in distributed system is passing messages between processes using
some transport protocol, like ISO TP, TCP/IP or UDP/IP. Whichever transport protocol is used,
the programmer has to consider synchronisation of the processes, the reliability of transport, the
reliability of the processes communicating with each other, and the independent failure of the
processes. Also, if multiple processes must receive the same messages, the programmer has to
simulate multi- or broadcast by sequential send operations.

To support an easier programming interface for interprocess communication, the remote pro-
cedure call mechanism was introduced [18]. The mechanism allows programs to call remote
procedure implementations in the same way as they call local procedures. The message passing
mechanism that implements RPC is not visible to the programmer. The system internally mar-
shals the procedure parameters to messages and again unmarshals them for processing. The
marshaled messages can be split into parameters based on shared and inherent knowledge about
the number and the type of the operation parameters. The message only carries the name of the
operation and the parameter values or references. Several advanced RPC mechanisms are able to
manage reference parameters of some programming languages (for example [72, 117]). Several
advanced RPC systems have been developed that are able to mix programming languages, for
example see [63].

Although the RPC concept strives for imitating a local procedure call, additional features and
problems are introduced, because of the distributed nature of the mechanisms. First, the client

20 2 DESIGN OF NON-CENTRALISED SYSTEMS

must bind to a server before communication can succeed. By the binding operation, the client
process becomes aware of a receiving port of the server and is then able to send messages to it.
If the server address is encoded to the client process, the system is not very flexible nor fault
tolerant. Therefore, some distributed systems use dynamic binding, i.e., the server is selected at
the time of RPC initiation either from a mapper process or an external repository. In both cases,
the dynamic binding mechanisms may become extremely heavy when the number of nodes and
processes increases. Second, the remoteness of nodes creates potential of failures that affect only
some parts of the system. The client and server processes and the data transport primitives may
fail independently from each other. Timeout mechanisms are used for recovery. Advanced RPC
mechanisms make automatic recovery attempts, governed by execution rules like ‘at most once’
and ‘at least once’. Such rules denote that the client should know how many times a service has
been executed when the RPC call has successfully terminated.

The RPC management mechanisms do not include much support for service evolution. The
RPC implementations usually use numbers for identifying the requested service. This service
number can be supplemented by a version number, in order to allow gradual evolution of the
services reachable by RPC. In addition, a mapper process is commonly used to map the service
and version numbers to the port number reserved for the actual server process [214].

The RPC concept itself is continuously evolving. RPC realisations have been supplemented
with various additional features, like transaction properties, failure recovery features, and mem-
bership services for group communication (e.g., [17]).

In a distributed system, not all resources are accessible to any user for privacy reasons, remu-
neration reasons, or information integrity. The services related to securing the resources and the
information exchange between processes or computers include authentication of users, author-
isation of processes to use resources, and encryption messages for transfer. In a simple case, the
security services can be based on a centralised security authority that holds user identification,
an access control list for the resources, and finally deliver cryptographic keys for processes. Some
distributed systems trust in a security service like Kerberos [165], some others trust in services like
Network Information Service (NIS) (formerly known as yellow pages service) [216]. NIS stores
among other information also pairs of user names and passwords. For the programmers, secure
interprocess communication can be offered via secure RPC packages. However, the programmer
must instrument the RPC call with encryption keys, and user identifiers.

Other general services

Some general services, that were independently supported by operating systems in each node,
have been replaced by distributed versions. Such distributed services have become an essential
part of the distributed system middleware.

For example, distributed file services provide a consistent view to a shared file system that
may have components at each of the nodes of the distributed system. The method for implement-
ing such a view can be based on copying files between file servers as access to them is requested by
clients. Another solution is to split files to smaller partitions and copy only the partitions between
the servers. The partitions can be for example pages, or native structures for the files themselves
(records, etc.). For accessing files the naming system of the files is required, i.e., the file directory
service. It should offer location transparency for the client: the name of the file should be the
same regardless in which computer the file is stored. This can be achieved by two-level naming
schemes, where the client is offered a symbolic name that is within the file servers mapped to a

2.3 Traditional distributed systems 21

system specific address. Well-known examples of distributed file services include Network File
System (NFS) [215], and Andrew file system (AFS) [212].

2.3.4 Model for programming and program design

The realisation of distributed software is affected by the programming languages available, the
design patterns guiding the realisation, and overall design methodology governing the realisation
work. These areas are very rigorous with incompatible suggestion. Therefore, we only make some
remarks on object-related languages, methodologies, and tools.

Distributed object models

Interoperability within a distributed system enables two processes to exchange data or data ref-
erences and thus use a shared data space. Thus, a single application can be spread to multiple
computers. The processes belonging to an application are under a shared control, but some forms
of independence are present: the processes can fail independently from each other, the processes
may be allocated to processors without a joint scheduling control, the processors may introduce
heterogeneity at the instruction and data representation level, the code executed in the processes
may originate from different programming language environments, etc.

The distributed application processes are typically constructed by the programmers using
procedural languages, or object-oriented programming languages, together with advanced RPC
libraries (examples of programming tool sets can be found by OMG [176]). The commonly used
object-oriented programming languages, like C++, actually present an abstraction very close to
the process model discussed in Section 2.2. The passive objects represent abstract data structures;
the active objects present abstract data structures with an initial method that covers the full life-
time of the object [33]. Such an initial method typically includes method calls for other objects.

The benefit of using object-oriented programming languages is that they offer a structuring
tool for collecting the common behaviour characteristics of essentially similar processes into a
single description. Furthermore, the descriptions can be reused for new objects through inherit-
ance. The object-oriented programming languages do not themselves offer a design technique,
but they increase the efficiency of application production merely by insisting similar structures to
be used throughout the production team. The design support for object oriented software can be
found in object-oriented design patterns (e.g. [57]). A pattern describes a set of roles and inter-
faces associated with them. A typical application utilises a set of patterns and each object adopts
a role in some of these patterns. The design patterns actually introduce some protocols between
the actual objects. The patterns are selected from successful applications and the design is then
reused in later software projects.

The programmer view to object model can be further enhanced by properties like object dur-
ability, persistence, immutability, and replication (see for example [54]). The programmer view to
the communication between objects can be further simplified by hiding many transformation and
control mechanisms within the middleware between them, like described for example in [252].

A further development on object languages, dynamic (or reflective) object technology, enables
applications to be modified during development and runtime, without changes to the program
code itself [131, 34, 142]. This feature essentially decreases the software system maintenance cost.
The dynamic object language implementations maintain meta-information about object classes

22 2 DESIGN OF NON-CENTRALISED SYSTEMS

and inheritance relationships. Modifications on the object structure are applied to this meta-
information instead of the object implementations themselves.

Interface definitions

In object-oriented programming, the important goal is to define correct interfaces for the objects.
However, languages like C++ do not support a separate interface concept, but concentrate on
defining the semantics of object methods. Languages like Interface Definition Language (IDL)
from OMG [177] are more suitable for defining interfaces. One of the drawbacks in IDL usage is
that IDL does not define the semantics of the defined operations at all, only the structure of the
object interface in terms of exchanged data values and message contents. Software development
projects typically use a combined set of these tools. The shared IDL definitions are used for gen-
erating RPC stubs and other lower level communication related parts, and the method semantics
is defined by adding more traditional programming language sections. This approach enables
considerably easy use of multiple programming languages in parallel.

Beside inheritance, polymorphism is an essential concept in object-oriented programming
languages. Polymorphism allows an operation to be mapped to different kind of methods at
the object implementation at run-time. The selected method depends on the actual information
contained in the service request invoking the operation. A simple and often used way of selecting
the method to be executed is to require the operation name and the method name to match [256].

Object databases and distributed object management systems

Another line of constructing distributed systems is structured around database system models.
Distributed databases are frequently used as a basis for implementing traditional business ap-
plications such as office information systems, engineering databases, and medical information
systems. Distributed object management systems (DOMS) merge the distributed relational data-
base management system technology with object oriented data base technology [184].

The design goal of DOMS is to provide network, replication, and fragmentation transparency
of transactions [184]. The network transparency hides the network management duties and the
distribution of data. The replication transparency masks the physical copies of a single logical
data item. The fragmentation transparency masks the physical distribution of database objects
partitions.

The database objects are managed by a global transactional access management, implemented
jointly by local manager processes. The object representation is not required to be homogeneous
at the sites. Instead, an external schema is used for formulating user queries and transaction
access between local manager processes. The external schema is defined over a global concep-
tual schema which is partitioned to local conceptual schemata at each site. The local conceptual
schemata are then mapped to local internal schemata to describe the physical organisation of data
at that site. The database objects can be clustered based on their type (shared method informa-
tion), or each object can be partitioned. In horizontal partitioning, the objects can be clustered by
other criteria, and for each relevant site, the type information is duplicated. In vertical partition-
ing, both the type information and the object data are partitioned to several nodes. This causes
situations where both methods and data can be either local or remote in respect to the manager
controlling a method execution [184].

2.3 Traditional distributed systems 23

Integration of existing object database systems can be supported by standardised interfaces
and object models. The OMG consortium has been involved in an open data management re-
commendation, ODMG [29]. The recommendation introduces an object definition language,
ODL [233], and its language bindings to some programming languages. The ODL language
contains basic type construction tools, built-in collection of type generators, and alternatives for
composite object semantics. The recommendation also defines an abstract object query language,
OQL to match the data model.

An interesting example of distributed object management systems is the DOMS of DTE [144].
It clearly shows integration of heterogeneous, distributed database systems, and exploits CORBA
platform design to support the local managers and their communication. The work also shows
interfaces as objects and allows the interface objects to be polymorphic. The idea of polymorphic
interfaces will be further developed for federated system model in Section 2.4.

Object-based tools

The increased use of object-oriented programming languages has lead to development of
object-oriented design methodology. A well-known example is the object modelling technique,
OMT [203]. The technique is based on objects that consist of a unique identity, public and private
data, and public and private operations. Public operations are called services. For the specifica-
tion of an object system, OMT uses three basic models: object model, dynamic model and func-
tional model. Each model captures only a part of the specification and the models must be com-
bined to get a whole system view. The object model describes the static structure of the system.
It is represented by class diagrams showing active objects, data stores and messaging between
objects. The dynamic model describes the potential changes in the system state. The model is
represented by a state graph for each class of objects showing potential object states and trans-
itions. The functional model describes changes of the data in the system. The functional model is
presented as client-server relationships between object classes and the execution order of object
methods. The technique encompasses four phases of the software engineering process: analysis,
system design, object design and implementation. All phases basically describe features of im-
plementation level objects, i.e., processes and abstract data structures. The OMT technique is
being replaced by UML (unified modelling language) [175] that basically includes the same fun-
damental concepts.

For independent application areas object frameworks have been developed. An object frame-
work is a model program that covers the essential functionality of the application, networking
support for communication between application components, and usually also a generic graph-
ical user interface [53]. The programmers need only to modify this model program to suit the
requirements of the specific application. The benefits of this approach are apparent: New applic-
ations are fast to construct and have a similar appearance for the end-users. The programmers
need not to be specialists on all technical areas, e.g. graphic and network programming, but
can concentrate on the business model of the application area. Object frameworks are usually
implemented as libraries. We do not yet have such concepts embedded into any programming
languages nor into any middleware services. However, such solutions are clearly to be presented
soon.

24 2 DESIGN OF NON-CENTRALISED SYSTEMS

2.3.5 Meta-information

As a distributed system is governed by a single administration, meta-information is mainly
needed during system or service design and implementation. Meta-information is required for
ensuring the interoperability of objects that can be implemented either separately or in a het-
erogeneous programming environment. Meta-information is also used during the system oper-
ation time for administrative purposes. Such run-time meta-information is mainly created and
modified by human administrators. However, facilities like process migration require meta-
information to be present.

Typical meta-information interesting for distributed application development include object
and interface definitions, and topology of the distributed application across the network. Interface
definitions can be considered as service-related meta-information. However, such information is
not widely used at run-time.

A simple form of service information can be found in RPC management, because the service
requests are checked for conformance against the service and version numbers of the server. In
addition, data representation formats can be captured either as a design rule or carried within
the messages exchanged between application components. Many RPC mechanisms trust in self-
describing data, and transport data in forms like ASN.1 [89], or XDR [214]. A more elaborated
example of run-time service information is found in dynamic object systems, where explicit meta-
information can be modified during system run-time.

The topology of a distributed application can be captured in terms of location information.
The DNS and ARP services are commonly known implementations for location services in the In-
ternet. In addition to the topology, authentication information is also required for remote commu-
nication. Such information is supported, for example, by NIS (Network Information Service). It
stores pairs of user names and passwords (authentication service), computer names and network
addresses (name service), group names and user names of the members (membership services),
etc.

In the design of distributed applications, an important aspect is the expected and achieved
quality of service. Quality of service concept has been traditionally used in relation with multi-
media applications [38]. The quality of service is expressed as a measurable property, like latency,
throughput, jitter, and availability time. The values for these attributes can either denote com-
fortable conditions for the users, or unacceptable behaviour of the service. The quality of service
management is often covered by capacity planning, load balancing techniques, or denial of new
tasks when the system capacity is reached. However, quality of service can also be monitored
during the system operation. Monitoring information is commonly collected within the system,
for example, in RPC stubs, and can be used for example for load sharing between the processors
in the system.

We can summarise that run-time meta-information available in distributed system includes

� name and location services,
� membership services,
� data type information,
� quality of service monitoring information, and
� service information.

In comparison to the meta-information available in the networked systems, the above items al-
low more flexible cooperation between separate computers: Location services are used when pro-
cesses are migrating and communication channels must be reconstructed, name services can be

2.3 Traditional distributed systems 25

used to ensure that an interesting service can actually be accessed at a remote node; and further-
more, service information can be used to ensure consistent communication semantics between
two processes.

2.3.6 Benefits

Distributed systems allow effective exploitation of computers in such a way that the overall sys-
tem capacity and usability are compatible to that of a centralised system. The system availability
may even be better for a distributed system. From the programmers point of view, the distributed
systems offer a more convenient working environment in comparison to the networked systems.

2.3.7 Problems

When we consider distributed systems as the support mechanism for world-wide information
services, we notice some conceptual and some technical problems. Furthermore, the object-
oriented tools involved in the development of distributed platform and application services have
their inherent limitations.

The conceptual problems arise from the distributed system design goal of a unified system
environment. This goal leads to solutions that trust in a shared administrative control over the
system, and also, to an assumption of a homogeneous middleware interface. However, these as-
sumptions are not reasonable for a system that spans multiple organisations. Organisations can-
not be forced to use same operational policies in their computing systems, nor forced to evolve
their computing services in the same pace. A single de-jure and de-facto standard middleware
interface is unlikely to arise. Such homogeneous middleware interface would stop both competi-
tion between vendors and evolution of middleware services for new demands.

The technical problems arise from the concepts of distribution transparency as a mechan-
ism to hide differences of systems and remoteness of computing. When we adopt the multi-
organisational system model, we have to modify the transparency requirements as well. For
example, in a multi-organisational environment, end-users are prepared to be informed about
service failures caused by mismatch of organisation policies, because such mismatches appear in
communication between people as well. Thus there is no need to always hide all organisational
boundaries from end-users or programmers.

Another technical problem category arises from the object-oriented software development en-
vironments that trust in inheritance as a basic mechanism for ensuring interoperability of objects.
Thus interoperation is restricted to cases where the conformance of their interfaces can be checked
at compilation time. However, in a multi-organisational environment, cooperation relationships
should be possible with objects that are introduced some time during the system operation. The
middleware should be flexible enough to adopt new application services from other organisations
and to offer them for the local end-users. In a traditional distributed system, such flexibility is not
supported. Instead, new services must be introduced through administrative actions and usually
require a proxy or a gateway to be installed (or even programmed).

26 2 DESIGN OF NON-CENTRALISED SYSTEMS

2.4 Federated systems

Federated systems are composed of sovereign systems that include middleware for interoperab-
ility support.

A system is considered to be sovereign when it has an autonomous administration. In a sov-
ereign system, decisions – for example on system architecture, services supported, programming
and interface definition languages, remuneration, authorisation policies, and communication pro-
tocols – can be done independently from any other systems.

Interoperability support includes mechanisms that negotiate about the shared capabilities of
the systems and establish an interoperation relationship at system run-time. Such mechanisms
are needed in a multi-organisational environment because the interacting software components
cannot inherit properties that would ensure interoperability.

Cooperation ability between software components located to separate sovereign systems be-
comes separated to two concepts: interoperation and interworking. Interoperation between (ap-
plication) objects means that the supporting infrastructure manages aspects arising from system
sovereignity. In an interworking relationship the objects need to manage those aspects internally.

The characterising goal of federated systems is to enable world-wide information service sys-
tems, but still allow each member system to offer a localised computing environment for the
end-users. A shared goal with the traditional distributed system evolution is the inclusion of new
technology, like mobility, multi-media streams, and multi-party communication relationships.

We consider a federated system to be a community of federable systems that dynamically
enter and leave federations. The federation and the federable systems we define as follows:

Definition 2.11 Federation is a state of agreement between two or more systems about interoperation. Fed-
erations can be established and terminated during the operation of the systems. The federation agreement
covers general communication related aspects, such as protocols and locations of interfaces, and service
specific aspects, such as quality of service contracts.

Definition 2.12 A federable system is a sovereign system that contains middleware services that support
federation establishment and management.

2.4.1 Architectural characteristics

The goal of the federated system model is to improve the facilities for accessing services (not
servers) from computing systems belonging to other organisations. Federation can be established
between such systems that include similar facilities and that are allowed to federate by their own-
ers. There is no predefined shared goal for the joint operation nor a shared control for the joint
operation, but clients at any federable system can request services that are eventually performed
at another federable system.

Composition of a world-wide system involves interconnection of the independent systems.
The scope of potential federations is determined by the amount of common communication facil-
ities and the amount of applications that are suitable for cooperation. A fully connected commu-
nication network between the federable systems is not necessary, as all services are not used at all
federable systems and in some cases an intermediating system can be used. Furthermore, reach-
ability of individual servers from all locations is not an objective. Therefore, practical limitations
of interconnectivity do not invalidate the model. However, the communication services across the
federated system should be able to join various communication technologies. For example, the

2.4 Federated systems 27

communication services should be able to adapt the failure detection and recovery mechanisms
to fixed and mobile networks.

In the world-wide federated system, it is not reasonable to expect that all organisations would
offer a similar computing platform or application repertoire for their users. Instead, each organ-
isation should be allowed to offer localised interfaces. We can adopt the concept of personalisation
(from the context of micro-kernels [136, 238]) as a design pattern that separates the actual execu-
tion of services from the mechanism through which the users exploit the service. In the federated
system, we allow transformation of generic service concepts to a local representation format at
each member system. Such an architectural opportunity is beneficial for vendor competition as
well: The vendors of federable system platforms and applications are granted a possibility of
commercial competition with their products within the federated systems.

The federation management mechanisms are easier to build if federations are not established
between whole systems but per individual services. Each service federation can be established
independently and the federations can be reconstructed whenever changes at the services or ser-
vice implementations are introduced. The service-wide federations require standardised contract
schemata. Such work has already been initiated, for example within the business object modelling
special interest group (BOMSIG) of OMG [170].

We introduce a federated system application architecture that contains sovereign objects es-
tablishing liaisons, i.e. contractual relationships, among themselves. The liaisons ensure that the
interacting objects are technically able to exchange information and perform services for each
other in a semantically consistent way. The technical capabilities are controlled using meta-
information about the objects. The meta-information is maintained by platform level services.

Figure 2.1 illustrates the global system view where each service is essentially formed by ap-
plication level objects and platform level objects. The properties of platform level objects effect
essentially the interconnectivity potential of an application object, and thus platform objects must
be included in the global system view. In distributed systems, the network of platforms is homo-
geneous and fully connected, and the global system view can be abstracted to contain only the
application level objects. In federated system model, the interconnectivity and heterogeneity of
the platforms must be considered. The federated system global infrastructure may consist of a
set of distributed systems. The network of platforms is not fully connected. Instead, it obtains
a shape depending on the shared protocols, the awareness of other systems, and the authorisa-
tion of remote users at each individual system. We can consider each federable system as an
independent management domain [209].

application

platformplatform

application

global

infrastructure

environment
liaison

infrastructure

liaison

service

liaison

Figure 2.1: Global system view of federated system.

28 2 DESIGN OF NON-CENTRALISED SYSTEMS

Examples of typical federated system applications include services for electronic commerce,
i.e., authentication, billing, payment, and retail. Some services common in distributed systems,
like distributed file systems or global naming services, do not appear as joint services of the fed-
erated system. Instead, such services can be supported by the federated systems and federated at
will.

Typical federated system platform services include those of distributed system platforms,
but especially additional services like trading, type repositories, federated binding management,
and federated naming services. These services represent meta-information services fundamental
for federated systems, and services that exploit meta-information for creating object federations.
Some platform services are federated by nature themselves. We will further study these services
when we discuss federated system middleware.

Currently, there are not yet any federated system implementations. However, examples of
federated system characteristics can be found in TINA, CORBA, and ANSA systems, that are
discussed in Chapter 4. The ODP framework specifies ODP systems that are allowed to be either
traditional distributed systems or federated systems.

2.4.2 Basic concepts

The federated system model requires a more rigorous set of concepts for maintaining interactions
between objects than traditional distributed systems. In a federated environment, objects can-
not have inherited information about the behaviour or communication capabilities of each other.
Instead, each object of a sovereign system must explicate its properties and negotiate about the
federations to be entered.

Services and interfaces

Federated systems are basically founded on the concept of service. In order to facilitate federation
negotiations, the views of the same service are separated based on whether a service is supported
for others to use, or whether a service is requested. In addition to separating object views to the
same service ideas, additional concepts are presented by the requirements of supporting modern
communication technologies. Therefore, concepts are required, for example, for quality of service
negotiation and stream interfaces. However, these concepts are not characteristic to federated
systems alone, but to all modern systems.

Definition 2.13 Service: Behaviour that can be invoked through an object interface. For a client, the
service concept denotes a functionality that can be performed by its system environment. For a set of
service providers, the service concept denotes a potential sequence of interactions that may be performed as
a result of a defined signal from the client. The sequence of actions is governed by agreed policies on the joint
behaviour of interacting object and the state of system environment at the time the service is performed.

For traditional distributed systems we defined service (Definition 2.9) as a description of in-
terface structure. Definition 2.13 captures the interface description as one of the items involved,
but enhances the concept further to include aspects that are interesting for the organisations. The
organisations consider the services also from the point of view of merchandises. Thus, quality
of service, remuneration, and monitoring of the actual behaviour against the liaison become in-
teresting. Furthermore, the Definition 2.13 requires that we promote interfaces to capture object

2.4 Federated systems 29

behaviour in addition to the interface structure. Behaviour can have either operational or stream-
exchanging semantics, as defined in ODP reference model (see Definitions 3.7 and 3.11).

Federation establishment mechanisms also require the refinement of interface concept. In the
object models characteristic to distributed systems, the interface is the abstraction of functionality
that is shared between the communicating objects. In a federated environment, the existence of
such shared knowledge cannot be assumed. Instead, all objects have their private views to any
interfaces and services. A commonly used interoperation scenario is that of a client and a server
object. For those objects we can define a client-role interface and a server-role interface. When one
of these interfaces is expected to receive a signal (e.g., operation invocation delivery), the other
one should include statements of sending the corresponding signal. If the interfaces do not match
perfectly, but are reasonably similar, the objects can still interoperate, but via an interceptor (see
Definition 3.16) that transforms the signals while they are transported between the interfaces .

Definition 2.14 Client role interface: a requester view to a service. A client role interface definition ex-
presses the client’s assumptions and restrictions on the service type and the access technology for a requested
service.

Definition 2.15 Server role interface: a supporter view to a service. A server role interface definition
expresses an implemented service type and required access technologies for the supported service.

In order for the sovereign systems to negotiate about cooperation, the views to offered and
requested services have to be captured. Therefore, we give two additional definitions:

Definition 2.16 Service offer defines
� the type of server interface supported by a set of objects,
� the service properties in terms of quality of service, and
� the conditions under which the advertised properties are expected to be valid.

Definition 2.17 Service request defines
� the type of client interface supported by the requesting object,
� the service properties expected in terms of quality of service, and
� the requirements for the validity of the advertised properties in an acceptable service offer.

All the above definitions use the term ‘type’ when referring to interfaces or services. We here
use ‘type’ in the sense of predicate over an object. An object is of a given type if it fulfils the
predicate, irrespective of how the object was created. In a federated environment, the service
liaisons must be based on the type conformance of their interfaces. For the creation of objects a
separate concept of template is used. A template is a type that is suitable for object creation in
a given environment. For example, program code can be considered to form an object template.
Object templates are private for each platform architecture; types are suitable to be used for global
negotiation of services. We will return to these concepts in Section 2.4.3 and more formally in
Section 3.2.

Interface instances are identified by interface references:

Definition 2.18 Interface reference: An interface reference denotes an access point of a service. The inter-
face reference structure is specified by the service type of the interface. Via an interface reference information
about service type, location of the interface (e.g., communication address), and suitable access protocols can
be retrieved.

A more detailed definition is adopted from ODP reference model, see Section 3.2.

30 2 DESIGN OF NON-CENTRALISED SYSTEMS

Binding liaisons for federated interoperation

The foundation for federated interoperation is the federated binding process that establishes liais-
ons. In this process, meta-information about services and supporting objects is exchanged by mid-
dleware functions between the sovereign systems involved. (The basic idea of liaisons is present
in ODP reference model, see Definition 2.19 and the definitions in RM-ODP [92, clause 13.2.4].)

The federated binding process contains negotiation of potential contracts. We call the service
requests and service offers jointly as potential contracts. A contract schema defines what kind
of agreements the federating objects must reach before a binding liaison can be established, and
thus defines also the required structure of potential contracts.

For each service type different properties are natural and therefore also the contract schema
is different. In general, the following object properties are interesting:

� the supported services (e.g., data storage and retrieval),
� the plausible quality of service (e.g., delay, mean time between failures),
� failure recovery behaviour in case that the object experiences unacceptable quality of ser-

vice from other objects (e.g., timeout and termination of a delayed operation), and also
� the expected communication facilities (e.g., access with NFS protocol).

The actual cooperation relationships between object instances are called binding liaisons. The
liaison eventually determines what kind of communication channel can be created between the
service interfaces.

Definition 2.19 Binding liaison: Binding liaison is a context where the shared facilities supporting the
client and server role interfaces have been selected and will be deployed.

Binding liaison is a concept that does not appear in traditional distributed systems. In dis-
tributed systems, it is the responsibility of a client object or a client process to form and maintain
a binding, i.e., be aware of the communication details with a server. In federated systems, the
system services are responsible of the communication details, and an abstraction that captures
information for communication realization is required. In distributed systems, the environment
is in many aspects homogeneous, and the liaisons can be implicit or at least static. In federated
systems, the same aspects are gathered as meta-information to the binding liaison, to be dynam-
ically exploited, tailored, maintained and modified. Aspects of heterogeneity include differences
in object or process management, and representation format of meta-information.

The service concept essentially captures both the application level interface (both structure
and behaviour) and the platform facilities that are required for the communication between the
service requester and the service provider. Therefore, we separate the concepts of service liaisons
that represent agreements between application level object, environment liaisons that represent
agreements between application and platform level objects, and infrastructure liaisons that rep-
resent agreements between platform objects of different systems. These liaisons are captured to
Figure 2.1. A binding liaison between two application objects requires a consistent set of service,
infrastructure and environment liaisons to exist.

Objects

The required service behaviour is finally implemented by some computing and communication
activities. In an abstract way, the activity can be considered as a single, very large object; in a

2.4 Federated systems 31

concrete way, the activity can be considered to be produced jointly by a set of (programming
language) objects interacting with each other. These two levels of abstraction are illustrated in
Figure 2.2.

desing object

services at interfaces

processes at computers within a domain

Figure 2.2: Modelling and realization of services.

Definition 2.20 Object: Object is a modelling concept for real world entities like resources, threads of
processing, abstract data structures, and programming language objects. Objects can be composite. An
object has behaviour initiatable by requests on its interface and it may encapsulate information, entities,
interactions among those entities, and self-induced internal activities.

Only application level service packages, like teleconferencing services or bank interfaces, can
reasonably be expected to interoperate in a federated environment. We exclude processes and
programming language objects from the federation discussion, because the mechanism is far
too heavy for such detailed integration. Objects of the same granularity are elsewhere called
megamodules [251]. Also megamodules encapsulates – besides procedures and data – also types,
knowledge and ontology (concepts and interpretation paradigm).

In contrast to programming language objects and processes of a computing system, the fed-
erated system objects can encapsulate not only data but also activities within some defined com-
munity of entities. This property allows federations to be build on application level services
(banking services, teleconferencing) instead of restricting federation to platform level services
(files, memory, processors).

Also in contrast to programming language objects, only the behaviour at the object interface is
public – no public data is allowed. Instead, associated with every service is a set of public proper-
ties representing meta-information about the service. The meta-information covers technological
restrictions for accessing the service, policies affecting the service, etc.

2.4.3 Middleware

For the federated systems, the middleware model presented by the ODP standards (see Chapter 3)
is appropriate. The ODP middleware services form an abstract computing platform model onto
which actual platforms can be mapped. In the federated system middleware implementations,
threads of processing, data, and algorithms vary, and the variance is managed by using meta-
information describing the components. More difficulties arise because also the meta-information
representation forms vary between service implementations.

32 2 DESIGN OF NON-CENTRALISED SYSTEMS

The interesting federated system middleware services are

� the establishment of conceptual liaisons between objects, and the actual dynamic binding
process realising the liaisons; and

� the various meta-information exchange mechanisms, like trading and type repositories.

In the following we take a short look at the meta-information services. Part III elaborates these
functions, especially the trading services in distributed and federated environments.

Trading

The trading function is used to mediate information about interfaces at run-time. It is a world-
wide, federated mechanism that provides the means to advertise and to discover a particular ser-
vice type [96]. The trading community includes ‘importers’, a ‘trader’, and ‘exporters’. The client
is an application object that wishes to find a server. The server represents a remote application ob-
ject of interest. Neither of these objects need to be involved in the trading action themselves, but
they have representatives, importers and exporters. The trader stores information about available
servers as ‘service offers’. Service offers are grouped so that each set of service offers represents
providers of one abstract service type. Each service offer includes an interface reference that con-
veys where and how the service can be invoked, and a set of property values that convey other
aspects of the service, such as quality of service. The properties can be either static (e.g., processor
type) or re-evaluable at usage-time (e.g., queue length). The service offers can also convey policy
choices of the objects, e.g., what kind of search algorithm is used in a database.

Trading itself is just a mechanism. The term only defines the operations available and the syn-
tactical structure of the information controlled by the operations. In order to create an interesting
trading service, the semantical contents of the controlled information must also be specified.

The trading function standard is already relatively stable [96]. Research projects studying
trading are numerous: ANSA [44], BERKOM Y [254], COSM TRADE [149], RHODOS [166],
MELODY [26], DRYAD [126], etc. Commercial products have also been already developed, for
example, traders appear within ICL DAIS, Bellcore INA, etc. For CORBA, products have been
offered from (at least) ICL, BNR, APM, DSTC [173]. We return to the comparison of the trader
specification and implementations in Chapter 8.

Type repository

The binding process requires a consistent view to available interface types. Otherwise commu-
nication between objects cannot be guaranteed to be type safe. Type safety means that the sender
and the receiver process are guaranteed to agree on the structure and semantics of an exchanged
message.

The type repository function can be used to mediate the type information and to translate it
to template information. The type repository function [97] resembles the trading function by its
behaviour, but instead of interface instances it mediates type information. The key concept for
type repository is ‘type description’. A type description expresses an abstract service class by
presenting a set of concrete expressions for it, in different languages. Thus, the type description
contains a set of ‘type definitions’. The different expressions allow replacing one type definition
by another. This is especially important when a declarative type expression can be related to
a template. A supplementary concept for type repository is ‘type relationship’ that is used for

2.4 Federated systems 33

expressing conformance between type definitions administered separately. For the federation of
the systems the relationship is essential: conformant type descriptions are interchangeable (or
interceptable).

The type repository function for the ODP family of standards is under development [97].
Currently, this work is being merged with OMG Meta Object Facility, MOF [174].

Naming

Both the trading function and the type repository function trust in a federated naming service.
Several solutions have been suggested, for ANSA [243], for CORBA [177], and for general cases
(for example, [164, 14]). The ODP naming framework standard is still under development [98]. It
defines a federation mechanism between global naming systems with independent management.
However, it requires a globally distributed management of a single naming system and does not
exploit federation facilities on this aspect [110]. The scalability problem created is clearly visible
when the amount of nameable entities is increased [40].

Binding service

Communication between objects can only occur after a successful binding process between the
involved interfaces. As a result of the binding process a binding liaison is created. The liaison
ensures that a communication channel is either already created or the infrastructure is prepared to
create the channel. The channel creation can be delayed due to optimisation of resource allocation
until the channel is actually used for the first time. The characteristics of federated channels are
discussed in Section 2.4.6 and in Chapter 9.

When a binding between a client and a server interface has been requested, the binding pro-
cess should ensure that

� the interfaces exist or can be instantiated,
� the interfaces are compatible, and that
� there is no (security related) prohibition for the binding.

The compatibility requirements for interfaces capture

� conformance of interface signature types,
� conformance of interface behaviour,
� availability of a shared data transport mechanism,
� shared understanding of the names used for types, behaviours, and protocols in the binding

process, and
� suitable combination of the roles for objects involved in the communication (e.g., producer

and consumer, client and server).

As the result of the binding process the agreed values for the binding liaison have been de-
cided for each contract schema item. Even within these values, some alternatives can be present.
In such a case, the liaison is able to adapt to changes in the binding during its lifetime. Especially,
the infrastructure liaison can be changed while the service liaison is persistent. A channel may,
for instance, recover from a too high jitter by changing the transport protocol.

The nature of bindings between interfaces differs from that in distributed systems. In dis-
tributed systems, the binding process makes the communicating parties aware of each other’s

34 2 DESIGN OF NON-CENTRALISED SYSTEMS

location directly so that they can start messaging with each other. In federated systems, there are
two levels of object interfaces (computational and engineering levels) reflecting the application
and platform level objects (see Figure 2.1). In federated systems, we want only the computational
binding to be visible to programmers, although technically, the engineering interfaces must be
bound.

The federated binding service (that we discuss in further detail in Chapter 9) follows the
requirements of distributed binding specified in ODP reference model [93] and the more specific
binding framework [102]. However, the federated binding model is more specific in aspects that
involve sovereign systems, for example, in procedures for liaison maintenance.

Factories

Factory is an abstraction of a process that instantiates objects and object configurations, such as
interfaces and channel components. A factory is realized for example by an operating system
nucleus that supports operations for process creation from a program file.

A type-parametrisable factory is a factory that is able to select the necessary templates itself,
when it has been given a type for the outcome. A type repository can be used for mapping types
to suitable templates at each real platform.

The type-parametrisable factories do not resemble generic types supported by some program-
ming languages (e.g., Ada). Generic types manage a form of inheritance and they are used for
maximising code reuse. The type-parametrisable factories map shared knowledge to local tech-
nologies. The factories cannot use any form of inheritance for their cooperation. The factories
manage a form of polymorphism.

The ODP reference model does not discuss factories, but discusses instantiation facilities in-
stead.

2.4.4 Meta-information

The essential meta-information in federated systems is captured by contract schemata, and there-
fore, we discuss separately the major contract components. These include interface type or service
type, quality of service attribute values or thresholds, failure detection and recovery protocols,
and conditions on which the service and the quality of service agreement can be held.

Because meta-information related to types and templates has an essential role in federated
systems, we first study type and template hierarchies. Types are necessary for the establishment
of binding liaisons; templates are required for implementing the agreed service. Second, we are
interested on items such as policy frameworks on service behaviour and quality of service con-
tracts, within the service type specifications. Finally, other meta-information classes are briefly
discussed. More detailed discussion on meta-information and middleware services follows in
Chapters 6 and 9.

Service types and related templates

Successful communication between objects requires that the object interfaces share an informa-
tion exchange structure (information items revealed and expected) and a semantics for the joint
behaviour.

A service type is an abstraction that denotes a known behaviour pattern. A service type is
represented as a description of a functionality and its access method through an object interface.

2.4 Federated systems 35

It can be either expressed as a service type name, or described by an interface signature together
with a behaviour description or a behaviour name. An operation interface signature expresses
names of operations available at the interface together with their parameter names and value
types. A stream interface signature expresses names and protocols of the flows within the stream.
Service type also lists quality of service concerns, for example, where to use the service, on what
platform, and what kind of remuneration policy is used.

A service type can be captured as a set of alternative interface types. For example, the account-
ing service can be implemented in two ways: First, it can be represented by a single interface with
two operations, one for receiving log entries, and another for producing the report on request.
Second, it can be represented by two separate interfaces, one for each operation.

An operational interface type is defined by a set of operation types. Operations can be ex-
pressed in various languages, for example in IDL, ODL, or C++. However, an interface type
expression may be valid as a template at some platforms. Most distributed object management
systems conceptually separate object methods from operations. Operations included to the inter-
face type are then further mapped to methods. The platform aspects of a service type can also
require a concrete expression format. Two service types can differ based on platform or repres-
entation aspects alone.

For the realisation of communication in a federated environment the types must be mapped
to structures that can be executed. Therefore, we study interface templates that invoke object
behaviour and refer to information exchange structures. An interface template is an interface
specification that is usable at a specific platform: the platform must have a suitable invocation
scheme for the operations listed. Most object-oriented programming language environments map
operations directly to executable methods.

Interface specifications have a dual role as types and templates. The term ‘interface’ is there-
fore often used alone, not specifying whether a type or a template is denoted. This causes confu-
sion, because the assumed level of abstraction is not expressed. In type specifications, operation
parameters denote information to be exchanged; in template specifications, operation parameters
denote the format and grouping of data to be transferred.

Both individual type specifications and template specifications may have a hierarchy for de-
fining similarity or inclusion of properties. In case of types, this hierarchy expresses the capability
of an object of one type to replace an object of another type. The similarity hierarchy can be formed
at two levels of abstraction: either at service type level, or at interface level. In case of templates,
the hierarchy is an inheritance hierarchy. The hierarchy denotes inclusion of object properties
to a new object. The new object can be modified with some additional or replacing properties.
The main goal is to reduce maintenance work in software production. Therefore, the inheritance
hierarchy is only about the interfaces.

Unfortunately, both hierarchy structures are called subtyping, although the rules differ. The
essence of subtyping rules for objects in a federated environment (and in ODP systems) is contrav-
ariance [93, 28, 27]: the offered information flows must include at least the information expected
by the receiver. In other object models, subtyping is in most cases based on covariance: the repla-
cing object can both expect to receive and offer more information that the replaced object expects
and offers.

In a run-time environment, the type and template hierarchies are mapped together. Although
inheritance usually leads to a subtype relationship, this is not always true. Therefore, both hier-
archies must be maintained. In addition, a mapping must be maintained from each type to those
templates that realize the type.

36 2 DESIGN OF NON-CENTRALISED SYSTEMS

The general type concepts discussed here are called the target concepts of the type system.
Different type systems may have different sets of target concepts. The inheritance or similar-
ity hierarchies are constructed among the members of the representatives of each target concept
separately. As a summary, the abstraction levels can be described as in Figure 2.3. The figure
illustrates the containments and mappings of types on the left side, and the containments and
mappings of templates on the right side. The arches joining types and templates denote a possib-
ility of a template to realize or implement a type.

The usage of type information differs in traditional distributed systems and federated sys-
tems. Type information services in distributed system environments manipulate interface de-
scriptions to be used mainly by design and implementation time tools. For example, the interface
repository in CORBA model is such a service. In a federated system environment, the type re-
pository function has run-time related tasks. Type services for federated environments support
trading by providing information on service types and related properties, and transformations
between interface implementations.

data types data types

interface type

operation type

operation
signature
type

property set

operation
signature

operation

service type

interface

operation behaviour types

interface behaviour type

Figure 2.3: Target concepts for a type system.

Co-behaviour and policies

During the negotiation of binding liaisons, the co-behaviour of two or more independently ad-
ministered objects need to be expressed. Currently, no acceptable method is available for repres-
enting object behaviour in a general form.

There are two separate behaviour aspects involved: first, the overall service semantics associ-
ated with an interface needs to be expressed; second, the object performing a service is governed
by an administrative policy. The overall service semantics is a static property of the interface.
To clarify the concepts, we can consider an interface that supports a printing service. The ad-
ministrative policy restricts the overall behaviour of all objects under that administration. For
example, all clients are forbidden to use printing services that cost more than 10 FIM per docu-
ment. The service properties of the interface can be separately regulated by the administration,
even changed during the interface life-time. For example, the price of an offered printing service
may change.

The co-behaviour of federated objects is governed by the administrative policies on each do-
main involved. For example, a document can be printed on a named printer only if the price of

2.4 Federated systems 37

administration

management
software

administrative
policy at
another
domain

administrative
policy

i.e., contract
effective policy,

application object

Figure 2.4: Restricting co-behaviour by administrative policies.

the job is under 10 FIM and the client has a billing contract with the printing service provider.
The restricting rules of a service execution are inherited from the administrative policies of all
involved domains, as illustrated in Figure 2.4.

As a current solution, we suggest to use behaviour names: We can name general service pat-
terns and a set of acceptable variations of each pattern. The characterisation of such a behaviour
pattern with its variations is called a policy framework. We require that the federating objects ad-
opt their behaviour within standardised policy frameworks. Often, the policy that governs object
behaviour is implicitly encoded to the object implementation, but even then, the specific features
of the behaviour can be named. For example, a trader that supports dynamic property values,
must be able to serve a query operation that denies the use of dynamic property evaluation [96].
The trader policy framework includes in this respect two alternative behaviours: evaluating or
ignoring a property value.

Practically, this means that a general service name and a more detailed feature name can be
together used as a description of the object behaviour.

In some cases, the policy rules are not related to qualitative behaviour changes but to quant-
itative parameters. For example, in the above printing example, we referred to printing prices.
Such values should be captured as properties with standardised names and standardised value
sets. Although individual sovereign systems would use different naming or value sets, intercept-
ors could be used in federation establishment. A wide range of suitable standards already exists,
including date and currency formats.

The variety of languages for expressing administrative policies does not form a specific feder-
ation problem, because detailed object management policies need not to be expressed in the bind-
ing liaisons. The federated architecture model separates federated control of object co-behaviour
from traditional management activities, such as resource control [127]. Therefore, only a few
aspects of a service behaviour need to be expressed in the binding liaisons.

Quality of service

The concept of quality of service (QoS) is essential in many modern system architectures, espe-
cially, in those supporting multi-media or telecommunication applications.

Traditionally, QoS refers to the properties of data transport in terms of throughput, jitter, and
dependability (rate of lost or damaged messages). In this case, the QoS management is simple: the
QoS requirements are used as parameters for the data transport protocols and when the transport
layer fails to fulfil the requirement, no corrective actions are made at run-time. The QoS man-

38 2 DESIGN OF NON-CENTRALISED SYSTEMS

agement is considered to be a design and installation time activity, requiring suitable capacity
planning [38].

In modern systems, QoS concepts have been enhanced to cover QoS contract negotiation and
dynamic QoS management. Also, the variety of QoS characteristics has been enlarged to cover
more aspects of objects and services in general. QoS attributes can differ depending on the service
type and whether they are associated with data, service, or objects [103].

The modern QoS management model [103] includes statements concerning QoS require-
ments, QoS offers, QoS contracts and QoS observations. The QoS requirements can be produced
during the system design or during the system operation. The QoS requirements have been cap-
tured as part of service request in Section 2.4.2. The QoS requirements state the expectations of
an object towards its environment, i.e., the infrastructure and the server eventually selected to
perform the requested service. The QoS offers are used for advertising QoS capabilities of object
configurations. There can be a separate refinement mechanism that expresses how the individual
objects contribute to the offered QoS measure. However, there is no requirement for the offered
QoS to be directly derivable from the actual object capabilities. The QoS contracts include state-
ments resulting from a negotiation process over the QoS characteristics. The QoS contracts can
be created either a dynamic negotiation mechanism or be implicit in the system design. The QoS
observations denote the information created by monitoring the object configuration governed by
a QoS contract.

The QoS requirements, QoS offers and QoS contracts have been captured as part of service
requests, service offers, and service liaison (see Section 2.4.2). The QoS observations can be used
in failure detection and recovery protocols for service liaisons, as explained in Section 2.4.2.

Examples of QoS measures include

� jitter of analogous data flow (e.g. a video signal),
� throughput (e.g. of a telephone line or a processor),
� timeliness (e.g. in real-time systems or in analogous signalling),
� service availability (e.g. probability of a disk being accessible, or a properly defined name

to be resolvable at a given time),
� time-to-live (e.g. validity time of a name-address pair in name server), and
� immutability (e.g. promise of not changing a name-address pair after storage) [103].

Examples of communication agreements that can be based on QoS arguments can be found from
multi-media applications [38]. Three kinds of service liaisons are frequently used:

� agreement on ‘best effort QoS level’, which gives no assurance nor remedy activities,
� agreement on ‘threshold QoS level’, which monitors the service performance, but notifies

the client if the QoS drops below the negotiated level,
� agreement on ‘compulsory QoS level’, which gives no guarantee on performance, but the

service is aborted if the measured quality does not meet the negotiated level, and
� agreement on ‘guaranteed QoS level’, which monitors the service performance, but does

not abort the service if the QoS drops below the negotiated level.

In federated environments, the QoS contracts (i.e., the service liaisons) must be expressed and
negotiated in such a manner that the sovereignity of the involved objects is not violated.

2.4 Federated systems 39

2.4.5 Model for software composition

Adoption of the federated architecture affects the style of constructing application software. In
this section we study the differences.

A federated application architecture model does not federate processes nor computing sys-
tems, but instead, entire applications, like teleconferencing, and billing. Still, the software is con-
structed by current programming tools, like object-oriented programming languages. There are
only a few additional rules to be applied with object-based programming:

� Each application must have an interface suitable for federation.
� At the federation interface, no shared memory nor referential parameters are allowed.
� The federation interface must be described in some interface definition language and the

definition registered to a local type repository.
� The interface reference for the federation interface must be exported to a local trader.
� Communication between processes within a distributed system should utilise the

federation-based communication scheme as well.

The federated system model allows objects to have multiple interfaces. Reasons for the
multiple interfaces are various: aspects for extending object to support multiple independent
roles [200, 207], to meet liaisons [73], and to allow combination of partial classes as in subject-
oriented programming [70].

When objects are allowed to have multiple interfaces, the expressive power of objects in-
creases in comparison to traditional procedural programming. Objects that have multiple inter-
faces and may request further information during a method execution by interacting with their
environment are called ‘interactive objects’. For example, a user interface object that is able to
seek further advise from a user, is an interactive object. Introduction of interactive objects – that
are able to make ‘intelligent’ decisions based on their environment conditions – present a ma-
jor paradigm shift from procedural programming [249]. Interactive objects can be considered
intelligent because they can retrieve information not only from the operation invoker but also in-
dependently from their real environment. A characteristic of object systems is that the observable
behaviour of the joint system appears to be nondeterministic and cannot be described by sequen-
tial algorithms. The object’s behaviour is not merely algorithmic, but is dependent also on the
object environment and internal state that reflects its past history.

The paradigm shift is fundamental, because interactive objects are more powerful as a concept
than the Turing machines [249]. Turing machines can take input, perform some computing, and
produce output. However, the Turing machines do not allow external information to affect the
computing phase.

The paradigm shift has important consequences for system design and behaviour: it intro-
duces unavoidable elements of incompleteness and unpredictability to the systems. The goal
of specifying a complete system behaviour should be rejected, and replaced by partial system
specifications through interfaces and views [249]. Each partial specification has two roles: they
essentially constrain the discouraged system behaviour and at the same time describe the useful
system behaviour. A standardised framework for such partial specifications can be found in the
RM-ODP, as described in Chapter 3.

40 2 DESIGN OF NON-CENTRALISED SYSTEMS

2.4.6 Model for channel composition

Adoption of the federated system model changes the responsibilities of the platform services.
Instead of instantiating a static channel structure, the platform services must be able to generate
variable channel structures based on the binding liaisons.

A channel is a configuration of intermediate objects that are able to route signals (operation
invocations, terminations, flow messages) from one application object to another. The end-points
of the channel are determined either by the binding initiator or the binding process itself, i.e., the
interfaces to be interconnected can be either identified or searched based on their properties. This
also means, that the computational interfaces are bound together, instead of creating a channel
between the technical addresses at which the interfaces are initially located. A channel does not
necessarily form a static circuit through the network; a channel can be based on connectionless
protocols.

A generic channel structure (that equals the generic channel structure in RM-ODP, see Defin-
ition 3.15) is represented in Figure 2.5. The actual channel structure varies depending on which
distribution transparencies are selected by the user, and which communication protocols are in
use. The actual channel structure varies also depending on the platform architecture and admin-
istrative rules on the systems that support partial channels.

In a federated environment, the channel creation process is not under a single controller, but
distributed. Therefore, Figure 2.5 shows two channel halves: each section of a channel is instan-
tiated independently of the other endpoints of the channel at different administrative domains.
The instantiation process only uses the information captured to the binding liaison and interface
references, including channel type and channel parameters like location.

The overall responsibilities of the channel components are traditional:

� Binders monitor the transport service for failures (crashes and breach of QoS contracts),
and initiate recovery from the failures, potentially recreating the lower layers of the channel
using different protocols. Binders can also act as binding membership controllers that allow
communicating partners to join or leave the service liaison.

� Representation stubs marshal and unmarshal data, also when representation format is not
equal in both ends of the channel. Persistence stubs check-point the communication, and
support migration of the interface so that either a proxy interface is left back or a re-locator
is informed of the new location. Transaction stubs execute the transaction protocols.

� Protocol objects transport data across the network. Different kinds of protocols are used
for streams and operations. The protocols vary also depending on selected transparencies,
abilities of the platforms, security requirements and transport line properties. The negoti-
ation is done at the phase where object interfaces are matched.

� Interceptors make security related decisions, and transform information representation or
grouping.

These components appear also in traditional RPC realisations. However, in federated sys-
tem channels, the stubs can be selected at run-time, instead of compilation time as in many RPC
implementations. Also, several stubs can be active concurrently, using the same protocol link
underneath. Separate concurrent protocols for channel components are, for instance, group man-
agement [181], and QoS management [247]. In a general case, the stubs are not self-sufficient, but
require services from management functions like authentication services [116].

Additional objects involved in the channel structure include channel controllers. A channel
controller allows the channel configuration and parameters to be modified during the service

2.4 Federated systems 41

liaison duration. Changes can involve, for example, multi-cast group membership or timeout
values when a fixed network line is switched to a mobile network line. A channel controller is
a direct client to all of the channel component’s management interfaces, and therefore it offers a
combined control interface to all of them. Because of its many connections, the channel controller
has not been illustrated in Figure 2.5. The channel controller has a specific object at each domain,
and those objects may cooperate in order to offer a joint binding liaison management service.

CLIENT

STUB

CLIENT

BINDER

PROTOCOL OBJECT

SERVER

STUB

CLIENT
PROTOCOL OBJECT

SERVER

BINDER
SERVER

INTER-

CEPTOR

CLIENT

OBJECT

SERVER

OBJECT

CHANNEL SECTION CHANNEL SECTION

Figure 2.5: Channel structure.

2.4.7 Benefits

The federated system architecture is suitable for world-wide interoperation between independ-
ently developed systems. The architecture covers aspects of evolution, automation of cooperation
relationships, and controlled access. Most importantly, the federated system architecture also pre-
serves the sovereignity of systems in their cooperation. In addition, the architecture is scalable in
respect to the number of data items passed through the network.

The scalability and the system sovereignity are reached by focusing on abstract services in-
stead of low-level objects. The style of modularisation minimises the need of shared control or
shared data between independent systems. For example, a shared file system is not necessary
between independent systems, if files can be federated. The federated files can be manipulated
in a manner similar to trader federations described in Section 5.3. The mechanism is based on
caching mechanisms and a set of polling and announcement protocols for change management.
However, data origin and data ownership are in all cases respected.

In a world-wide community, the services at each federable system inevitably evolve asyn-
chronously. New services emerge, old services are no more used, and old services are modified
to include new features. The federated system model has an embedded evolution mechanism,
provided by the meta-information exchange functionality. The availability and the properties of
services can be negotiated automatically at the system operation time. Furthermore, the meta-
information services are neutral in the sense of information exchanged. Commercial interests are
not affected by the mechanisms, because users of federated services can easily give preference to
products with certain extra features. Even the traditional distributed systems can benefit from the

meta-information services by employing them for software portability support and for simultan-
eous support for multiple versions of same services.

The object model used in the federated system architecture allows a fast and distributed soft-
ware production process to be established. The federated architecture model also addresses the
needs of modern systems, in areas of new technology and quality of service management.

The architecture adopts multiple technologies, such as streams for multi-media applications,
and various data transport protocols to allow service mobility. Separation of systems is also nat-
urally visible to end-users as the failure model of the communication primitives can be expressed
in a considerably precise manner.

Adoption of quality of service as a run-time issue gives new tools for controlling the correct
behaviour of a computing system. Recently, an interesting failure related to run-time QoS control
was reported in Finnish newspapers [236, 143]: The railway traffic-control system controls the
movements of trains and spaces them via semaphores so that there is only one train per section
of a railroad. Because of its critical nature, the system has replicated hardware. The secondary
computer is designed to receive and store replica data with a certain frequency. However, one
day, a paper clip had jammed the space bar at the keyboard of this secondary computer, causing
enormous amounts of interrupt signals. The computer was too busy to receive data from the
primary system at the designed speed and therefore caused long message queues at the primary
system. As a consequence, the primary system could not process new train information at its
normal speed, but kept the trains safely but inconveniently far apart from each other for several
hours. With QoS monitoring, the problems could have been avoided.

2.4.8 Problems

The overall design of federable systems covers several aspects still requiring further development:

� standardised contract schemata for formulating liaisons;
� creation of meta-information together with the actual processing entities and interfaces;
� common platform services for exchanging meta-information about the interfaces and the

supporting services;
� a binding protocol for establishing binding liaisons and realising them as channel struc-

tures;
� self-healing communication channel structures; and
� factories for instantiating objects (processes) for a given type (that is replaced by a locally

relevant template).

The major problem of federated system architecture is its immaturity and lack of practical im-
plementations. There are not yet standards for contract schemata for service types, although the
work has already been started. There are no widely used tools for developing federable software.
The standards allowing federated system architecture to be exploited, are still under develop-
ment and thus too vague for vendors to sell products based on them. However, for example
within OMG, vendors have already started developing meta-information exchange services for
their platforms.

An outstanding problem in federated systems is the security of federated communication.
The current networks are easy to join and there is, so far, no mechanisms for ensuring that the
joining system can be trusted.

Chapter 3

The ODP reference model

In this chapter, we discuss the Open Distributed Processing Reference Model, RM-ODP. In the
previous chapter, the federated system model is described based on a systematic interpretation of
ODP concepts. Therefore, we claim that the federated system model is consistent with the ODP
reference model, but not the only acceptable interpretation. This chapter aspires to an unbiased
tutorial on ODP reference model to support the consistency claim and to fill in some of the re-
ferred definitions. In addition, we indicate those ODP term definitions that were enhanced for
the federated system architecture in Section 2.4.

3.1 Overview

The open distributed processing reference model, RM-ODP, captures the basis for the evolution
of open systems. It is a joint standardisation effort of ISO [91] and ITU [107], started already in
1989. The ODP reference model is a family of general standards. Therefore, it can be utilised for
specifying distributed systems [52, 190, 202], as well as federable systems. The model is targeted
for architecture designers, standardisation bodies, and vendor consortia, to guide them in the
design of software architectures. The ODP model is being developed in interaction with other
consortia working on distributed system architectures, including OMG (founded in 1989) and
TINA-C (founded in 1992). Therefore, the abstract infrastructure model of ODP can serve as a
long-term prediction for software markets in future.

The aim of ODP standardisation is the development of standards for distributed informa-
tion processing systems that can be exploited in heterogeneous environments and under multiple
organisational domains. In addition to the requirement of using published and standardised in-
terfaces, ODP systems are required to

� provide software portability and interoperability;
� support integration of various systems with different architectures and resources into a

whole without costly ad-hoc solutions;
� accommodate system evolution and run-time changes;
� federate autonomously administered or technically differing domains;
� incorporate quality of service control to failure detection mechanisms;
� include security service; and
� offer selectable distribution transparency services [94].

44 3 THE ODP REFERENCE MODEL

These goals are acquired by the ODP model through three already standardised aspects of the
basic reference model (completed in 1996 [92, 93]):

� a division of an ODP system specification into viewpoints, in order to simplify the descrip-
tion of complex systems [93],

� a set of general concepts for expressing the specifications [92],
� a model for an infrastructure supporting, through the provision of distribution transparen-

cies, the general concepts that it offers for specification purposes [93].

The ODP standardisation work is being continued by the specification of essential middle-
ware services as component standards. These services include trading service (completed in
1996) [96] and naming framework [98]. Components that are currently under work include type
repository function [97], and interface binding framework [102] together with the supporting
protocols [99]. At the same time, an open system management architecture (ODMA) [90] is being
developed, although the current concepts are still more OSI related [86] than ODP related. In
addition, further development is started on viewpoint languages.

The ODP family of standards also includes formalisations of the fundamental concepts [95].
The formalisation work has been hindered by the inadequacy of current formal languages. For
example, concepts that require dynamicity, autonomy, and heterogeneity are difficult to express.
The formal aspects of ODP modelling are not discussed in this dissertation. Formal approaches
can be found for example in [208, 163]. However, further work is required in this area.

In the following sections, we study the ODP basic concepts, the viewpoint specification rules
for object systems, and the abstract infrastructure services identified in the RM-ODP to support
the specification and implementation of open object systems.

3.2 The ODP concepts

The basic ODP concepts include terminology on objects and their communication, and termino-
logy on organisation of objects to various structures. In addition, terminology is given for explain-
ing the scope of ODP specifications through conformance statements. In the following subsections
we discuss each of these areas in turn.

The ODP object model differs from object models represented for object-oriented program-
ming languages, object-oriented design methodologies, and distributed object management sys-
tems. The major differences include

� the flexible use of the object concepts for a variety of abstractions, ranging from implement-
ation details to abstract business model considerations,

� the use of multiple interfaces,
� separation of client and server sides of the interface through which the objects communic-

ate,
� variety of mechanisms for introducing objects to a system,
� concepts related to the type safety of communication through interfaces, and
� interactions between objects are not constrained – they can be asynchronous, synchronous

or isochronous, and atomic or non-atomic.

3.2 The ODP concepts 45

The communication model between ODP objects improves the communication primitives
offered to programmers by introducing selective distribution transparency. The communication
model is realisable through the binding model of objects.

Characteristic of the ODP reference model is the use of structuring concepts of community,
domain and federation. These concepts can be considered to be either static concepts exploitable
at design time, or dynamic concepts exploitable at operation time.

The conformance statements are mainly required by standardisation activities: further stand-
ards must claim the suitable conformance testing methods. However, the classification of ref-
erence points restricts the areas of conformance testing in such a way, that all implementation
decisions cannot be revealed.

ODP object model

The ODP object model covers the terms of

� object,
� interaction point for specifying the object location,
� object behaviour for specifying behavioural compatibility required by the interface binding

process, and
� object types and object templates for selecting and instantiating objects.

An ODP object is an identified abstract entity that represents the properties of a real-world
phenomenon. The state of the object is considered to be the information contents of the object at a
given instant in time. This information content determines all possible interaction sequences that
can be started from that state. Therefore, the object state and the future behaviour of the object
reflect the same abstraction.

Object is defined by RM-ODP as follows:

Definition 3.1 "Object: A model of an entity. An object is characterised by its behaviour and, dually, by
its state. An object is distinct from any other object. An object is encapsulated, i.e. any change in its state
can only occur as a result of an internal action or as a result of an interaction with its environment.

An object interacts with its environment at its interaction points.
Depending on the viewpoint, the emphasis may be placed on behaviour or on state. When the emphasis

is placed on behaviour, an object is informally said to perform functions and offer services (an object that
makes a function available is said to offer a service). For modelling purposes, these functions and services
are specified in terms of the behaviour of the object and of its interfaces. An object can perform more than
one function. A function can be performed by the cooperation of several objects" [92, clause 8.1].

This definition is very general and allows objects to represent entities of arbitrary granular-
ity. It also allows the term to be used differently in the five viewpoint languages. For example,
a complete information system is represented as an object in a typical enterprise viewpoint spe-
cification. At the same time, a small component participating communication protocols inside the
system can also be represented as an object when specifying the implementation of the system [94,
clause 7.1.1]. The Definition 2.20 on sovereign objects in federated environment is conformant
with the ODP object model.

Objects interact at interaction points. An interaction point is specified both in time and in
space. Several interaction points may exist at the same location, and an interaction point can
even be mobile. Furthermore, a logical interaction point may be technically distributed, because

46 3 THE ODP REFERENCE MODEL

by extension, the location of an object is the union of the locations of the actions the object may
participate [92, clause 8.10].

The nature of interaction point is essential for exploiting design level objects in the open sys-
tem architecture. It leads towards separation of computational interfaces and engineering inter-
faces in such a way that computational interfaces would not manifest distribution but allow a set
of corresponding engineering interfaces to be allocated conveniently. The distribution and the
mobility of interaction points have no fundamental uses in distributed systems, although many
applications can be more easily modelled this way.

In object specifications it is often convenient to concentrate on the object behaviour. The ODP
object behaviour is defined through the concept of activity, a sequence of internal actions or inter-
actions with other objects:

Definition 3.2 "Behaviour (of an object): A collection of actions with a set of constraints on when they
may occur" [92, clause 8.6].

Definition 3.3 "Activity: A single-headed directed acyclic graph of actions, where occurrence of each
action in the graph is made possible by the occurrence of all immediately preceding actions (i.e. by all
adjacent actions which are closer to the head)" [92, clause 8.5].

An object is said to be behaviourally compatible with another object, if the first object can be
replaced with the second object without the environment to be able to notice the difference on the
basis of type criteria. The criteria may allow the replacement object to be derived by modification
of an object. If such a modification is necessary, the behavioural compatibility is called coerced
behavioural compatibility, otherwise it is natural behavioural compatibility [92, clause 9.4].

Objects can be classified using the concepts of types and templates, that we have already
informally used in Section 2.4.2.

Type is defined by RM-ODP as follows:

Definition 3.4 "Type (of an <X>): A predicate characterising a collection of <X>s. An <X> is of the
type, or satisfies the type, if the predicate holds for that <X>. A specification defines which of the terms it
uses to have types, i.e. are <X>s. In RM-ODP, types are needed for, at least, objects, interfaces and actions.

The notion of type classifies the entities into categories, some of which may be of interest to the spe-
cifier" [92, clause 9.7].

The concept of type is very general and can be specialised in many ways to form various type
hierarchies. Types are used for reasoning and verifying properties of objects, i.e., in the trading
and binding processes.

Templates are more constructive by nature and are used for instantiation. The concepts of
templates and types are independent of each other: having a common template does not induce
being of the same type, and especially, being of the same type does not induce a shared template.

Template is defined by RM-ODP as follows:

Definition 3.5 "<X> template: The specification of the common features of a collection of <X>s in suffi-
cient detail that an <X> can be instantiated using it. <X> can be anything that has a type.

An <X> template is an abstraction of a collection of <X>s.
The definition given here is generic; the precise form of a template will depend on the specification

technique used. The parameter types (where applicable) will also depend on the specification technique
used.

3.2 The ODP concepts 47

Templates may be combined according to some calculus. The precise form of template combination will
depend on the specification language used" [92, clause 9.11].

The relationship between objects, types, and templates has been interpreted slightly differ-
ently in different contexts [97, 174, 111]. Therefore, we study this relationship more closely.

In ODP, there is a clear distinction between the instantiation mechanism of objects through
templates, and the similarities in appearance of existing objects through types. The ODP frame-
work also specifies an abstract computing engine that supports communication and service in-
vocation between objects in the global system. This engine is primarily concerned with types, not
by templates. However, the construction of an operating environment requires templates. The
two aspects are reflected in the separation of templates and types in Figure 3.1.

Figure 3.1 shows three central concepts – object, object type and object template – and rela-
tionships between them. First, an object can be composed of other objects. Second, an object has
a number of properties that characterise it in technical terms or express the function of the object.
The object itself does not need to present these properties, but the property values form separate
meta-information related to the object. The properties can be used for expressing predicates over
a set of objects, i.e., defining object types. Third, an object can be instantiated from a template. The
template may include variables (i.e., attributes) that determine some properties of the new object.
These attributes are not necessarily the same properties as used as meta-information properties.

The object concept can be applied also to services, behaviour, and interfaces.

may be

instantiated

from

has is defined by

is a subtype ofis composed of

object object type

object template property predicate

satisfies

Figure 3.1: Relationships of objects, types and templates.

ODP communication model

The ODP communication model defines terminology for object interfaces and interface references.
In Section 2.4.2 we have informally referred to these concepts.

An object can offer services through several interfaces that describe the actions in which the
object can be involved. An interface is either an operational interface or a stream interface. An
operational interface involves a set of operations, rather like remote procedure calls. However,
operational interfaces are enhanced with notions on distribution transparency and quality of ser-
vice attributes. A stream interface describes a set of continuous data flows, like audio or video
flows. The activity associated with the stream interface is supported by a continuous data transfer
protocol. Naturally, transparency and QoS aspects are relevant for stream interfaces as well.

The interfaces are abstract. An interface description has in principle two parts [93,
clause 7.2.3]:

48 3 THE ODP REFERENCE MODEL

1. A structure for invoking a functionality at the interface and a set of structures for termin-
ating it. For example, sending an abstract request message to start an operation and a set
of potential replies to it. In other words, the interface structure defines input and output
information of the operation. The interface structure is often expressed in languages like
CORBA IDL (Interface Definition Language).

2. A service description. Currently only a name for an external and abstract behaviour can be
reasonably used for this purpose. The behaviour descriptions are compared in the binding
process, but the comparison is not computable in a non-restricted form. Problems arise
from the large number of commonly used languages and the variety of algorithms suitable
for implementing an abstract service. Therefore, for example, specifications expressed as
programs are not practical.

The RM-ODP defines interfaces as follows:

Definition 3.6 "Interface: An abstraction of the behaviour of an object that consists of a subset of the
interactions of that object together with a set of constraints on when they may occur.

Each interaction of an object belongs to a unique interface. Thus the interfaces of an object form a
partition of the interactions of that object" [92, clause 8.4].

Operation interface is defined by RM-ODP as follows:

Definition 3.7 "Operation interface: An interface in which all the interactions are operations" [93,
clause 7.1.7].

Definition 3.8 "Operation: An interaction between a client object and a server object which is either an
interrogation or an announcement" [93, clause 7.1.2].

Definition 3.9 "Interrogation: An interaction consisting of

� one interaction – the invocation - initiated by a client object, resulting in the conveyance of inform-
ation from that client object to a server object, requesting a function to be performed by that server
object, followed by

� a second interaction – the termination – initiated by the server object, resulting in the conveyance of
information from the server object to the client object in response to the invocation" [93, clause 7.1.4].

Definition 3.10 "Announcement: An invocation initiated by a client object resulting in the conveyance
of information from that client object to a server object, requesting a function to be performed by that server
object" [93, clause 7.1.3].

Interrogations are allowed to have multiple terminations. This is not only a consequence of
symmetrical definitions. Allowing multiple terminations allow legal terminations and exceptions
to be handled in a similar way. In addition, in a complex system, a third category may arise: the
termination may be exceptional but still the results of the operation are usable or the computing
can otherwise be reasonably continued. Moreover, in a heterogeneous environment, the interfaces
may be constructed to accept multiple correct terminations with equal status.

Stream interface is defined by RM-ODP as follows:

Definition 3.11 "Stream interface: An interface in which all the interactions are flows" [93, clause 7.1.8].

Where

3.2 The ODP concepts 49

"Flow: An abstraction of a sequence of interactions, resulting in conveyance of information from a producer
object to a consumer object" [93, clause 7.1.5].

The streams are not yet defined in more detail within the RM-ODP or the component stand-
ards. However, work on quality of service aspects and binding framework shall address stream
interfaces. The TINA-C and ANSA work are most probably used for building a basis for stream
definitions [182, 37, 241].

The ODP reference model does not differentiate between interface instances, interface types,
and interface templates, which causes differences of interpretations. In the federated system
model, we have consistently preferred interface types where multiple interpretations have been
possible.

Interface instances are identified by interface references. Interface references are described
in RM-ODP [102, clause 8.4.2] as follows: "Interface references are unambiguous identifiers for the
interfaces they reference. The property of unambiguity arises from the complete collection of information
in the interface reference structure, rather than from any particular field or fields within it. In general,
the representation of an interface reference is specific to an engineering domain, in which there is one
appropriate naming authority and binding is managed in a uniform way."

The description continues by enumerating and defining the following data structure compon-
ents [102, clause 8.4.2]:

1. Interface type is denoted either as a direct or indirect type name;
2. Channel class identifies a channel template either with a direct or indirect channel name;
3. Location information provides the necessary information for the construction of a binding

to the interaction point selected when the interface was created, either by direct or indirect
addressing information;

4. Relocation information identifies a relocator object that can be queried if a binding in-
volving the interface reference fails, either during creation or subsequently;

5. Security information is not yet specified in detail;
6. Additional information is manipulated by functions not directly related to binding;
7. Flow information contains the name, the direction, the type, and the quality of service

characteristics of a flow;
8. Group information has not yet been specified in detail;
9. Causality information denotes the role that the interface plays in the interaction, e.g., client

or server;
10. Interface quality of service type is not yet specified in detail;
11. Non-interpreted reference is used for transporting the interface reference and it includes

the following two fields;
� Interpreter reference identifies an object able to replace the opaque-info part of a non-

interpreted-reference with a new reference.

� Opaque information does not have a standardised format, but it should contain such
information that the above listed items can be extracted from it.

The description of interface references used for federated systems, Definition 2.18, is consist-
ent with the ODP interface references, although different aspects of the system environment are
stressed.

50 3 THE ODP REFERENCE MODEL

ODP binding model

The ODP binding model defines concepts that are required to support the communication model:
interface binding, contracts, and liaisons. Additional terminology arises from the distribution
transparency required from communication and the quality of service contracts involved. The
distribution transparency aspects are discussed in the following subsection; the quality of service
aspects were already discussed in Section 2.4.4.

For communication, the interfaces must be bound together and a channel has to be construc-
ted to support the information exchange. The ODP reference model allows static binding but
it especially introduces the notion of late binding. Late binding means that the communication
partner (server) can be selected even after the service request initiation.

Binding is defined by RM-ODP as follows:

Definition 3.12 "Binding: A contractual context, resulting from a given establishing behaviour.
Establishing behaviour, contractual context and enabled behaviour may involve just two object inter-

faces or more than two.
An object which initiates an establishing behaviour may or may not take part in the subsequent enabled

behaviour.
Enabled behaviour (and, by analogy, contractual context) may be uniform (i.e. each participating

object can do the same as every other) or non-uniform (i.e. one participating object has a different role from
another, as in client and server).

There is no necessary correspondence between an object which initiates establishing behaviour and a
particular role in non-uniform enabled behaviours (e.g. in a client-server contractual context, either object
could validly have initiated the establishing behaviour)" [92, clause 13.4.2].

The definition of binding actually requires only information about the shared contract to
be available to all object interfaces involved in communication. The shared contract is further
defined:

Definition 3.13 "Contract: An agreement governing part of the collective behaviour of a set of objects. A
contract specifies obligations, permissions and prohibitions for the objects involved.

The specification of a contract may include

a) a specification of the different roles that objects involved in the contract may assume, and the inter-
faces associated with the roles;

b) quality of service attributes;
c) indications of duration or periods of validity;
d) indications of behaviour which invalidates the contract;
e) liveness and safety conditions" [92, clause 11.2.1].

The contractual context can be seen dually: the contract information represents the state, and
the potential behaviour is represented by a liaison. Liaison is defined by RM-ODP:

Definition 3.14 "Liaison: The relationship between a set of objects which results from the performance of
some establishing behaviour; the state of having a contractual context in common.

A liaison is characterised by the corresponding enabled behaviour" [92, clause 13.2.4].

3.2 The ODP concepts 51

Member objects of a liaison may have distinct roles in the joint community. Thus, the feder-
ated system concept for client and server role interfaces (recall Definitions 2.14 and 2.15) can be
derived.

The ODP reference model differentiates computational and engineering interfaces, but it does
not specify whether the binding establishment should take place at the computational or the en-
gineering interfaces. The separation of these interface abstractions help in hiding interface hetero-
geneity: Two objects can communicate through an interface pair, if the interfaces are conformant.
Conformance requires that the service descriptions at client and server interfaces are compatible
and the information passed across the interfaces is sufficient for the receiving partner. If the in-
formation representation as data form or data grouping differs at client and server interfaces, then
interceptors can transform one data representation to another.

The conceptual binding must eventually be realized by a concrete channel between the com-
municating interfaces. The channel structure is rather traditional:

Definition 3.15 "Channel: A configuration of stubs, binders, protocol objects and interceptors providing
a binding between a set of interfaces to basic engineering objects, through which interaction can occur" [93,
clause 8.1.8].

The responsibilities of the channel components are familiar: Stubs marshal and unmarshal
the exchanged messages, binders monitor that the end-to-end connection is not lost, and the pro-
tocol objects transport the exchanged messages. However, the concept of interceptors is explicitly
separated:

Definition 3.16 "<X> interceptor: An engineering object in a channel, placed at a boundary between
<X> domains. An <X> interceptor

� performs checks to enforce or monitor policies on permitted interactions between basic engineering
objects in different domains;

� performs transformations to mask differences in interpretation of data by basic engineering objects
in different domains" [93, clause 8.1.11].

A special case of contracts is environment contract that defines how an object is supported by
its environment, i.e., the supporting platform:

Definition 3.17 "Environment contract: A contract between an object and its environment, including
quality of service constraints, usage and management constraints.

Quality of service constrains include
� temporal constraints (e.g. deadlines),
� volume constraints (e.g. throughput),
� dependability constrains covering aspects of availability, reliability, maintainability, security and

safety (e.g. mean time between failures).

Usage and management constraints include:

� location constraints (i.e. selected locations in space and time),
� distribution transparency constraints (i.e. selected distribution transparencies)" [92, clause 13.2.4].

The relationship between binding contracts and environment contracts is interesting: once
an object establishes a binding to another object, the binding contract becomes part of the envir-
onment contract of that object. This means, that all previously established liaisons restrict the
liaisons into which an object can later join.

52 3 THE ODP REFERENCE MODEL

ODP transparency model

The communication model aspires more powerful communication primitives for programmers
by including concepts for the management of heterogeneity and distribution. The concept of se-
lective distribution transparency should be made available for programmers, together with auto-
matic tools for managing the component concepts. Programmers should be able to select a set
of distribution transparency services for each communication primitive; platforms should imple-
ment the corresponding support functions.

Distribution transparency is defined by RM-ODP as follows:

Definition 3.18 "Distribution transparency: The property of hiding from a particular user the potential
behaviour of some parts of a distributed system" [92, clause 11.1.1].

Distribution transparency is selective in ODP systems [93, clause 16]. The RM-ODP describes the
following distribution transparencies [93, clause 16]:

� access transparency – masks differences in data representation and invocation mechanisms
to enable interworking between objects [93, clause 16.1];

� failure transparency – masks, from an object, the failure and possible recovery of other
objects or itself, to enable fault tolerance [93, clause 16.2];

� location transparency – masks the use of information about location in space when identi-
fying and binding to interfaces [93, clause 16.3];

� migration transparency – masks, from an object, the ability of a system to change the loca-
tion of that object [93, clause 16.4];

� persistence transparency – masks, from an object, the deactivation and reactivation of other
objects (or itself) [93, clause 16.5];

� relocation transparency – masks relocation of an interface from other interfaces bound to
it [93, clause 16.6];

� replication transparency – masks the use of a group mutually behaviourally compatible
objects to support an interface [93, clause 16.7];

� transaction transparency – masks coordination of activities among a configuration of ob-
jects, to achieve consistency [93, clause 16.8].

The ODP reference model does not yet define how these transparencies should be implemen-
ted (Chapter 9 discusses the positioning of transparency support objects in federated channels).
However, the reference model describes a hierarchy of transparency concepts so that a group of
transparencies can be implemented together. The users cannot select transparent services indi-
vidually, but groups of transparencies. The hierarchy is illustrated in Figure 3.2. The implement-
ation techniques of the transparency concepts include channel stubs, indirectness of references,
and binding based of types instead of interface identifiers.

ODP structuring concepts

The ODP reference model introduces the structuring concepts of community, domain, and federa-
tion. These concepts can be used for organising objects for producing and exploiting services. The
structuring concepts are characteristic to ODP reference model and are from there being adopted
to some platform architectures, like CORBA. These are also the essential concepts on which the
federated system model is founded.

3.2 The ODP concepts 53

access t. transaction t.location t. relocation t.

replication t.service
basic

migration t. persistency t.

service

failure t.

service
homogenized

transactions service
homogenized

transaction oriented migrative fault tolerant
service service

persistent
service

Figure 3.2: Hierarchy model of transparency concepts.

Definition 3.19 "Community: A configuration of objects formed to meet an objective. The objective is
expressed as a contract which specifies how the objective can be met" [93, clause 5.1.1].

Definition 3.20 "<X> federation: A community of <X> domains [93, clause 5.1.2]."

Definition 3.21 "<X> domain: A set of objects, each of which is related by a characterising relationship
<X> to a controlling object" [92, clause 10.3].

The structuring concepts can be considered to be either static, design time concepts, or dy-
namic, operation time concepts. For example, we can consider a community of exporters and
importers around a trader to be a dynamic concept, because exporters and importers can join
and leave the community at will. The trading community can also be considered as a trading
domain, because the trader controls the other objects by manipulating meta-information about
their interfaces. In some cases the federation between two trading domains can be static, because
the traders are coupled at design time.

In case of a federated system architecture, the federation is preferably created at operation
time, when the traders find out each other’s trading interfaces. The structuring concepts are
exploited in Part III.

ODP approach to conformance

The ODP reference model aims at specifications that allow software portability and interoperabil-
ity. The specification must be very strict in order to guarantee these properties. The implemented
systems must conform to the specification and be testable against the standard specification. On
the other hand, the specifications should allow heterogeneity of the system even at very high
abstraction level.

In order to accommodate both of these requirements, the ODP reference model defines four
classes of reference points – points where the conformance to the standard specification is both

54 3 THE ODP REFERENCE MODEL

required and allowed to be tested. Other behaviour than that visible at these reference points is
not considered. The reference points of an object reflect such interactions that change the object’s
environment.

Definition 3.22 "Programmatic reference point: A reference point at which a programmatic interface can
be established to allow access to a function. A programmatic conformance requirement is stated in terms of
behavioural compatibility with the intent that one object be replaced by another. A programmatic interface
is an interface which is realized through a programming language binding" [92, clause 15.3.1].

Definition 3.23 "Perceptual reference point: A reference point at which there is some interaction between
the system and the physical world" [92, clause 15.3.2].

Definition 3.24 "Interworking reference point: A reference point at which an interface can be established
to allow communication between two or more systems. An interworking conformance requirement is stated
in terms of the exchange of information between two or more systems. Interworking conformance involves
interconnection of reference points" [92, clause 15.3.3].

Definition 3.25 "Interchange reference point: A reference point at which an external physical storage
medium can be introduced into the system. An interchange conformance requirement is stated in terms of
the behaviour (access methods and formats) of some physical medium so that information can be recorded
on one system and then physically transferred, directly or indirectly, to be used on another system" [92,
clause 15.3.4].

These conformance concepts are applied for the specification of a functionality of a system,
not a whole system. Specifications of several interrelated functionalities can be allocated to same
implementation objects. The development of ODP component standards gives a good example of
this convention: trading function and type repository function are specified in different standards,
although the same implementation objects can well support interfaces for both functions. The
ODP work plan also includes a set of standards called ‘component composition standards’. They
shall combine two or more function standards at engineering viewpoint level.

3.3 ODP viewpoints

An important component in the ODP reference model is the definition of viewpoint languages. In
this dissertation, the viewpoints are not directly used, but instead, most discussions are mapped
to a single viewpoint (computational viewpoint). However, it is impossible to avoid some refer-
ences to other viewpoints as well. So it should be helpful for the reader to understand the reason
for the existence of the five viewpoints. Therefore, and also because the viewpoints are often
considered as the most essential part of the model, we give a short overview.

The ODP viewpoints allow object systems to be specified in an organised, guided manner.
However, the viewpoint rules do not instruct on the level of detail or completeness of the specific-
ations. Those aspects must arise from the software engineering process in which the viewpoint
specifications are involved. Because of this multi-purpose nature, the specification rules are very
general and should have their specific interpretations in each use-case. We can still claim that
the goal of the ODP reference model is not to cover the full software engineering process, but
only to support system specification and specification conformance analysis. For implementation
specifications the ODP viewpoints would be too hefty.

3.3 ODP viewpoints 55

The ODP reference model defines five viewpoints – enterprise, information, computational,
engineering and technology viewpoints [94, 93]. A system must be specified from each of these
viewpoints. Each viewpoint specification is a consistent and complete specification on its own,
but it only considers those aspects of the system that are valid on its point of view. The view-
point specifications do not overlap totally, but they may show different level of detail in the areas
where they discuss same or related features. The engineering viewpoint specifications are tightly
related with the ODP infrastructure model that is specified as part of the engineering viewpoint
specification rules. The viewpoint specifications can be considered as projects of a system.

The enterprise viewpoint description of a system specifies the activities and the responsibil-
ities of the system [93, clause 6]. Activity means any information exchange sequence and it is a
high-level abstraction of the operations within the system. The system itself can have any gran-
ularity that is interesting. The system can be as wide as a global information network with all
applications or as small as a memory cache in a processor. The enterprise specification identifies
the system, its environment, and the required communication of the system and its environment.
The specification answers to the questions “What is the purpose of the system?” and “What ser-
vices the system is responsible to provide?” and “Who needs the services?”.

The information viewpoint description of a system identifies logical information entities, their
logical contents, their repositories and the objects that are responsible of the information flow in
the systems [93, clause 7]. Questions for information viewpoint specification are “What informa-
tion is needed to support the system’s services?”, “Where does the information come from and go
to?”, and “Is it necessary to store the information somewhere?”. The information viewpoint spe-
cifications should not describe data structures, but only the semantics of the information. Also,
the technique of storing information is irrelevant in this viewpoint (as the logical infrastructure
supports storage services).

The computational viewpoint specification captures the behaviour of the system [93, clause 8].
Behaviour is an abstraction of how things are done, in contrast to the notion of what things are
characteristic in the enterprise viewpoint activities. An activity identified in enterprise viewpoint
may involve several objects to perform a sequence of operations in the computational viewpoint.
The computational viewpoint shows the system as a composition of logical objects. For each ob-
ject its interfaces are described. If the interface involves operations, each operation gets logical
parameter descriptions (logical information components, not technical data structures) – if the in-
terface involves streams, each data flow component of a stream gets logical protocol descriptions
instead. This is the viewpoint that usually explicitly shows potential for distribution. Neither
the enterprise viewpoint nor the information viewpoint specifications need to express any distri-
bution concerns. The computational viewpoint answers to questions like “Which operations are
available?”, and “Who (which logical entity) performs the operation?”.

The engineering viewpoint specification identifies the infrastructure services needed for the
system to operate [93, clause 9]. The RM-ODP engineering viewpoint defines the set of avail-
able infrastructure services, and all other engineering viewpoint specifications should show how
the specified system utilises these services. The engineering specification, therefore, answers the
question “By which services are the computational objects supported?”. The ODP infrastructure
model identifies a set of global, distributed basic services that should be available at each node in
the global system. These include invocation of operations, transfer of continuous data as streams,
trading, type repository functions, etc. [91, 96, 97]. These services facilitate selective transparency
of communication between objects.

The technology viewpoint specification shows in a concrete hardware and software configur-

56 3 THE ODP REFERENCE MODEL

ation how the system services and other required components are realized [93, clause 10]. The
specification answers the question “How are the infrastructure services realized?”.

The system specification includes five complete specifications, that all can be analysed as sep-
arate. Each viewpoint reveals a different aspect of the system, and therefore, the full functionality
can only be seen by looking at all specifications together. As the viewpoint specifications are
all complete alone, the abstraction levels of objects in the specifications can differ. Still, the spe-
cifier must show how the specifications are mapped together. The usage of viewpoints helps the
specification of large systems by separating concerns to separate specifications.

The ODP reference model introduces a vocabulary and a set of languages to discuss (dis-
tributed) systems, but it does not prescribe any special techniques to do this. Any specification
language or technique that supports the same concepts can be utilised for ODP-style specifica-
tions. The problem with current formalisms that are close to the ODP concepts is that they do not
support the level of dynamicity required in ODP specifications. However, development of tools
and languages supporting the reference model would be very important and beneficial. When
suitable tools are available, an ODP development technique could be formulated. (A study in
that area is presented in [22].)

The relationship between the viewpoints and the software engineering process phases have
been widely discussed and various interpretations have arisen.

It has been suggested [197] that the viewpoints follow the waterfall model [193] steps from re-
quirement analysis with enterprise viewpoint to the implementation with technology viewpoint,
as illustrated on the left side of Figure 3.3. This interpretation brings information viewpoint and
computational viewpoint specifications unnecessarily close to each other to actually use the full
power of the viewpoint concepts. The resulting specifications are very programming oriented.

engineeringinformation

technology

computationalenterprise

engineeringinformation

technology

computationalenterprise

engineeringinformation

technology

computationalenterprise

requirement

analysis

enterprise

functional
specification

design
engineering

technologyimplementation

information computational

po
lic

y

Figure 3.3: ODP viewpoints and software engineering.

It has also been suggested [228, Glossary] that the viewpoints match the levels in the abstract
computing platform hierarchy. An often heard but not published interpretation suggests that each
viewpoint specification should be aimed at different audience and that each audience should get

3.4 ODP infrastructure 57

sufficient information from a single specification. Both of these interpretations lead either to in-
sufficient information at a given specification, or more commonly, the specifications are extended
to include aspects of other viewpoints as well.

In spite of the above suggestions, we consider that in each development phase (requirement
analysis, specification, design, etc.) all five viewpoints are needed to describe the system in all
aspects from the necessary level of detail (right side of Figure 3.3). This interpretation seems to
be widely accepted within the ODP standardisation group (see for example [140]). Naturally, the
focus of each development phase is reflected on the extent of each viewpoint specification.

3.4 ODP infrastructure

The ODP reference model defines an abstract infrastructure to offer basic services like distribution
transparent communication primitives. The infrastructure is described using some supporting
concepts, that give an internal engineering view of the middleware. However, these concepts are
only used for description purposes, not as technology requirements. In the following, we consider
the abstract infrastructure from two points of view, functions supported and the organisation of
the supporting, hypothetical objects.

The infrastructure model is an abstract computing engine and does not intend to prescribe
the implementation technique of the platform involved. Therefore, the infrastructure model al-
lows implementation independent discussions on various services, which property we exploit in
Section 5.3.3 when discussing the distribution of a trader object.

Functions

The ODP reference model supports distribution transparent communication with the four fun-
damental function classes: management, coordination, repository, and security functions [93,
clause 12].

The management functions include

� node management function that controls processing, storage and communication within a
node, i.e., nodes support time services, creation of channels between objects, location of
interfaces, and management of processing threads;

� object management function that checkpoints and deletes objects;
� capsule management function that instantiates, recovers, reactivates, and deactivates

clusters and deletes capsules; and
� cluster management function that checkpoints, recovers, migrates, deactivates or deletes

clusters.

The coordination functions include

� engineering interface reference tracking function that monitors the transfer of engineering
interface references between engineering objects in different clusters

� event notification function that records and makes available event histories (logs),
� checkpointing and recovery function that coordinates creation of cluster checkpoints (time,

storage), and coordinates the use of the stored checkpoints in recovery of failed clusters,
� deactivation and reactivation function that coordinates cluster deactivation and reactiva-

tion using checkpointing for other reasons than failures,

58 3 THE ODP REFERENCE MODEL

� migration function that coordinates the migration of a cluster from one capsule to another,
� transaction function that coordinates and controls a set of transactions to achieve a specified

level of visibility, recoverability and permanence.

The repository functions include

� trading function that mediates advertisement and discovery of interfaces, and
� type repository function that manages a repository of type specifications and type relation-

ships.

The security functions include conventional security related services, i.e., functions for ac-
cess control, security audit, authentication, integrity, confidentiality, non-repudiation and key-
management.

Objects

The management and coordination functions are supported by clusters, capsules, nodes, nuclei,
channels, and basic engineering objects.

Definition 3.26 "Cluster: A configuration of basic engineering objects forming a single unit for the pur-
poses of deactivation, checkpointing, reactivation, recovery and migration" [93, clause 8.1.1].

Definition 3.27 "Capsule: A configuration of engineering objects forming a single unit for the purpose of
encapsulation of processing and storage" [93, clause 8.1.4].

Definition 3.28 "Node: A configuration of engineering objects forming a single unit for the purpose
of location is space, and which embodies a set of processing, storage and communication functions" [93,
clause 8.1.7].

Definition 3.29 "Nucleus: An engineering object which coordinates processing, storage and communic-
ation functions for use by other engineering objects within the node to which it belongs" [93, clause 8.1.6].

Definition 3.30 "Basic engineering object: An engineering object that requires the support of a distrib-
uted infrastructure" [93, clause 8.1.1].

We have used the term application object for basic engineering objects in the context of open
systems, in Section 2.4.

The concept of channel bridges between the ODP binding model and the actual infrastructure
objects. Therefore, we have already introduced channels in Definition 3.15.

Configuration

The configuration of these objects is illustrated in Figure 3.4. A node contains a set of capsules.
One of the capsules has a special role of being a nucleus of that node. All the other capsules are
bound to the nucleus capsule to get the basic services. The nucleus is responsible of the node
management function. Each capsule contains a set of clusters. One of the clusters has a special
role of being a capsule manager. It is responsible of the capsule management function. For these
purposes, it may request the nucleus for some services. The capsule manager, or another cluster,
may perform the tasks of one or more cluster managers, with the corresponding functions. All

3.4 ODP infrastructure 59

objects are instantiated in such a way that they have prebound connections to the objects that
offer the fundamental functions for them. This means that all objects are encapsulated into the
clusters. Each cluster is bound to a cluster manager, which in turn is able to request the services of
the capsule manager. The situation can be made more concrete by using an example: a segment
of virtual memory containing data items can be considered to form a cluster, and a process rep-
resents a capsule; a computer with operating system and applications can be considered to form
a node, and an operating system kernel represents a nucleus.

CLUSTERS

CAPSULES

OBJECTS

cluster

manager

capsule

manager

cluster

manager

nucleus
NODE

CHANNELS

Figure 3.4: RM-ODP infrastructure objects [93].

As each cluster is indivisible, inter-object communication between objects in the same cluster
may take place in any suitable method. The cluster is the smallest possible unit of migration and
activation, so those actions cannot cause problems. Between objects in different capsules, either
in same or different nodes, a channel is required for communication.

The granularity of these structures is arbitrary. When a system is described using these terms,
the components that use non-ODP communication methods between each other are encapsulated
within a cluster. A node can represent one computer or a set of them.

For the computational behaviour of objects, the channel creation is the most fundamental
infrastructure service. Channels are created by nucleus objects in cooperation with each other. The
channel structure has been illustrated in Figure 2.5. The channel supports distribution transparent
interaction between engineering objects. This includes, for example,

� operation execution between a client object and a server object,
� a group of objects multi-casting to another group of objects, and
� stream interaction involving multiple producer objects and multiple consumer objects.

Some of the functions listed above are also considered to be computational functions, i.e.
visible and exploitable by programmers. These include trading and type repositories. The de-
tailed specification of these functions is not within the scope of the basic reference model of ODP.

Instead, a series of component functions has been started. First of the component functions is
the trading function that has been recently completed [96]. We will discuss the trading function
standard in Chapter 8. The second component function will be the type repository function. It
currently has a committee draft status and it is scheduled to be finished within two years. Also
component framework standards are under development, for example, the ODP binding frame-
work [102]. The interface reference structure and representation as well as the general model for
federated binding processes will be included. Also this work has a committee draft status and will
be finished in a couple of years. Other work started in 1997 includes quality of service negotiation
processes within ODP and concrete binding protocols.

Conclusion

The ODP model defines an abstract computing platform that comprises a set of coordination,
management and repository functions. Each open system should independently support these
functions. These fundamental functions include

� binding of an local interface to an remote interface,
� creation of a communication channel for bound objects in cooperation with an other ODP

system,
� exchange of necessary information for interface binding process, such as interface proper-

ties, types, available protocols, quality of service, etc.,
� exchange of necessary information for channel creation, such as interface identity, location,

and
� exchange of channel reconfiguration information.

The implementors of these services should respect the following assumptions:

� Computing entities are modelled as objects. An object has an implementation part and
an interface, that represents the requests it is able to response to. This information must
be present for all object realizations, although the information would not be an automatic
product of the programming process.

� A globally accepted interface description language cannot be expected to exist, because a
variety of languages is already used and new languages are still wanted to cover additional
interface aspects.

� The abstract service type of an object can be realized as various object and interface imple-
mentations.

� The templates from which objects and object interface instances are created from can be
defined in various languages.

� The templates and the abstract types can be mapped together at run-time. This is called
late binding.

� The object instances or service types cannot in general inherit knowledge of each other’s
properties. The inheritance is restricted by the independent administrative domains. Other
mechanisms must be used, such as trading.

These requirements and implementation assumptions differentiate the ODP reference model
from other architectures that include open system features. The ODP reference model offers most
general services, and makes least assumptions of the implementations. (The open features are
collected in a comparison table in Chapter 4.)

Chapter 4

Related work:
Some distributed platform architectures

This chapter compares three well-known open platform architectures against the ODP reference
model. The purpose of this comparison is to investigate how open architecture models are sup-
ported by the current platforms. We first discuss each architecture separately, also noting the role
of trading function in each case. We summarise with a comparison that also relates the platforms
with the distributed and the federated system architectures.

4.1 Relationship of open architectures

The discussed architectures are not independent from each other. The RM-ODP work is done in
interaction with the consortia of vendors and service providers, like APM (Architecture Projects
Management Ltd) [4], TINA-C (Telecommunications Information Networking Architecture Con-
sortium) [6], and OMG (Object Management Group) [210]. These consortia have each produced
their own concrete architectures and tool-sets. However, each architecture is in some aspect more
restricted than the ODP reference model. The RM-ODP offers them a common framework that
allows evolution, and even competition, and shared guidelines for long term development.

APM manages the development of ANSA architecture (Advanced Networked Systems Archi-
tecture) [242] that has a very strong influence in this research area. ANSA was the first and very
successful project with a set of software development tools for open systems (ANSAware [3]). The
current focus of the ANSA research is in interoperability between open platforms [199], real-time
multi-media distributed systems [137], and security in distributed systems [25].

OMG is working on the definition and selection of services for a distributed platform,
OMG/CORBA [176, 177]. System vendors work on their corresponding proprietary services.
These supporting services include the ‘traditional operating system services’, but not the applic-
ation services trusting on them. The consortia identify the required services and their interfaces,
and recommend selections of current commercial products from which a distributed, homogen-
eous platform can be configured. However, not all required basic services are yet available as
commercial products. Research for identifying these requirements is in progress.

The TINA Consortium works on an architecture, TINA (Telecommunications Information
Networking Architecture) [6, 232, 231], for telecommunication services. The consortium ties

62 4 RELATED WORK: SOME DISTRIBUTED PLATFORM ARCHITECTURES

together standard frameworks such as the ODP model, the OSI management model, the IN
(Intelligent Network) framework [59], the TMN (Telecommunication Management Network)
model [106], and network technologies, such as ATM (Asynchronous Transfer Mode) [13]. The
importance of the TINA architecture lies in the way it ties together the results of open distributed
computing research and traditions of telecommunication.

The approaches taken in each of these architectures differ is some major aspects – the contract
related concepts, distribution of interface concepts, and exploitation of trading service. Several
steps are visible that can be made to join the ANSA, TINA, and CORBA approaches with the ODP
model. On the conceptual side, the necessary set of concepts, and the fundamental infrastructure
functions can be adopted to all platform architectures. The consortia can distinguish a few central
business areas and develop an interoperability contract framework for each of these areas. For
instance, OMG is developing a business object framework that includes interface type definitions
for accounting services. Such frameworks have two audiences. First, they help programmers by
giving them predefined services. Second, they contribute to system interoperability by specifying
common interface types, on which federation can be based.

The architectures discussed in this chapter are by no means the only ones that include distrib-
uted or federated system features. We could have included systems like DCOM [154], DCE [180],
IBM Blueprint [81], ICL OPENframework [24]. However, we restrict the comparison to a set of
system architectures that suitably present the essence of current industrial interests. (Other com-
parisons are available, e.g. [12].)

The goals of the architectures presented are shared, but the designs differ in some aspects.
The differences can be derived from the basic assumptions on which the architectures are based.

4.2 TINA

The Telecommunications Information Networking Architecture Consortium (TINA-C) is formed
by network operators, and telecommunication and computer equipment suppliers. The consor-
tium aims at defining and validating an architecture for telecommunication services. The results
of the consortium work will be used as input in standardisation work in the area.

Architecture

The TINA architecture [231, 224, 228] has adopted many concepts from the ODP work. However,
the TINA work area is broader than the area of ODP reference model: TINA work captures also
system management and software engineering aspects. On the other hand, the TINA work area is
more specific: it captures a specific application area – telecommunication services – which gives a
more concrete semantics for many of the concepts. The peculiarity of the distributed telecommu-
nication applications is that they directly access and manipulate components of the underlying
transport network. In contrast to the ODP goals, the TINA architecture aims at a concrete method-
ology in the area of telecommunications. The technical goal of the TINA architecture is to consider
telephone services, future interactive multi-media services, information services, and (telephone)
network management as software-based applications that operate on a distributed computing
platform.

The TINA architecture is partitioned to four sub-architectures:
� Computing architecture defines methods for creating distributed software. An important

part of the computing architecture is the TINA-DPE (TINA Distributed Processing Envir-

4.2 TINA 63

onment) [225]. The scope of this sub-architecture is rather similar to the ODP reference
model. Special research activity has been focused on the stream interface concepts and
bindings that involve quality of service negotiation [58].

� Service architecture defines principles for the telecommunication specific business services.
� Network architecture defines generic components for networking. In the telecommunica-

tion area, information transport and voice transport will be combined via new, open pro-
tocols [227]. In the ODP model this level of communication is thought to take place with
already existing protocols.

� Management architecture defines structures and principles for the management of the ob-
jects defined by the sub-architectures [226].

For the purposes of this dissertation, the focus of discussion is in the TINA Distributed Pro-
cessing Environment, DPE. The TINA DPE infrastructure provides an abstract execution envir-
onment (a homogeneous middleware) for computational objects with services like

� trading service, for supporting late binding between objects (late binding: a client can be
configured or installed earlier than a server),

� transaction service;
� repository service, for persistent storage of objects;
� notification service, for emit and receive notifications without being aware of their sources

or sinks;
� security service;
� performance monitoring service;
� object life-cycle service (creation, deletion, activation, deactivation and moving of objects);
� installation service (object installation and removal at nodes); and
� configuration service (location, activity status and binding of objects).

The TINA DPE architecture also relates the DPE to the application objects, and to the ker-
nel transport network (kTN) that provides end-to-end information transfer between them (Fig-
ure 4.1).

The TINA architecture offers a homogeneous middleware service layer but it trusts to a col-
lection of heterogeneous telecommunication systems. The TINA interworking model describes
how the DPE services are supported by autonomous computing nodes and autonomous trans-
port networks. Autonomy means that a node is capable of independent operation. Examples of
DPE nodes are a single processor system capable of independent operation, a multi-processor sys-
tem, and a system distributed over a LAN with a distributed operating system. Each autonomous
node supports a local part of the DPE infrastructure (called Native Computing and Communic-
ation Environment (NCCE)). Transport networks may include IN systems or broadband systems
like ATM and broadband ISDN [229].

A subsystem can be joined to a TINA-system only if it is conformant in all its conform-
ance points, i.e. interfaces through which interaction with other domains or other layers is al-
lowed [230]. Conformance points are covered by testable reference points. Each reference point is
defined by specifying all potential interactions. In order to consider potential conformance points,
we study the three TINA layers: DPE layer, network resource layer and service layer (Figure 4.2).
The DPE layer implements the distribution transparencies and provides various DPE services to
the applications. The network resource layer controls and manages the transport network. The
service layer includes the applications built on the TINA system, like video conferencing and
tele-shopping, electronic mail, and basic calls.

64 4 RELATED WORK: SOME DISTRIBUTED PLATFORM ARCHITECTURES

kernel transport network

NCCE A

DPE node A

NCCE B

DPE node B DPE node C

DPE platform A
DPE platform CDPE platform B

NCCE C

applications

infrastructure

Figure 4.1: Model of the infrastructure and its environment in TINA [224].

Objects and interfaces

Objects in the TINA computing architecture have similar features as the ODP objects. How-
ever, TINA objects are more programming language oriented. The TINA application behaviour is
specified by using TINA Object Definition Language, ODL [233]. ODL includes the OMG IDL
language and extends it with object definition and some additions in interface specifications.
The object communication model defines interfaces as the only means that provide access to ser-
vices. Interaction occurs on operational interfaces and stream interfaces. Operations include in-
terrogations with two variations - blocking and non-blocking interrogations, and announcements.
Stream interfaces include multiple, simultaneous, uni-directional bit flows [60].

The specification of an operational interface consists of the specification of

� the syntactic structure (signature) of the operations (the name of the operation, the names
and types of the arguments, and the names and types of the result parameters);

� an indication for each operation specifying whether it is an interrogation or announcement;
� service attributes, like availability or dependability; and
� the behaviour of the interface specifying the semantics of the operations. The behaviour

description shows timing constraints, operation sequencing constraints, and concurrency
constraints.

A stream interface is an abstraction that represents a communication end-point, either the
source or the sink for some information flows. The flows between stream interfaces are unidirec-
tional bit sequences with a certain frame structure (data format and coding) and quality of service
(QoS) parameters. The QoS parameters include timing requirements for different frames, and
synchronisation requirements between flows [228].

In addition to the object concept, the TINA model also uses the concept of package. A package
is a group of objects communicating with each other and potentially also with objects within
other packages. A package may be, for instance, a module of an application. For openness, and

4.2 TINA 65

servicedomain SERVICE

LAYER

service
NETWORK

RESOURCE

LAYER

servicedomain

LAYER

DPE

relation that defines a basic reference point

a layer exploiting the services of another layer

domain

Figure 4.2: The TINA layers and reference points between them.

portability, only those interfaces are critical that are accessed from other packages. Therefore, the
TINA object model considers only those external interfaces to form a contract [228].

Interactions within a package within a node can be done using memory sharing, local proced-
ure calls, etc. When the interactions cross node boundary or package boundary, a standard com-
munication channel must be used [228]. The channel structure resembles the structure defined
in RM-ODP. In communication, the notion of distribution transparency is used. Transparency in-
cludes access, location, migration, concurrency, failure, and replication transparencies which can
be used selectively - only access transparency is compulsory.

Binding model

In TINA, objects can be bound together only when they are type conformant. Type conformance
requirement is based on template hierarchy. Only interfaces that are defined by the same template
are of the same type [228]. Templates can however have an inheritance hierarchy, and through
that hierarchy, subtyping can be achieved.

Two object interfaces can be bound together when their interface references are known. Inter-
face references contain information about

� the remote address of the interface instance, including communication ports and server
host machine IDs for the selected protocols;

� the object configurations on which a channel can be based, together with suitable instanti-
ation information, e.g.,

– the addresses of objects which realize accepted protocol adapter functions,
– the selected stubs and binder objects,
– the objects necessary to provide additional transparency support, and
– the QoS parameters for the objects involved in the binding;

66 4 RELATED WORK: SOME DISTRIBUTED PLATFORM ARCHITECTURES

� the interface references of objects (such as relocation service) which can be contacted in the
case of a communication failure) [224].

Communication over multi-point bindings is possible, but the binding must always be construc-
ted through a binding management interface. The basic binding action only considers bindings
between two interfaces.

The TINA model allows application objects to make QoS contracts with the infrastruc-
ture [225]. Each offered interface declares its potential by describing the range of QoS values
the service (transport or operating system service) is expected to be able to support. Likewise, the
service requester (application) declares requirements for the quality of service, called a require-
ment contract. The DPE supports a negotiation service at binding time to match these contracts.
For example, trading can be used to match QoS contracts. Furthermore, the QoS contract is not
necessarily static. The actual QoS values can be monitored during the service usage and if the QoS
contract is not met, the service user may request run-time re-negotiation. Using QoS monitoring,
for instance, multi-media applications can do reasonable resource re-allocations when necessary.

Conclusion

As a summary of TINA architecture we can make the following classification:

� The TINA architecture supports a homogeneous middleware layer on top of heterogeneous
operating systems and transport networks. The identification of transport networks in the
model is fundamental, because of the telecommunication application area.

� The TINA ODL is used for describing system components.
� Interface structures are either inherited or traded. Interfaces carry place-holders for their

current QoS attribute values.
� Binding requires an interface reference to be know. As a result a channel is created with

transparency support when necessary. Explicit bindings can be managed. The QoS attrib-
utes have an essential role in selecting a server.

� Liaisons are recognised between application objects, platform objects, and network objects
as conformance points. An object or a system must conform to these in order to be able to
join the TINA system.

� Applications have the possibility to be aware of distribution.

For trading this model gives a minor responsibility. Only the responsibility of passing on QoS
information is given to the traders. Type conformance and interface reference communication can
be easily arranged by the other DPE services. Most current TINA DPE implementations are based
on CORBA platforms, with interface and implementation repositories. In such an environment,
trading supports easier management by saving administrators from extra software installation
and configuration work. The TINA DPE services also includes QoS monitoring tools, that can
be used to feed the traders with up-to-date QoS information. For the stream interface binding in
TINA systems this is essential.

When the TINA middleware services are built the following assumptions are made in contrast
to the ODP model:

� The TINA ODL is assumed to be a globally accepted interface description language.
� The object instances or service types can inherit knowledge of each other’s properties in the

whole system.

4.3 ANSA 67

Most current TINA DPE implementations are based on CORBA, and therefore at the program-
ming level the differences are minor. However, TINA has adopted streams and QoS negotiation,
thus extending the model.

4.3 ANSA

ANSA is a program for computer companies, telecommunication companies, system integrators
and end-users. The program is managed by APM and participated by companies like Bellcore,
BT, HP, and ICL.

The ANSA program has produced an architecture for distributed systems and a package of
software and software tools (ANSAware) to support the architecture and software development in
that environment. In the following, we will consider the main features of the ANSA architecture
model (read [242, 74] as structuring guides or [183, 78, 75, 50, 44, 243, 198] to give a more detailed
view) and study the properties of ANSAware trading service [44, 76, 3]. The current focus of the
work in ANSA is in

� interoperability between some current open platforms [199],
� real time multi-media distributed systems (DIMMA) [137], and
� security in distributed systems.

Architecture

The ANSA program has concentrated on defining an architecture, and because of this goal, the
architecture specification mostly deal with conformance requirements, instead of giving design
specifications for the system components. The validity of ANSA architecture has been demon-
strated by successful system development projects. Examples of systems are the Astrophysics
Data Systems (ADS) of the US National Aeronautics and Space Administration (NASA), and a
hospital information system in Rome [242].

The ANSA architecture emphasises that systems are integrated of autonomous, heterogen-
eous domains [10]. Within a domain, technology and administrative policies reflect the needs
of the users served by that domain. The architecture specification defines in which way each
autonomous domain should support portability and interoperability. Interoperability is con-
sidered separately at application and network interfaces. The requirements for this kind of sup-
port can be expressed as conformance points, as illustrated in Figure 4.3. The conformance points
for portability assert that an object is able to work properly on the services of the underlying ab-
stract machine, independent on the abstract machine implementation. The services of the abstract
machine include object creation, operation invocation and execution, operation termination de-
livery, and type safe binding of identified objects. The conformance points for interoperability
at application level assert that the objects are able to communicate with each other, because they
share a common view of potential interactions (service types) and general interaction semantics
(such as synchrony and need to reply). The conformance points for interoperability at network
level assert that transportation of data from one object to another can be successfully done as the
objects are able to agree on a communication protocol, data representation, and transportation
quality.

The interoperability of application objects requires that the objects have a shared view on
several aspects, including

68 4 RELATED WORK: SOME DISTRIBUTED PLATFORM ARCHITECTURES

� the authority of controlling and monitoring resources,
� the method and policy of accounting and billing for resource usage,
� the use of shared data transport mechanisms on the infrastructure level,
� the used features of application interfaces, such as interface signatures and quality of ser-

vice, and
� the shared semantics and naming of objects and services.

object 1 object 2

interaction conformance point

abstract machine

network conformance point

portability

conformance

point

Figure 4.3: Conformance points in the ANSA architecture.

Objects and interfaces

The ANSA architecture denotes a system as a collection of objects related by their interactions.
An object is a distinct element that manipulates information. An interaction is an exchange of
symbols and requires that the interacting parties have a compatible interpretation for the sym-
bols. If there are any differences in the symbol interpretation, they should be transformed. The
transformed (intercepted) symbols can then be inherited by further communications between the
same objects [198, 78].

The (original) ANSA architecture introduces only operational interaction models, interroga-
tions and announcements. Operations are atomic and the operation types are classified only by
their signatures, not by their behaviour. Interrogations are considered to be synchronous and
announcements asynchronous communications between peer objects.

The interaction model is supported by the abstract machine that is able to set up a binding
between objects. The binding process includes the following steps:

� reach agreement between the authorities of the service provider and the service consumer
(willingness of cooperation between human organisations),

� advertise and search in appropriate repositories to store and locate information about ex-
isting and creatable objects (trading),

� compare specifications of offers and requirements (trading),
� negotiate between the involved parties where options are available or modifications are

possible to the offered or required services (trading, peer object negotiations),
� select objects for co-operation (trading), and
� resolve any resolvable barriers to cooperation (create interceptors and servers) [78].

4.3 ANSA 69

The result of the binding process is an established channel between objects. As we can deduce
from the above list, type checking is not part of the binding process. The binding process is
a run-time action of an object, whereas the ANSA model considers type checking to be most
profitable in the compilation phase. The static type checking only covers operation signatures,
not the operation behaviour.

The end-points of channels are associated with interface references. The interface references
include

� the name of the end-point to which any messages should be sent in those terms managed
by the local naming authority (for example, the name can consist of a network port and a
protocol name);

� alternative route for reaching the same end-point, i.e., another end-point name;
� method for end-to-end integrity checking against errors in the underlying transport mech-

anism;
� relocation information, for example, an interface reference to a relocator that is able to give

a new route;
� replication information, for example, a list of alternative interfaces for the same kind of

service;
� information about interception strategies, for example, responsibility of data transforma-

tion is assigned to a certain component in a channel located either at client or server system;
and

� interception information for interface references, to be used in cases when a remote inter-
face reference is expressed in a language not native to the system where the reference is
stored or used (it may be necessary to retrieve the relocator interface reference from the
interface reference; this requires understanding of the foreign reference structure).

The major difference to the interface reference described in Section 2.4 are the issues of intercep-
tion. The ANSA interface reference identifies a couple of variations in the information transfer
process and therefore must flag which strategy is used.

Binding model

In the ANSA model the binding process can be either implicit or explicit. In implicit binding
there are no methods for controlling the channel properties, such as transport quality, timing
of binding action, or number of peer objects bound. Therefore, implicit binding is not suitable
for applications where predictable performance, multi-object communication, or changes in the
channel properties are required. Such requirements are common for all multi-media applications.
When an explicit binding is created, a management interface to the channel object is available for
the peer objects. Through this interface the channel properties can be manipulated.

When we study the explicit binding process in more detail, we see that the ANSA specifica-
tions give several options for establishment and management of a channel. The ANSA binding
model emphasises that the application programs, especially client objects, have to control timing,
quality of service, and other contractual information themselves. Special scenarios can be imple-
mented when reasonable, but the model does not force them. However, the ANSA group believes
that some scenarios become popular and therefore turn into de-facto-standards with readily avail-
able support tools.

70 4 RELATED WORK: SOME DISTRIBUTED PLATFORM ARCHITECTURES

In the simplest scenario suggested in the ANSA binding framework [183], a server has a
private binding manager and all potential clients receive (for example through trading) a ref-
erence to the binding manager’s interface. The binding manager instantiates a new service end-
point at the server for each client request. Another scenario is that the clients use a library that
offers them a private binding manager. In such case both the client and the server have binding
managers, as illustrated in Figure 4.4. The client’s binding manager can be extended by abilities
to interact with traders or by abilities to configure interceptors into the channel. A third scenario
uses an external binding manager for multi-party bindings.

The ANSA model suggests that the binding managers are private to each server, and
moreover, that they are specific to the interface type. The model used in this dissertation has
placed the role of binding managers on the infrastructure. Instead of being specific to a given
interface type, the binding managers can be constructed to be more general and to exploit type
repository. As the ANSA model utilises only static type checking, there would be no other uses
for the type repositories. Therefore, type specific binding managers are a very sensible solution.

The ANSA model differentiates between a logical binding and a physical channel. The chan-
nel is created and discarded based on a resource allocation policy associated to the binding. The
policy can vary: A channel can be created and terminated separately for each invocation request
and termination transmission. Alternatively, the channel is created when a first operation is in-
voked and left open, trusting that a garbage collection mechanism shall remove it after the last
operation has terminated.

The ANSA applications must be aware of the existence of potential distribution. The ANSA
system supports selective transparency with programmer tools. Research on distribution-aware
applications can be found for example in [56].

Conclusion

As a summary of this short introduction of ANSA architecture we can do the following charac-
terisation:

� The ANSA architecture recognises autonomous domains within the global system.
� The ANSA architecture assumes a homogeneous platform interface, but still allows a het-

erogeneous engineering of the platform itself. In addition, the ANSA architecture offers
tools for building homogeneous middleware services on several operating and communic-
ation systems.

� The ANSA binding model is designed for already identified objects, and it does not con-
sider mechanisms for finding the suitable objects.

� The ANSA middleware includes a trading service for dynamic recognition of objects.
� In the ANSA architecture, liaisons are formed directly between the application layer objects.
� Originally the ANSA model only discussed operational interfaces, currently also stream

interfaces.
� ANSA applications use selective transparency and are aware of distribution.

Additional work on the ANSA architecture adds QoS management into the binding process
with the help of a trader [4].

The ANSA architecture and tools are an example of the potential open computing environ-
ments described by the ODP reference model. The ANSA architecture emphasises that applic-
ations and computing environments are integrated from autonomous, heterogeneous domains.

4.4 CORBA 71

client endpoint

local

binder

client

binding

manager

client

server

binding

manager

binder
server endpoint

local

server

1

8
7 6

2

5

9
34

1. The client generates a client endpoint binder

 and invokes its own binding manager.

 The binding manager receives references to

 the client’s binder and to the server’s

 binding manager.

2. The client’s binding manager invokes the server’s

 binding manager and passes a reference to the

 client binder as an argument.

3. The server’s binding manager creates a new server

 endpoint binder. It also requests the new binder to

 bind itself to the client’s endpoint.

4. Reply for 3.

5. Reply for 2.

6. The client’s binding manager invokes

 the client endpoint binder to bind it
 to the server endpoint.

8. Reply for 1.

9. Binding is ready for use and the client

 transmits to the service. The transmission

 usually means invocation.

7. Reply for 6.

Figure 4.4: Using client and server binding managers for explicit binding [183].

Therefore, the concepts of communication between objects and federation between organisational
computing systems are central. When the ANSA middleware services are implemented, the same
assumptions as with ODP model are used. However, the ANSAware implementation only gives
one technical domain.

4.4 CORBA

The Object Management Group, OMG, is a consortium of software vendors, computer manu-
facturers, and computer software users. The goals of OMG include the reduction of computing
system complexity and the lowering the cost of producing new software applications. OMG
has introduced an architectural framework, Object Management Architecture (OMA) [211], and
a set of related platform service recommendations [176, 177]. The platform recommendations are
known with the name CORBA (Common Object Request Broker Architecture). For commercial
reasons, the name CORBA is almost solely used to mean both the architecture framework and
the recommendations proposing suitable realisations of it. In this section, we study OMG recom-
mendations mainly on the architectural level.

72 4 RELATED WORK: SOME DISTRIBUTED PLATFORM ARCHITECTURES

Architecture

The architecture problem area covered by OMG [176, 177] can be partitioned into three compon-
ents:

1. Application-oriented aspects that include solution-specific interfaces and common facilit-
ies. Application objects are not subject to OMG standardisation, but they are critical for a
global business architecture. Common facilities provide a set of generic application func-
tions, such as printing, document management, database services and electronic mail.

2. System-oriented aspects that include infrastructure specific issues of distributed object
computing and management, such as object request brokers (ORB) and object services. ORB
is the middleware that establishes the client-server relationship between objects. Using an
ORB, a client can transparently invoke a method on a server object, which can be either in
the same computer or elsewhere in the network. Object services standardise, for example,
the life-cycle management of objects. These services build a middleware layer for object
manipulation. A small group of predefined object implementation styles are supported.
These object models include individual programs and libraries.

3. Vertical market oriented aspects that include domain interfaces between applications and
operating systems. Domain interfaces are specific to a certain application domain, instead
of being generic like common facilities. Domain interfaces may combine common facilities
and object services.

In this context, only the CORBA middleware and the domain interfaces are of interest.
The OMA framework and the CORBA specifications are focused on intra-organisational in-

teroperability. This means that the problems to be solved focus on masking the heterogeneity
of computing hardware and networking software. The model originally trusted on centralised
control [176] but a second release [177] has defined concepts for autonomous domains and their
co-operation. Heterogeneity between domains can occur as differences in object references, types,
security, transactions, data representation, transport network protocols and addressing.

Processes, objects and interfaces

In the CORBA model, client processes are isolated from servers (called objects) by a well-defined
encapsulating interface. The interface is implemented by ORB. The ORB is responsible for all of
the mechanisms required to find the object implementation for the request, to prepare the object
implementation to receive the request, and to communicate the data making up the request. The
interface the client sees is completely independent of where the object is located, what program-
ming language it is implemented in, or any other aspect which is not reflected in the object’s
interface. The model is illustrated by Figure 4.5.

An interface is a description of a set of possible operations that a client may request of an
object. An operation has a signature that describes the legitimate values of request parameters
and returned results. In particular, an operation signature consists of

1. a specification of the parameters required in the requests,
2. a specification of the result of the operation,
3. a specification of the exceptions that may be raised by a request for the operation and the

types of the parameters accompanying them,
4. a specification of additional contextual information that may affect the request (no other

contextual information is transported to the object implementation), and

4.4 CORBA 73

client
implementation
object

ORB

Figure 4.5: Object model in CORBA [176].

5. an indication of the execution semantics the client should expect from a request for the
operation (at-most-once, best-effort). Operations can be synchronous operations (inter-
rogations), deferred synchronous operations, one-way operations (announcements), or se-
quences of operations. In related areas, operation sequences are often referred as streams,
but they do not support continuous data flows as we defined earlier.

Objects are created as instances of types and there is no difference between the concepts of
template and type. The subtyping facility allows an object of one type to replace another object
without being noticed.

OMG only uses one language for expressing operational interface templates. The standard
language for this is OMG IDL [176]. The operational interfaces are matched on equality basis, or
the interface template implementations must be in direct inheritance hierarchy which each other.
This means that the knowledge about the peer object’s properties can be achieved by inheriting
it from the environment. This also means that dynamically applied interceptors are not exploited
in the architecture. The types of interceptors (object adaptors and bridges between different ORB
realisations) are statically positioned to the system constellations. Object adaptors are normally
used to support CORBA conformant objects in the system. In addition, vendors can provide
adaptors for integration to systems supported by other technologies, such as object databases or
ODP systems.

client

dynamic

invocation

IDL

stubs

static IDL

skeleton

object implementation

dynamic

skeleton

object

adapter

ORB Core

Figure 4.6: Structure of the ORB [176].

74 4 RELATED WORK: SOME DISTRIBUTED PLATFORM ARCHITECTURES

ORB services for binding

In CORBA systems, the binding actions are implicit and are performed by ORB services [176].
The essential components of the ORB can be seen in Figure 4.6. The ORB Core includes inter-
face repository, implementation repository, and inter-ORB communication facilities. To make a
request, the client can use the dynamic invocation interface (DII) or an OMG IDL stub. The dy-
namic invocation interface is an interface that is independent of the target object’s interface. The
stub interface includes specific stubs that are dependent on the interface of the target object. The
object implementation receives a request as an up-call either through the OMG IDL generated
skeleton or through a dynamic skeleton.

An object adapter is the primary way that an object implementation accesses services
provided by the ORB. Services provided by the ORB through an object adapter often include:
generation and interpretation of object references, method invocation, security of interactions,
object and implementation activation and deactivation, mapping object references to implement-
ations, and registration of implementations. There are a variety of possible object adapters: for
example basic object adapters for separate programs, and library object adapters. There are expec-
ted to be a few object adapters that will be widely available, with interfaces that are appropriate
for specific kinds of objects.

The interface repository is a service that provides persistent objects that represent the IDL
information in a form available at runtime. The interface repository information may be used by
the ORB to response operation invocations.

The implementation repository contains information that allows the ORB to locate and ac-
tivate implementations of objects. Although most of the information in the implementation re-
pository is specific to an ORB or operating environment, the implementation repository is the
conventional place for recording such information. Ordinarily, installation of implementations
and control of policies related to the activation and execution of object implementations is done
through operations on the implementation repository.

ORB interoperability services for binding

The ORB interoperability architecture introduces bridging of ORB domains [177]. When inform-
ation in an invocation must leave its domain, the invocation must traverse a bridge. The role
of a bridge is to ensure that the contents and the semantics of a message are mapped from the
form appropriate to one ORB to that of another, so that users of any given ORB only see their
appropriate content and semantics.

The general inter-ORB protocol GIOP element specifies a standard transfer syntax (low-level
data representation) and a set of message formats for communications between ORBs (e.g., ‘re-
quest’, ‘reply’, ‘cancelrequest’, ‘locaterequest’, ‘locatereply’, ‘closeconnection’, ‘messageerror’).
The GIOP is specifically built for ORB to ORB interactions and is designed to work directly over
any connection oriented transport protocol.

In CORBA systems, liaison related information is represented as interface references. There-
fore, we will next look at the CORBA interoperable object references [177]. Each ORB has
autonomy on deciding the structure of local object references. The ORB interoperability scheme
uses domain relative addressing. (In this context, domain is specified by technical and adminis-
trative aspects: the organisation administering an ORB has authority over names in the domain,
the ORB vendor selects the mechanisms available.)

4.4 CORBA 75

Interoperable object references are only used when two ORBs communicate across a domain
boundary. There is a need to allow any transport protocol to be used for object reference passing.
The interoperable object references should also leave it to the ORBs to decide what kind of trans-
lation or proxy mechanism they use for adding foreign addresses to their own address spaces.
Potential methods are creation of a proxy process, encapsulating the address to a wrapper that
fulfils the local address structuring rules, etc.

Interoperable object reference includes a type identifier for the interface, type of the ORB, and
notion of the security mechanism used at that interface, followed by a sequence of object-specific
protocol profiles. Each profile supports one or more protocols and encapsulates all the basic
information that the protocol needs for identifying an object. Any single profile holds enough
information to drive a complete invocation. This means that the GIOP profiles shall include

� version number of the transport-specific protocol that the server supports,
� the address of an endpoint for the transport protocol being used
� an opaque datum (object key) used exclusively by the agent at the specified endpoint ad-

dress to identify the object

Within OMG, security services [167, 168, 171] have also been developed. These services are
even considered for inclusion to ODP reference model. However, there are concerns about the ba-
sic assumptions under the CORBA security services. For example, it is not clear that organisations
can trust each other in the manner suggested in the CORBA specifications.

Conclusion

As a summary of the OMA architecture and the CORBA design, we can do the following charac-
terisation:

� The OMA model identifies autonomous domains within the global system, but allows only
a variety of ORB implementations to be used. Some other platforms can be integrated
through encapsulation with standardised, static bridges. The middleware and applications
are homogeneous, but the operating system and technology layers can be heterogeneous.

� Inheritance of object interface information is used as a basis for interoperability. However,
the introduction of autonomous domains has made dynamic knowledge acquisition ne-
cessary. This is reflected by recent request for proposals, especially for a trading service
[169]. The current tools already include an interface repository that corresponds to a type
repository function. However, this allows only one description language, IDL, and covers
only access structure, not the behaviour. The traders could be used in selection of object
implementations (locator service) as a match-making service, and the service offers could
be stored in the interface repository [169].

� Binding of objects takes place based on object references. Early and late binding has sep-
arate tools in the infrastructure. The resulting channel is always static and the channel
properties are not selectable or modifiable.

� Liaisons are not recognised in the model. Only interoperation relationships between ORBs
can be considered as infrastructure liaisons.

� The applications are not expected to be aware of the distributed nature of the system.

When CORBA middleware services are built the following assumptions are made in contrast
to the ODP model:

76 4 RELATED WORK: SOME DISTRIBUTED PLATFORM ARCHITECTURES

� The CORBA IDL is a globally accepted interface description language.
� The interfaces and the object implementations can be mapped together at run-time. This is

called late binding and it can be supported by trading.
� The object instances or service types inherit knowledge of each other’s properties. The IDL

specifications heavily trust inheritance as a method for ensuring type safe communication
between objects.

CORBA platforms are currently leading the development and the dissemination of open mid-
dleware services.

4.5 Comparison

The goal of this section is twofold: First, we compare the features of TINA, ANSA, and CORBA
architectures using the ODP reference model as a taxonomy. Second, we analyse the extent in
which these architectures support features required by distributed and federated systems. The
discussions are structured to four aspects: object modelling (see Table 4.1), meta-information
(see Table 4.2), federation mechanisms (see Table 4.3), and content of interface references (see
Table 4.4).

Object modelling

Comparison of object models involves investigation of the set of separate concepts available. In
ODP reference model, the following concepts are separated: object implementation, multiple in-
terfaces on an object, and client and server role variants on the interfaces. Furthermore, the kind
of interfaces supported is classified to operation and stream interfaces. Against this background,
we can study the TINA, ANSA, and CORBA models.

All three models distinguish object implementations and object interfaces, although only
ANSA separates client and server sides of an interface. Multiple interfaces per object are cur-
rently accepted by all three architectures, as CORBA model recently changed the interpretation of
IDL specifications [172]. Operations are in all three cases supported by various RPC mechanisms,
while streams are only being adopted. The stream interfaces have been of special interest in TINA
architecture.

In addition to differences in object structure, there are also differences in what is modelled
as an object. In CORBA and ANSA, only programming language objects are relevant. In TINA,
also sovereign applications are of interest, but even then, the name package is used. The ODP
reference model would allow packages to be considered as objects as well.

In relation to object modelling, the three platform architectures support more features that
would be necessary for traditional distributed systems. For example, object implementations and
interfaces are clearly separated, and stream interfaces are in most cases supported, at least as an
extension.

The object model of federated systems is a superset of the object models in the three platform
architectures. Especially, we should notice that the operations have more powerful semantics
than RPC. In addition, the responsibility of meta-information and federations is placed on the
infrastructure instead of applications. The RM-ODP includes all these features, except it does not
allocate responsibilities between different objects.

4.5 Comparison 77

Meta-information

We have concluded, that fundamental meta-information can be captured to binding liaisons and
interface references. As components in these information objects we can typically find quality
of service statements and policy statements. We have also indicated, that the meta-information
exchange between objects or systems can takes place via functions like trading, type repository
and binding. As part of the binding function, a separate liaison negotiation phase can be required.

ANSA model separates the concepts of binding liaison and interface reference explicitly,
whereas CORBA uses an interface reference for both purposes. In TINA, the CORBA model is ex-
tended by explicitly introducing QoS contracts. In each case, the binding liaisons are considered
to be static, i.e., constructed at system design or installation time, or managed by installing separ-
ate bridges between systems.

QoS contracts are present in the TINA model, and have been added to ANSA model as well.
Policy frameworks are considered only in the ANSA architecture.

From the meta-information services, only the trading service has been adopted to all three
platform architectures.

Traditional distributed systems require only implicit and static binding liaisons to be formed
between objects or systems. Therefore, no other concept than interface reference is required. All
three architectures thus have additional features to offer.

The requirements for meta-information model of federated systems exceed the features of the
three platform architectures. They lack the ability for dynamic liaison negotiation.

Federation mechanisms

The federation model is strongly related to the liaison negotiation process. Therefore, the TINA,
ANSA and CORBA models support the required features of traditional distributed systems, but
do not reach the requirements of federated systems.

All three platform architectures present a static configuration of the systems involved, offering
a unified set of platform service interfaces. The interworking relationships between objects are
established based on engineering interface references. Therefore, there are no facilities for service
liaisons between computational interfaces.

For federated systems, liaisons on the computational level should be supported separately.
This would mean the use of computational interface references or separate objects for capturing
service liaison agreements. The engineering level bindings would be governed by the computa-
tional liaisons.

Interface references

The technical content of interface references varies among the three platform architectures, but
also among the various implementations of these architectures. Therefore, the variety of informa-
tion components selected to interface references seems not to be fundamental. More importantly,
the interface references are in each case allowed to carry extra information that is not manipulated
by the native platform services. This allows use of foreign interface references in each platform
environment.

Federated systems are able to negotiate all technical details of bindings. All features seem to
be negotiable in at least one of the platform architectures. This means that the features are feasible
and implementable.

78
4

R
E

L
A

T
E

D
W

O
R

K
:S

O
M

E
D

IST
R

IB
U

T
E

D
P

L
A

T
F

O
R

M
A

R
C

H
IT

E
C

T
U

R
E

S

Feature Federated
system

Distributed
system

ODP TINA ANSA CORBA

Separation
of object and
interface

YES NO YES YES YES YES

Separation
of client and
server role
interfaces

YES NO YES NO YES NO

Level of
object
abstraction

programming
language ob-
ject (process)
or sovereign
application
object

programming
language ob-
ject (process)

programming
language ob-
ject (process)
or sovereign
application
object

programming
language ob-
ject (process)

programming
language ob-
ject (process)

programming
language ob-
ject (process)

Objects with
multiple
interfaces

YES NO YES YES YES YES

Operations interrogat-
ions and
announce-
ments

RPC interrogat-
ions and
announce-
ments

RPC RPC RPC

Operations
with multiple
terminations

YES NO YES NO NO NO

Streams YES NO YES YES extension NO
Responsibility
of meta-
information

on platform on application not decided
yet

undefined both choises
allowed

on application

Table 4.1: Object modeling.

4.5
C

om
parison

79

Feature Federated
system

Distributed
system

ODP TINA ANSA CORBA

Interface
references

separate joint with
liaison

separate joint with
liaison

separate joint with
liaison

Liaisons explicit,
dynamic

implicit, static explicit, dy-
namicíty
undecided

implicit,
static; for QoS
explicit

explicit, static implicit, static

QoS YES NO YES YES extention NO
Policy
framework

YES NO YES NO YES NO

Trading YES NO YES YES YES YES
Type
repository

YES NO YES NO NO NO

Liaison
negotiation

YES NO not decided
yet

NO NO NO

Table 4.2: Meta-information and meta-information services.

80
4

R
E

L
A

T
E

D
W

O
R

K
:S

O
M

E
D

IST
R

IB
U

T
E

D
P

L
A

T
F

O
R

M
A

R
C

H
IT

E
C

T
U

R
E

S

Feature Federated
system

Distributed
system

ODP TINA ANSA CORBA

Federation
establishment

dynamic /
static

static not decided
yet

static static static

Separation of
liaison from
channel

YES NO YES NO NO NO

Platform
interface

unified /
personalised

unified unified unified unified unified

Liaison es-
tablishment
at computa-
tional (C) or
engineering
(E) level

C, E E E, C not yet
decided

E E E

Table 4.3: Federation mechanism.

4.5
C

om
parison

81

Feature Federated
system

Distributed
system

ODP TINA ANSA CORBA

Interface type YES YES YES YES YES YES
Channel class negotiatable fixed static choise static choise static choise fixed
Location YES YES YES YES YES YES
Relocation YES NO YES YES YES NO
Security YES NO YES NO YES NO
Flow
definition

YES NO YES YES extension NO

Group YES NO YES NO YES NO
Causality YES NO YES NO YES NO
QoS YES NO YES YES YES NO
Standardized
transport
form

YES NO YES YES YES YES

Table 4.4: Content of interface references.

82 4 RELATED WORK: SOME DISTRIBUTED PLATFORM ARCHITECTURES

Conclusion

TINA DPE is a traditional distributed system instead of a federable system, because it offers a ho-
mogeneous set of middleware services that is supported by a heterogeneous telecommunication
network. However, TINA architecture includes federation features, e.g., it supports dynamic QoS
contracts and static binding liaisons between software packages.

ANSA model is based on distributed system traditions, but in addition, it includes concepts
of autonomy and federation. However, federation is considered to be a static agreement between
systems. The model is basically a federated system model, but does not support run-time negoti-
ation features.

Among the three platform architectures, the CORBA model represents the most traditional
distributed system. However, functions that could support federation are being incorporated
into the model. Still, CORBA does not include sufficient concepts for description of sovereign
systems, nor sufficient middleware services. The essential restrictions are related to the interfaces,
type, and subtyping concepts.

In this part, we have seen that a dynamic federation mechanism is an essential factor of open
system architecture. We have also seen that federation mechanism trusts in meta-information
embedded to contract schemata. Trading exchanges meta-information and thus forms foundation
for system federations.

Part Three

TRADING

In this part, we study the logic of trading functionality and its realisations. The purpose of trading-based
information services is to give a fast response to a request specifying requirements on a target whose identity
and location are unknown. Trading is not a mapping mechanism like a name service giving a technology-
specific address for a human-oriented name. Instead, the purpose of trading is to provide any answer that
satisfies the query.

Chapter 5 discusses the various forms of trading mechanism. The discussion is opened with a charac-
terisation of trading functionality as a global repository service. Then, the design problems arising in any
trading community are discussed. Various forms of providing service offers to traders and retrieving offers
from traders are analysed. As a separate theme, the solutions for a group of cooperating traders are stud-
ied. Within this study we rise a conceptual separation between distributed traders under a single source of
controlling rules and trader federation where multiple controllers are involved.

Chapter 6 discusses services in federated systems required to support trading. Especially we are inter-
ested in type repository services and federated naming services.

Chapter 7 exploits the supporting services for two trader organisation models: one for a traditional
distributed environment, and another for a federated environment.

Chapter 8 discusses some trader specifications and implementations, including ODP trading function
standard and DRYAD trader software. The chapter is concluded with a comparison of trader realisations.

Chapter 5

Trading mechanism

In this chapter, we study the trading services as an independent service, disregard of its usage
scenarios in various environments. The representation uses the terminology of federated systems
and ODP reference model, and even specifies implementation requirements with the help of ODP
engineering viewpoint concepts. Exploitation schemes for trading service are studied in Part IV.

We start the study of trading service by covering the design problems relevant for trading
systems in Sections 5.1 and 5.2. The subsequent sections discuss potential solution strategies for
these design problems. Concrete designs for trading services with differing strategic choices are
discussed in Chapter 8.

5.1 Characteristics of trading

Trading presents a global information repository. The global repository can be updated by inde-
pendent information producers throughout the world-wide network, and the information users
can create effective and large information searches.

Trading is an additional technique for constructing information repositories, as are e.g. the
group of database systems, object database systems, global name services, and directory services.
The special features of trading include its global nature, the wide variance of application areas
it can support simultaneously, the expected characteristics of load, and its ability to hide the
complexity of heterogeneous, federated environment in which it operates.

Trading is expected to be a global and generic service that is able to give an equal service on
various platforms, and moreover, across various platforms. However, the users of trading ser-
vices have not only expectations on the semantical contents of the service but also expect certain
technical characteristics. In a federated system environment, the global trading service may need
to simultaneously support different interface characteristics.

Trading mechanism can be used to support various information services depending on the
interpretation given to the mediated information. The trading mechanism defines available op-
erations and syntactic structure for information that is manipulated by the operations. For the
trading mechanism, the mediated information is just a list of properties of some entity. Only
when the information semantics is further specified and the information manipulation is sup-
ported with other services along with trading, a meaningful information service is created. The
trading mechanism can also support various application areas simultaneously and is easily adjus-

86 5 TRADING MECHANISM

ted to changes in the information schemata. The trading mechanism can be used for example in
the areas of electronic commerce and software reuse. A simple example is a general search tools
for browsing WWW-pages in Internet. Furthermore, the trading mechanism can be exploited by
federated system middleware services, especially binding of computational interfaces and proto-
cols that support computational interactions. This use is the intended application area of the ODP
trading function [96]. The concepts of binding and computational interactions were introduced
in Chapter 3, and are elaborated later in Chapter 9.

Trading also differs from repository services – like name servers, directory servers, and data-
bases – in the assumptions made of the typical load profile. Traders are assumed to manage
frequent updates and frequent queries. The set of trader clients that are allowed to update the
repository is large, unknown and constantly evolving. Also the structure of stored information
evolves. The actions in which traders participate are not necessarily transactions and they are in-
tended to be small in respect to required memory space and required processing time. However,
keeping the agreed response time is critical, even more critical than being able to do a full search
in the repository.

The functionality is independent of selected platform technology. The mechanism is spe-
cified on a logical level that can be implemented on a variety of platforms, programming lan-
guages, storage techniques and communication protocols. Due to this design choice, trading can
be widened to a world-wide service: all trader realisations make their technical decisions inde-
pendently, only considering the logical design and preparing to intercept technical differences.
In some technology oriented aspects, general guidelines are required. However, such guidelines
are highly flexible, as they offer multiple alternative implementation techniques. For example,
traders may exchange information in object format or as lists of named values.

Realisations of the trading functionality have to solve various problems. Trading makes in-
formation available to a large but still controllable set of users. The qualities of the available
information should fulfil the user expectations: information consistency, freshness, and accuracy
may be required, access times may be essential, and high probability for information availability
may be crucial. However, the selected techniques may not affect the autonomy of the information
producing systems nor the information user systems. Excess of network traffic must be avoided,
as well as creating new security threats to the systems. Furthermore, the trading mechanism
should be able to adopt to the evolution of the mediated information contents. Moreover, the
topology of trader network that cooperate for the global trading service is constantly changing.
Finally, federated environments create a special area of problems. The federable systems have
autonomous administrations and different technologies, and evolution schemes.

5.2 Trading concepts

This section studies problems that are general to all trader constellations. Traditionally, a service
or a mechanism is represented as a concrete algorithm, optimised for a selected platform. In this
case, the description continues listing alternative ways of solving the various problems arising
from the functionality. This is an implication of the properties of the environment in which the
trading services are used. First of all, the trading system is required to deal with the numerous
platforms to the benefit of application software. The purpose of trading is to hide that complexity.
Secondly, the required characteristics for traded information vary from administrative domain to

5.2 Trading concepts 87

another, but still the traders are required to interoperate. In the case of a single trader, a single
technique is selected for the use of the whole community.

5.2.1 Trading community and trading domains

Trading activities are described through a trading community that represent the roles of ‘im-
porter’, ‘exporter’ and ‘trader’ [96], as illustrated in Figure 5.1. The object in trader role supports
a repository of ‘offers’. Each offer describes properties of an entity. The offers are produced by
objects in exporter roles. When an exporter sends an offer for a trader to be stored, it is said to
‘export’. When an exporter requests an offer to be deleted, it is said to ‘withdraw’ an offer. The
objects in importer roles make queries to the offer repository. The query and the response to the
query form an interaction called ‘import’. The import request has a basic form that is similar to
a database query: the request specifies criteria for selecting the offers to be included to the re-
sponse. The objects that use the traded information are not necessarily the importers or exporters
themselves. The ‘clients’ and ‘servers’ that use the information are therefore drawn as separate
roles in Figure 5.1.

trader

client

importer

server

exporter
export

interaction
service

import

Figure 5.1: The trading community.

Community must be understood as a design pattern that specifies roles for objects that par-
ticipate in the activity. The use of the term community is consistent with Definition 3.19. The
community is therefore a dynamic construct, as the roles can be fulfilled by different set of objects
at different times. Also, a role can be filled in by a set of objects.

The trader role can be distributed to a set of autonomous trader objects. Each trader object
controls a private trading domain. This arrangement has two benefits: first of all, each federable
system in the federated system environment has a private agent in their possession. Secondly, the
potentially huge trading community is divided into smaller partitions and thus the load on each
trader object becomes reasonable. The organisation of trading domains is illustrated by Figure 5.2.

For the trading community, it is essential that the property set specified for the interesting
service type is equally understood by all objects. Furthermore, it is essential that the property
names and property value sets have similar definitions and the semantical interpretation does
not differ. In the case of a single centralised trader object this seems trivial. However, when we
study cooperation between traders in Section 5.3, this requirement is no more trivially granted.
A consistent set of service types and properties within service types can be standardised, which
will enlarge the set of potential members in any trading community. However, standardisation
does not provide a solution that would be sufficient alone, because of the long evolution delays

88 5 TRADING MECHANISM

involved. An additional mechanism for dealing with the semantic consistency of service types
and properties is shown in Section 6.2. The same mechanism can be used between an importer
and a trader that reside at different administrative domains.

trader

exporter

object

object
importer
object

importer
object

object
importer

object
trader

object
exporter

object
importer

import
requeststrader

role

trading domain A

trading domain B

Figure 5.2: The trading domains.

The traders act as controlling objects within the trading domains, but only in relation to trad-
ing activities. Other aspects related to the exporter objects and importer objects are not restricted
by the trader objects. Only the communication rules are specified. As a consequence, having a
binding, i.e. communication channel, between importers and trader or exporters and trader does
not necessarily mean that all the objects would share their technology choices. For example, data
representation formats may be different. In such cases, the channel between the objects must
contain interceptors to transform between the formats involved. Trader objects manage many of
communication technology problems. The purpose is to hide such complexity from the users of
trading services. However, dealing with communication technologies is not part of the trading
logic, but is further embedded to the binding establishment process.

Each importer or exporter object is bound to a trader object in order to have access to the
service interfaces. An object can be bound to multiple traders as well, but then it is considered to
enter the same role in multiple domains.

Each offer is stored primarily to one trader object only. If an exporter object plays a role
in multiple trading domains, the created offers are considered to be individual instances and
managed accordingly. Therefore, it is reasonable to claim that an offer is owned by the trader
object to which it is exported. The offers may be copied to other traders in order to provide
fast access to information that it frequently used. However, the consistency of such copies is not
necessarily supported.

Traders are not responsible for the information quality they mediate [96]. It is the respons-
ibility of the exporters to provide trustworthy information. As the traders have no method for
controlling the information quality, the importers must evaluate that themselves. Most import-
antly, the traders do not invalidate any imported offers later on. Traders are not responsible of
tracking who uses the offers. Some users import a set of offers, store them, and use the inform-
ation later. At the time the offers are used, the information may be outdated. The users are
themselves responsible of requesting new offers frequently enough. However, fresh offers do not

5.2 Trading concepts 89

always guarantee that the property values would represent current system state. For example,
property values expressing remote system load are never ‘current’ because of network delay.

We refine the community activities and object roles in the following sections. First, we analyse
the management of information within the trader. Then, we analyse the exchange of information
between the exporters and the trader, and the importers and the trader. Finally, we analyse how
importers and exporters are allowed or denied access to the trader.

5.2.2 Offers

Exporters, importers and traders pass logical information objects, offers, to each other. An offer
contains property values for a named set of properties. The set of properties is specified separately
for each type of service. For example, for a service type ‘compiler’ the interesting properties are
‘sourcelanguage’ with data type ‘set of strings’, ‘host’ with data type ‘string’. Another service
type, ‘travel’ has properties ‘destination’ with data type ‘set of strings’, ‘duration’ with data type
‘integer’ together (implicitly interpreted as number of days), and ‘cost’ with data type ‘integer’
(implicitly interpreted as number of Finnish marks). Example offers of these types are

servicetype: compiler, sourcelanguage: "C", host: "hydra",
servicetype: travel, destination: "Hawaii", duration: 7, cost: 8000.

Type of offer

It is also important that the objects participating the trading community have equal expectations
on the set of properties used. A slight variance on the property set can be however allowed. The
properties can be defined to be mandatory, optional, or additional.

Mandatory property values must be always present in an exported offer. Retrieving the prop-
erty value may still fail under exceptional environment conditions, for example when executing
an evaluation is delayed too much.

Optional properties must be defined in a consistent way through the trading community.
They are not necessarily present in all offers, but if so, the semantics must be the same. The
optional properties support transition to new sets of mandatory properties.

Additional properties have no restrictions. The exporter may define semantics for an addi-
tional property and pass such property values to the trader in the hope that an importer has
knowledge about this kind of ‘private’ property values. This can be considered as a method for
exploiting vendor dependent, de-facto standardised properties prior to actual standardisation ef-
forts.

Quality of information

The information users have expectations on the quality of information traded. Depending on the
application area, these expectations focus on different aspects. For example, in a telephone switch,
the phone number register does not change very often, but the numbers are requested frequently.
The characteristics required for the phone numbers focus on the fast access, and high availability.
However, change processing is not as critical. Even data consistency between different parts of
the world-wide system may not be a critical requirement. In the telephone switch example, a
non-consistency might be allowed in case of a person moving from an address to another and
having a phone connected to both addresses simultaneously for some days.

90 5 TRADING MECHANISM

The traders are not themselves responsible of the information quality, but provide several
management techniques for properties. These techniques support different qualities of informa-
tion. For each property, the technique is separately selected by the exporter, based on assumptions
of the change and request frequencies on the information.

Management techniques for property values

The forms of property values are static, dynamic, and modifiable [96]. These forms allow two
aspects. First, the information user may be aware whether the value is prone to changes over a
period of time. Second, the information producer may either push new values to the offer itself,
or the trader requests a new value when needed.

Static property values suit for non-changing properties of an entity. For example, a printer is
able to use certain paper sizes only. Static property values are also adequate in situations where
the offer is exported and withdrawn frequently, thus refreshing the property values. For example,
a meeting room may be offered for each period of available meeting time separately.

Modifiable properties are like static properties, but the exporter can overwrite an existing
property value without withdrawing and re-exporting the whole offer. This technique gives an
opportunity to refresh values with an atomic operation. This technique also allows other sources
for the new values. For example, a trader administrator can change the list of available paper
sizes at a printer. In a single trader case, this potential does not seem to be of interest. However,
in certain cooperation constellations between traders, the information sharing technique may be
used in a more optimal way. These problems are further discussed in Section 5.3.

Dynamic properties do not have actual values stored within an offer. Instead, the offer in-
cludes an interface reference that can be used to invoke an operation to evaluate a new value
for the property. This technique is usually used together with a caching mechanism. A printing
queue length is an example of a dynamic property.

The possibility of using dynamic properties is one of the key features that distinguish traders
from directory services or name services. Many trading applications exploit this feature. For
example, within the process of binding a client to a server interface, it is possible to select an
interface that is available at the time, and not only available in principle.

Dynamic properties can also be used to allow the servers themselves to participate the se-
lection process. The processing involved in the dynamic property evaluation can include, for
example, rules for submitting the client identification information to the server for approval. In
this way, the server can approve the import, before the offer is revealed to the client.

Static properties are secure to use. Therefore, when security is especially important, either
importers or traders may restrict the offers to static property values only. The dangers of dynamic
properties are related to the evaluation mechanism. The evaluation of a new value may cause
some information about the importer to be spread into the system that supports the trader. The
evaluation of a new value also causes execution of program code that may originate from some
other system than the one that supports the trader.

Offer management information

Offers contain not only property values, but also information that is used by the trader in order
to manage the offers themselves. This information is collectively called as offer properties in

5.2 Trading concepts 91

* an offer identifier,
* a service type identifier,
* exporter policy, including access rules or interface for

executing access rules, and time-to-live values,
* a flag differentiating between normal and proxy offers,
* in case of proxy offer:

- an interface reference,
- instructions for creating a request to be sent to the interface,

* in case of normal offer a set of items containing:
- a property name,
- either a property value, or

an interface reference and instructions for invocation.

Figure 5.3: General offer structure.

distinction to properties. To the management information we classify here proxy offers, exporter
policy information, and offer identifiers.

Sometimes the property values for an offer are too dependent on each other so that dynamic
evaluation of the individual property values would be sensible. Therefore, the trading mechan-
ism allows to choose between normal offers and proxy offers. A proxy offer includes an interface
reference that can be used for creating a set of offers. The proxy offer also includes instructions
on how to build the creation request. The request is intended to carry as much information about
the importer and the matching criteria as possible. The benefits of proxy offers are found in en-
vironments where individual offers change often, they have inherently changing property values,
but for the benefit of import performance the property values have to be static. Of course, this
mechanism has all the drawbacks of the dynamic properties.

The exporter is allowed to express restrictions on the users to whom the offers are revealed.
This can be done in two different ways. The first method is that of using proxy offers. The
process of creating new offers to correspond the proxy offer can use imported identity for deciding
whether offers are made available. The second method uses a property that is aimed, not at
the importers, but at the trader to use. This offer property expresses instructions to evaluate
whether the offer is available for the identified importer or not. The instructions may involve
communication with an external interface, or the format may be that of an access control list. A
simple way of restricting importers is to define an offer to be valid only for a period of time. The
trader is expected to automatically withdraw the offer after the offer has expired.

For the organisation of the offer storage, and for the communication between exporters and
trader, we use an additional attribute for identifying the offer within the trader.

5.2.3 Offer storage

Logically, the offer storage consists of a set of offers and proxy offers [96]. The content of both
types of offers is summarised in Figure 5.3.

The semantic structure of the offer storage is determined by the set of service types represen-
ted. Each offer includes the set of properties specified by a service type and is therefore under-
standable only within the context of that type. These structures can be separately standardised
for each application area of trading. However, changes to the structures and introduction of new
application areas would be expensive. Therefore, a separate type repository service is exploited
for supporting the structuring information.

The physical structure of the offer storage is not required to follow the semantic structure.

92 5 TRADING MECHANISM

The offers can be stored separately depending on their service type, or the offers can be further
subdivided into groups that fulfil the most frequent matching criteria in import requests. Also,
the offers may have identification keys as additional attributes for indexing purposes within the
underlying database management system.

The offer storage can use any suitable technique. Databases are frequently used for storing
objects but file servers, name servers, and memory servers can be used as well. The technique
must be in conformance with the quality aspect of the information stored.

Database management systems are robust and they efficiently protect the information con-
sistency, but they have high overhead for these properties. Therefore, database solutions may be
too slow. In most cases we feel that a ‘light-weight database’ solution is required, because the
mediated information is typically changing rapidly. We discuss the storage methods further in
Section 6.3.

Technically, the offer storage contains also a cache. The cache contains recently manipulated
offers and recent values of offer properties. The cache has an important role in the design of
search algorithms that span multiple traders. However, the cached offers are not logial copies of
the stored offers. Thus, no update nor invalidation mechanisms for the cached offers is needed.

5.2.4 Exporting, withdrawing and modifying offers

The offer storage can be modified by several interactions that do not involve exporters and traders
alone, but can be invoked by other authorised objects as well. We start by studying offer creation,
continue by offer modifications, and close by offer disposal techniques. This set of interactions is
complete only if we assume that the service types are not modified. Modification of service types
would enforce modifications on the offer storage, but we postpone the discussion of schemata
changes to Chapter 7.

Creation of offers

The trader creates an offer at the request of an exporter [96]. Typically, the exporters are bound to
a trader when instantiated, so there is no problems for the exporters to find a suitable trader. In
the same way as normal offers, an exporter can create a proxy offer.

The exporter must give all property values or evaluation rules in the export operation. The
logical information object may be represented as an actual object in systems where objects can be
communicated, or a set of name-value pairs from which the trader can create the offer. Although
the offer is logically an object, it is not compulsory for the trader to implement the offer as an ac-
tual object. Important is that the exporters and the trader find a common protocol for transporting
either the objects or the corresponding data.

The trader may restrict the set of exporters and offers it accepts. The trader may refuse to
store offers from exporters it has no record of, or it may serve only exporters owned by the same
company as itself. The trader may also protect its storage space by accepting only offers with a
certain service type, or certain expected values. For instance, a trader may restrict its offers to
cover printers only, and require that the printers must be owned by a certain department. The
latter property can be demonstrated by including a property with an encrypted password that is
known only to the department administrators.

When an export operation is accepted and an offer is created, an offer identifier is created by
the trader. That identifier is returned to the exporter. The identifier can be used for referring to

5.2 Trading concepts 93

the offer later by withdraw and modify operations. The exporter object can pass the identity to
other objects, so the identifier may not serve as any kind of credential.

When the exporter creates the values for the offer properties, it is important that the language
or the value set of the properties is commonly known within the trading community. For certain
property types some languages have already become natural. For example, if we trade for server
interfaces, one of the properties expresses the interface type. This is often expressed in IDL. Fur-
thermore, the interface references expressed within the offer for evaluating new property values
must be understandable by the trader. The interface references are specific to the platform on
which the objects operate.

Proxy offers can be used to produce a set of offers with static properties. The set of created
offers is primarily produced for the use of initiating importer. The set of created offers can be as
small as a single offer that is immediately consumed by the importer and therefore the offer is not
even temporarily stored to the offer storage. However, the exporter policy produced for the new
offers may allow access for other importers as well.

Modification of offers

Facilities for modifying the stored offers requires that clients are able to identify each offer for the
trader. Therefore, the trader returns an offer identifier for the exporter as a result of an export
operation. That identifier can be used as a key for all interactions that modify the offer later on.
The identifier can be passed on to other object by the exporter object and therefore the set of
modifying objects is undefined. Passing the offer identifier has no meaning as capability passing
technique. The offers are protected against unauthorised access even when a correct identifier is
presented to the trader.

The technique for offer modifications is dependent on whether the property values under
modification are static, dynamic, or modifiable.

For changing static properties in an offer, the only technique is to replace the offer. Traders
may encapsulate a pair of withdraw and export operations to an atomic interaction ‘replace’.
‘Replace’ overwrites all property values of an identified offer but maintains offer identity [96].

For dynamic properties, modifications are automatic. The property value itself is specified in-
directly, as an evaluation rule. Therefore, new values can be retrieved by invoking the evaluation.

For modifiable properties, a new property value is explicitly pushed to an identified offer by
a ‘modify’ operation. ‘Modify’ differs from ‘replace’ by changing only individual property values
instead of the whole contents. ‘Modify’ can also modify the number of optional or additional
properties present in the offer [96].

None of the modification operations is able to change the property category, e.g., a static prop-
erty cannot be changed to a dynamic property [96]. The modification operations are neither able
to change the data type of the property value. These restrictions are necessary for the consistency
of the mechanism itself, and for the security of the trading services. Changes between differ-
ent property categories affect the information quality that must be controllable by the exporter
object. Changes between data types would easily cause semantic confusion between exporters
and importers, and moreover, would allow a bypass of the restriction of non-modifiable property
categories.

Proxy offers cannot be modified except by a ‘replace’ operation.

94 5 TRADING MECHANISM

Disposal of offers

The disposal of offers can be initiated by either an object holding the offer identifier or by the
trader. The trader can act based on offer properties, and other objects can invoke a ‘withdraw’ op-
eration. ‘Withdraw’ is protected by access restrictions similarly to offer modification operations.

The goal of withdrawing an offer from a trader is to stop importers using the information
revealed in the offer. For example, if a service interface is offered, the destruction of that interface
may induce the withdrawal of the corresponding offer. However, the importers may already hold
copies of the offer, or clients may already be using the offered interface. Trading does not solve
these problems. Withdrawing an offer only guarantees that no further imports can reveal the
offer.

Proxy offers may produce a set of normal offers that are protected by exporter policies. The
offers created in this way cannot be withdrawn by any object but the trader. Therefore, if the
produced offers are stored, they must include a time-to-live value to allow the automatic disposal
of the offer. If the object referenced in the proxy offer does not provide this value, the trader must
create a suitable value itself.

5.2.5 Import

In this section, we discuss the interaction between importers and traders. The ‘import’ operation
allows importers to retrieve offers from the offer storage and also to guide the search. The purpose
of ‘import’ operation is to find fast some offers that satisfy the query, without a hard requirement
of finding the ultimately best choices.

Characteristic to the import interaction is that the importer guides the search simultaneously
on two levels: On the logical level the importer specifies which offers are interesting; on the tech-
nical level the importer specifies how extensive search is acceptable, and how much space the
result of the search is allowed to take. The inclusion of the technical level guidelines may appear
irrelevant, but when a search is forwarded around in a world-wide network, such considerations
become relevant. However, most importers can trust that the trader to which they have been
bound to adopt a reasonable technical behaviour without additional specifications. This assump-
tion can be based on the fact that the administration of the local trader for an importer is most
probably from the same organisation.

The import is parameterised with service type, matching criteria, preference criteria, ordering
criteria, search scope and cardinality restrictions, and specification of the contents and cardinality
of the information to be returned. These parameters are defined shortly. The service type, the
matching criteria and the preference criteria guide the logical level of the search. Other paramet-
ers guide the technical aspects of the search. Import is not parametrised by the trader address:
the importer does not need to search for a suitable trader. An ‘import’ interaction can be initiated
by any object bound to a trader via a communication channel.

Logical specification of the search

The logical offer selection rules fall into two groups, compulsory and prioritising. The compuls-
ory rules, i.e. matching criteria, specify a set of acceptable offers. The prioritising rules, i.e. pref-
erence criteria, express that some of the acceptable offers are more interesting than the others. The
selection rules are expressed in criteria languages that use, for example, arithmetic and Boolean
operators over property values in the offers.

5.2 Trading concepts 95

The only necessary information for initiating the import is the name of the service type of the
searched offers. The service type specifies the properties present in the offers, and therefore also
specifies what property names can be used as part of the criteria.

The matching criteria are formulated of expressions considering property values within a
single offer while preference criteria compare property values of a set of offers. The returned
offers must fulfil the preference criteria if enough offers can be found that way – if there is lack of
preferred offers any matching offer is acceptable.

Criteria languages

The matching criteria specify which offers are acceptable for the response to the importer based
on the properties within each offer alone. Suitable expression components for a criteria language
are

� property names and values,
� literals within several data types,
� existence tests for properties (exists),
� comparisons involving properties, literals or both (equal, almost similar string, all ordering

relationships),
� Boolean expressions (and, or, not),
� basic arithmetic operations (add, subtract, multiply, modulus, divide), and
� tests for membership in sets (in).

The preference criteria specify the priority of some offers over others. The criteria language
applied for preference criteria must be able to express relationships between offers based on one
or more property values present in each offer.

A set of ordering functions can be used to compare offers against each other. Suitable expres-
sions are

� ordering functions ‘min’ and ‘max’ parametrised with the property name used as ordering
key,

� ‘random’ for any order,
� ‘first’ that means first of a sequence ordered by an implementation, and
� ‘with’ parametrised with a boolean-valued expression to give priority to those offers pro-

ducing a true value for the expression.

The function ‘with’ actually allows using the full criteria language as part of the ordering lan-
guage.

The actual languages used for the matching and preference criteria may vary from trading
domain to another. However, standardised languages are recommendable for enabling interoper-
ation between domains, although any language that has the same expressive power can in theory
be intercepted to the standard version at execution-time.

Examples of acceptable import criteria are:

(servicetype=compiler, sourcelanguage in ["C", "C++"], host="hydra"),
min(servicetype=travel, destination="Hawaii", 1 <= duration <= 3, cost < 10000)

96 5 TRADING MECHANISM

Technical specification of the search

The problem in import activities is that in a world-wide environment we cannot predict the extent
of the search. Still, in many cases, trading is required to have properties of a real-time system.
Therefore, we must at least ensure that the import operation terminates with a reasonable result
in a guaranteed time. We refer back to interrogations with QoS contracts in Section 2.4.

The technical search specifications also fall in two categories, those of restricting the resources
spent to the search by the trader, and those of restricting the resources consumed by the importer
when receiving the resulting set of offers. The term used to refer these restrictions jointly is ‘im-
port policy’.

The resources spent by the trader can be limited by restricting the number of offers considered,
the time spent in search, the number of suitable offers found, and the amount of money spent for
the search. Reaching any of the given limits on these items terminates the search.

The resources spent by the importer in receiving the results mean memory space. The size
of the response must be small enough for the importer to store, but still the essential parts of the
search result must be captured. Therefore, it is not enough to just restrict the number of offers
returned. Instead, the offers must be first ordered for minimising the number of interesting offers
dropped out just because of memory restrictions. In addition to restricting the number of offers,
the importer can also explicate which property values in the offers are of interest. This gives an
opportunity for minimising the size of returned offers.

The technical search restrictions are expressed in ordering criteria, search scope and cardinal-
ity parameters, and specification of the contents and cardinality of the information to be returned.

Expressions for technical restrictions

The technical search restrictions are expressed in ordering criteria, search scope and cardinality
parameters, and specification of the contents and cardinality of the information to be returned.

For the ordering criteria the goal of the expressions is similar to that of preference criteria, and
therefore, the same language can be used. This often leads to unification of the two parameters as
we will see in Section 8.1.

The scope parameter is in the case of a single trader a technical matter dependent on the stor-
age technology selected. Such restrictions are not generally applicable and there are no generic
rules for them. However, scoping in a network of traders is more important, and we discuss the
problem in Section 5.3.

The search cardinality parameters and return cardinality parameters are simple expressions
with a standardised parameter name and a limiting value. For example, a search that should
only walk through 10000 offers and use at most 20 seconds for doing so can be restricted by the
following expression:

maxofferstosearch = 10000; maxsearchtime = 20

For specifying the contents returned for each offer a list of property names can be used. A
special term can be reserved for denoting ‘no properties’ and ‘all properties’.

Search from the repository

The search from the trader’s storage is guided not only by the importer via the parameters in
the import request. For each trader, there are internal rules that restrict the searches in respect

5.2 Trading concepts 97

of resources spent for a single search. In addition to these restrictions that protect the trader
itself from overload, the trader can support default restrictions for importers that are not willing
to consider the technical parameters of their import requests. Another area of restrictions arises
from the visibility of offers for separate importer groups. The restrictions made by the trader itself
can be expressed with the same languages as the import parameters.

The search process invoked by the import request can be split to multiple, simultaneously
running sub-searches in different parts of the storage. The searches terminate either because of
reaching the final result of a complete search, or because some of the technical restrictions spe-
cified for the search deny continuation of the search. The termination reasons are of equal im-
portance – termination because of reaching technical limits is not considered as a failure. In the
following, we first study the search algorithm and then study the semantics of search results in
case of different termination reasons. Figure 5.4 represents the propagation of a search within a
trader working in isolation of other traders. The search algorithm is based on multiple simultan-
eous sub-searches, each of which is responsible of a separate partition of the offer storage. The
storage partitions may include various indexes for organising the access of offers. Even partial
results of searches can be indexed as well as final search results. Such indexes can be exploited for
reusing previous search results to speed up new import activities, given that the results are not
used too long. If the offers contain dynamic or modifiable values, re-evaluation or modification of
properties should invalidate the indexes as well. The sub-searches are monitored by an external
process that controls the total resource consumption of the search and terminates the sub-searches
when any of the resource limits is exceeded.

preferences matching cardinalities termination

accept the request

apply cardinalities

return to the importer

evaluate
required
property
values

search in
database
with matching
criteria
and announce
hits to the index

collect index
of reported
offers and
sort it
according to
the preferences
and collapse
according to
cardinalities

join the join the

criteria

arbitrate arbitrate

criteria

set alarms

Figure 5.4: Search algorithm used within a single trader.

98 5 TRADING MECHANISM

During the search, it is not necessary that all property values in the offers are known. The
dynamic properties can be evaluated at reference. The search process can invoke the evaluation
asynchronously and let the offer to be studied again later. A simple mechanism uses synchronous
evaluations, but the evaluation time may be long and especially if the number of sub-searches is
low (even just one) the number of offers considered becomes very low.

In some failure cases, it is possible that the referenced property value is not available and
cannot be evaluated. In the evaluation of matching criteria and ordering criteria, such values are
treaded so that the offer is disfavoured. In preference criteria, the missing value has no critical
role.

In the search algorithm, proxy offers create a special case. When a proxy offer is met during
the search, there are two choices depending on the mission of the proxy offer evaluator. We will
see in Section 8.1 that the proxy offer evaluator can be used for creating new servers and reserving
resources for the offered service. In this case, the proxy offer may not be expanded unless the
resulting single offer is actually taken as the only result of the import operation. If the proxy offer
evaluator just produces a set of normal offers without any resource consuming side effects, the
created new offers can be considered as an additional partition of the offer storage. In this case,
the offers are searched in the same way as normal offers.

Interpretation of the import result

The search can be terminated either because the whole offer space has been searched or because a
resource limit is reached. In both cases, the trader has collected a set of offers, and the termination
of the import operation is considered to be normal. Termination due to scope limits is flagged
separately, but such termination is not interpreted as a failure. Similarly, missing attribute values
are flagged, but the trader should not discard incomplete offers if they fulfil the matching criteria.
It is the privilege of the importer to decide whether such offers are useful or not. The usefulness
of incomplete offers is dependent of the application area – for example, a missing author name in
an offer that describes a WWW page is not a problem, as long the address of the page is available.

The search fails only if the search process is terminated by a programming failure, configura-
tion error, computer crash or any other data independent reason. The trader probably is unable
to give that kind of exception termination, but other parts of the distributed infrastructure, es-
pecially components of the channel between importer and trader, should notice and report the
problem.

5.2.6 Trader administration

The administrator can decide trader behaviour related to export actions and import actions, and
also define the set of service types used.

The rules for the trader behaviour in import actions are collectively named ‘import action
policy’ [96]. They can be either stored or hard coded into the implementation. Import action
policy includes rules for accepting import requests. This is different from the access control on
the interface: the rules can operate on import parameters instead of importer identity only. In
addition, the import action policy includes counterparts for all import parameters either as max-
imum values or as pairs of default values and acceptable maximum values.

Similarly, the rules for the trader behaviour in export actions are collectively named ‘export
action policy’ [96]. The main rule restricts the accepted exporters and offers. Additional rules can

5.3 Cooperation of traders 99

guide the internal organisation of offer storage.
For import actions, there are two sources of criteria, the trader executing the search and the

importer. Arbitration policy defines the merging rules from these two sources. Depending on the
arbitration policy the trader assumes a different role in the computing system.

Several trader roles have been presented: a match maker, a dispatcher, a trustee, a consult-
ant, a coordinator [254], or a secretary. The different roles of a trader are related to the different
sources of matching and preference criteria given for an import operation. The match makers
are the simplest trader systems: They work on static offer properties, while traders of other roles
can utilise also dynamic values. For example directory servers can be utilised as match makers.
Dispatchers and trustees take import criteria only from one source. The dispatchers accept only
administrative arguments for import operations, while the trustees depend on importer’s argu-
ments. Consultants and coordinators use both administrator’s and importer’s arguments, but
their arbitration policies differ. The consultants run their own selection arguments first and com-
plete the selection by importer’s arguments. The coordinators allow importer’s arguments to start
the selection, but restrict the selection further with their own rules. The final role, secretary, is a
combination of the other roles. Secretaries allow the trader’s role to be dependent on a set of as-
pects: the importer, the service type, and the selection and preference criteria. The combinations
can be so rich that the trader’s role is effectively different in each import operation.

The set of service types in use can be defined indirectly by a reference to a type repository.
Another aspect of service types is the support for advanced subtyping relations. Some type re-
positories relate two service types as logically equal, even if they have minor technical differences.
For importers and exporters the knowledge of such facility is important. For example, when trad-
ing is used as part of the binding process between object interfaces, it is essential to know whether
interceptor should be supported.

The administrator can also manipulate trader’s knowledge about other traders. A trader
needs information about other traders for negotiating federations. The traders must be able to
obtain this information explicitly, as the traders themselves should offer this service to other ob-
jects in the system. The information can be inserted by administrators, or communicated by other
traders. In the following section we discuss trader federations.

5.3 Cooperation of traders

As the world-wide federated system potentially creates an enormous number of offers, the trad-
ing service must be partitioned to domains, in order to scale the service appropriately. Moreover,
the importers and exporters are supported by sovereign federable systems. Therefore, there is at
least one trader for each sovereign system involved in the world-wide federation.

For scaling reasons, a trading domain can be further divided to sub-domains, or the traders
can be replicated to share the load of import requests. The trader can also be replicated for avail-
ability. However, these reasons for creating multiple traders do not result into trader federations,
but into distributed trader solutions. The difference between these concepts is in their adminis-
tration: federated traders do not share their administration while distributed traders do.

This section studies problems specific to the cooperation of multiple traders, i.e., how inter-
working can be reached in cases where different techniques have been selected at the trading
domains.

100 5 TRADING MECHANISM

5.3.1 Trader federation vs. distributed trader

In order to further clarify the distinction between distributed traders and trader federations, we
study several aspects of the trading administration and communication technology.

In the previous section, we concluded that the trader administrator can restrict access for
trading services, and specify the set of service types understood within the trading domain. The
service type specification further declares the properties in each offer, property names and prop-
erty value sets. The administrator can also define criteria for matching, preferences, ordering and
cardinalities to be obeyed in each import action. Moreover, the platform selected to support the
trader determines the technical representation of offers – whether they are represented as objects
or just name-value pairs – and the transport protocols used for data communication.

In case of distributed traders, all trader objects involved obey the same rules in all of the above
mentioned aspects: they use the same data communication protocol, they use the same service
types, same property names, and they govern import actions with the same criteria.

In case of trader federation, all trader objects involved may independently make decisions on
these aspects. Such trader objects that share some of the service types and are able to transfer
information among themselves can forward import requests and results among themselves. A
major problem is to find suitable traders to cooperate with and establish the federation. Further-
more, the techniques for delegating imports and collecting import results are nontrivial because
of the heterogeneity.

A distributed trader constellation is rather static in nature. The trader objects are assigned
to a group of computers and expected to work together. Dynamic behaviour occurs because of
failures and failure recovery. In contrast, a trader federation is very dynamic in nature. In an
extreme case, each import operation initiates a new graph of traders.

The purpose of trading federations is to allow a world-wide process for import actions starting
from any trader object. The trader federations do not actively propagate exported offers. The
purpose of distributed trading is to create an available, trustworthy trading service. The traders
can export and import from each other and also have a logically centralised administration. They
can also have a decentralised mechanism for establishing a cooperation constellation.

The level of autonomy and heterogeneity of federated and distributed traders differ. A single
administration provides a distributed trader constellation. In such a constellation, the traders
can have separate failure recovery mechanisms, separate access control mechanisms, concurrency
control and storage systems. However, the policies controlling these things are equal in all traders.
For example, although the access control mechanisms are separate, the permitted access group is
the identical set of clients. The existence of several administrations forces the use of a federated
trading constellation or a federated infrastructure that supports a distributed trading service. The
traders can use, for example, separate type systems. Chapter 7 studies two methods of construct-
ing a trading service in the presence of federation requirements.

5.3.2 Federation establishment

Establishment of trader federation starts from finding out suitable cooperation partners. This can
be achieved by active search or by using previously stored information. During the federation
establishment, the suitability of the partners is considered in terms of type systems, name systems,
security systems, and information transfer capabilities. Problems created by differing import
action policies are handled at import processing time.

5.3 Cooperation of traders 101

Acquiring information on other traders

Traders can learn about each other by three different techniques: introduction by administrator,
search from a global repository of well-known traders, and active exporting of trading offers to
other traders.

The first technique, introduction by administrators, is simple to implement. The administrator
creates a list of known traders including their names, addresses, type repositories, and other de-
tails. This technique suffers from the number of potential traders and the burden of maintaining
the addresses as they change. The more information is included about each trader, the more
human work is involved; the more information needs to be retrieved from the remote trader at
run-time, the more time each federation establishment takes. In a world-wide environment, this
technique does not scale enough. The development of Internet name services can be used as an
analogy for predicting the potential behaviour.

The second technique, search from a global repository, is an improvement of the first tech-
nique. The Internet name services were initially supported by locally administered lists of all
hosts. Later, a hierarchically administered domain-based system was introduced. In a similar
way, traders can be organised to a hierarchy. However, trading is designed to help in searches
where the name and location of the search target are unknown. Forcing a strict name-based or
location-based identification of the search engines involved would contradict this goal.

The third technique, active exporting of trading offers, utilises the trading mechanism itself
to spread information about traders. In this technique, a new trader gets a small set of trader
addresses from its administrator. The new trader then exports an offer of its own interfaces to
these traders. The traders holding that offer may be allowed to reveal it either by further exports
or by giving it as a response to an import for trading services. The trading offer is under the
control of the new trader object through the exporter policy that may restrict the offer visibility to
importers. The technique resembles probabilistic sparse diffusion multicast [206]. The problem of
this technique is the difficulty of finding out the full set of traders – in some respect, for example,
all traders including offers of a certain service type.

Techniques for storing knowledge about potential federations

Once information about potential cooperation partners is found, it must be stored for use. Again,
three different techniques are presented: a separate trading offer storage [123], links [96], and
proxy offers [44, 96].

The trivial technique is to store trading service offers as they are received from other traders
or from the administrator. However, establishing a communication relationship based on the
unprocessed information may be too slow.

Links are pointers between traders. Links can be created by trader administrator, or by the
trader object using trading offers. A link includes the remote trader’s name and address, and
information about the service types understood by the remote trader. The link may also include
translation rules for mapping between different type systems. In addition, private information
about the quality of the trading service available can be stored. The use of the link can as well be
restricted by a set of criteria. The criteria can contain statements of the access rights and acceptable
import requests to be delegated through the link. We will study the effect of link criteria when we
study the propagation of an import action through a graph of traders.

Proxy offers can serve as simple links. Proxy offers allow offers to be retrieved from any
external object in a similar technique independent whether the object is a trader or not. Proxy

102 5 TRADING MECHANISM

offer has an interception mechanism embedded, as it includes a recipe for constructing the service
invocation message from the available import parameters. Proxy offers can be used, for example,
for integrating directory services or database services to traders.

Federation constellations

As a constellation, trader federation is a trading community where trader objects assume the
importer roles and trader roles. One trader object resolves part of an import request coming from
a local importer object by delegating the import to another trader. The protocol between the two
traders is the same protocol used between any importer and trader.

Another community is created when the traders search for suitable cooperation partners. The
trader objects assume the roles of ‘exporters’ and ‘traders’ when a new trader joins the network
of traders. The trader objects assume the roles of ‘importers’ and ‘traders’ when they search for
new traders from which they could import.

These two communities should not be mistaken as being both part of a trader federation. In
this section, we consider only the trader federation community that handles import actions.

In the trader federation, each trader object processes import actions in isolation. Although
the importer may be a trader object, the requested import is still processed using the same rules.
Only two additional problems are induced by the federated import processing. First of all, the
access control mechanism must be aware of the federation scheme. We discuss access control in
more detail in Chapter 7. Second, the importer is able to guide the search through a set of traders
by using a scope criteria parameter in the import request.

The trader federation has a very complicated and very dynamic topology. Starting from each
trader, an edge can be drawn to all those traders that are reachable, i.e., from which the start-
ing trader could directly import offers of the correct abstract type. From these target traders, a
continuation edge can be drawn to all those traders to which the import could be forwarded.
Continuation of this process would result to a graph characterising a single trader with imports
of a single service type. The graph would be different started from another trader, or based on
another service type.

The trading graphs are based on the knowledge the traders possess about each other. The
edges have no technical meaning as reserved communication channels. Channels can be estab-
lished and maintained depending on traffic.

5.3.3 Distributed traders

In this section, we map the trading service components to the ODP infrastructure (recall
Chapter 3). For the construction of a trading service, we use some storage (offer storage, link
storage, offer cache), a trader object, and the trader interfaces. For the communication within
a single trader community or between federated traders we use channels. The engineering lan-
guage concepts used include capsule, cluster, and node. The study is summarised in Figure 5.5.

The trader object is a composition of capsules for offer storage and link storage. Each offer
storage capsule must also implement all of the offer space modification operations. Furthermore,
as offer cache is created by the same operations, also the offer cache must be part of the same
capsule. Also the link storage must be implemented by a single capsule that contains link man-
agement operations. A single capsule can support both kinds of storage.

5.3 Cooperation of traders 103

Requirement of a capsule to contain all trading functionality does not restrict the logical (com-
putational) trader object to a single capsule. The storages of a trader can be partitioned to a set of
capsules as long as all these capsules also support the operations.

A trader object can contain a set of capsules within a node that is controlled by a single nuc-
leus. This means that the trader is fully under the control of a single administration. If the cap-
sules reside in separate computers, the single nucleus is also distributed to all these computers
and thus it controls the consistency of the operating environment.

The trader object is accessible through a set of interfaces. From Definition 3.6 we recall that
an interface implies the location of the access point and the access technique for all communica-
tion. Thus, the structure of the communication channel between the processing capsule and the
external access point becomes specified. As the trader object consists of a set of equal capsules,
also the trader’s channels must be connected to the same set of capsules. There are two choices:
the access point itself can be expressed as a set of capsules, or a single access point is represen-
ted externally but the channel structure forks separate paths to the capsules. The ODP reference
model definition of object location ([92, clauses 8.9, 8.10, and 8.11]) allows multiple access points
for a logical interface. In both cases, a partial channel must reach from the capsule supporting a
trader partition to an external access point. This partial channel is composed of channel objects
encapsulated by a cluster within the same capsule as the trader partition.

The channel structure contains security stubs that consult security services. The incoming
requests must be checked for access rights. The trader interfaces may each have a different pro-
tection scheme that is also dependent on the general security policies of the system. In addition
to this general security scheme, the trader operations use separate policies for testing the request
further before accepting it. However, these tests are part of the operation logic and implemented
within the operations themselves.

This study shows the partitioning of a logical trader to physical processing objects within a
node. A node may be a complex, distributed system if it only has a single operating system to
control it. This partitioning to physical processing entities is necessary because of resource man-
agement reasons within the supporting node. These reasons are separate of those reasons leading
to trader federations. Still, confusion arises in designs that suggest a single model to describe
simultaneously both technical partitioning and semantical isolation. However, the algorithms
applied to both cases are indeed similar, as shown in the following section.

5.3.4 Distribution and federation of import

Import in a federated or distributed constellation does not differ much from the single trader case.
The import is delegated from one trader object to another using the rules for importer and trader
roles. We study first, how the importer can guide the search within a group of traders. Then,
we consider how import requests and import responses are manipulated when traders pass them
between each other. We summarise the extensions to the trading behaviour by giving an updated
version of the import operation algorithm.

Guiding the propagation of import in the trading graph

When an importer initiates an import, the import may be propagated to the full trading graph
or part of the graph. The order in which the graph is traversed depends on two aspects. First,
the trader can initiate delegated imports in parallel to the searches it initiates within its private

104 5 TRADING MECHANISM

offer

storage

offer
cache

trader interface:

modification operaitons
offer

offer

storage

offer
cache

trader interface:

modification operaitons
offer

link

storage

channel section

channel section channel section

TRADER OBJECT

CAPSULE CAPSULE CAPSULE

trader interface:

link

modification

operations

channel sectionchannel section

nucleus

CAPSULE

CAPSULEchannel controller

Figure 5.5: An example mapping of trader object components to an ODP node.

repository, or the trader can first search its private repository and only after that initiate delegated
imports. Second, when the delegation phase is started, the initial trader can issue subsequent
imports either as asynchronous, parallel requests, or as a sequence of synchronous requests.

The propagation of the import along the trading graph is restricted primarily by the importer
constraints on the resources to be spent on the search. Therefore, the constraints must be passed
along with the import request through the graph. In addition, each trader that is passed through,
must predict or measure the resources it spends for the search, and must also update the resource
constraints correspondingly.

The number of hops, that can be reasonably taken for resolving an import request, is naturally
restricted by the application area. Each hop increases the resulting response time remarkably.
Figure 5.6 illustrates the situation with assumptions of trader processing times of 4 ms (fast) and
100 ms (slow), and round-trip network delays of 50 ms for LAN and 250 ms for WAN. In order to
decide reasonable number of hops for different situations, we consider these linears in context of
response times of commonly used applications. Typical response time acceptable to a human user
is within the range of 1-10 seconds. Response times for name services are within the range of 10-

5.3 Cooperation of traders 105

1500 ms [205]. Some telecommunication applications may produce 2800 requests per second, so
we gather that the response times should be close to 4 microseconds [185]. Thus, in cases where
the trading service is used for browsing only, the depth of the trading graph is practically not
limited. However, for the convenience of the user, some progress reports should be available at
all times. In cases where trading is embedded to other services, for example replacing traditional
name services, the trading graph depth is limited practically to three hops.

0

2000

4000

6000

8000

10000

0 2 4 6 8 10

R
es

po
ns

e
tim

e
in

 m
ill

is
ec

on
ds

Number of hops

"Slow traders over WAN"
"Fast traders over WAN"
"Slow traders over LAN"
"Fast traders over LAN"

"Browsers"
"Name Services"

"Telecom application"

Figure 5.6: Analysis of the number of hops in the trading graph acceptable for different type of
applications.

The propagation of the import can also be restricted by explicitly naming the traders in which
the import should be processed. This possibility is actually a source based addressing scheme
and therefore requires good knowledge of the topology of the trader federation. A special case of
this source routing is found in some traders: a special ‘resolve’ operation for starting an import
from a named, remote trader.

The propagation can be restricted also by restricting the number of edges traversed in the
graph. This can be done either by counting all edges, or just counting subsequent edges and
treating parallel searches as one unit. A special case of hop counts can be found in some traders
that use flags for ‘allowed’, ‘denied’, or ‘forced’ delegation of an import (Section 8.2).

Delegating imports

In a trader federation, or even, in a distributed trader constellation, an import is resolved by a
chain of trader objects. In the chain, each trader object acts as an importer towards the next trader

106 5 TRADING MECHANISM

object. The subsequent imports can be initiated either in parallel or serially starting a new import
only after receiving offers from the previous trader object.

For the subsequent import, each trader must create an import policy that fulfils the import
policies of the original importer and the trader object itself. This is necessary, because the import
resolution process may visit several sovereign domains, and each trader object takes the respons-
ibility of, for example, the import expenses.

The import resolution chain may fork at any trader. In such case, the import policy of that
trader may be different for each outgoing chain of traders. Therefore, the import criteria are
associated with each outgoing link, instead of the trader itself.

The import policy limits the resources spent for the search. One of the problems here is how
the resources can be split among the subsequent imports. Some solutions can be found in traders
introduced in Chapter 8.

One of the resource limits is the time allowed for an import operation to return a set of offers.
The suitability of the selected time limit is of high importance. If the times are not in coherence
with each other an importing trader can proceed in providing offers without waiting results of
the subsequent import requests. In this way a lot of processing power and network bandwidth
can be wasted. The time limit cannot therefore be the only criteria for terminating an import.
We discuss various levels of asynchronous or synchronous, and QoS contracted interrogations in
Chapter 9.

Joining the import responses

In a federated (or distributed) import, the import responses are passed towards the original im-
porter through the chain of trader objects involved trough the import delegation. In each forking
point of the chain, the trader object collects import responses from several other traders. However,
the trader cannot propagate all the offers through the chain. Instead, it must apply those import
policy rules that specify response cardinality.

The response cardinality and ordering rules must be applied to the set of offers selected either
by the trader itself or the traders it imported from. As each importing trader can itself restrict
the cardinality by import policy, they can also reserve enough resources for managing the flow of
import responses. However, the result of this merging operation is rather unpredictable. All offer
sets are selected in independent processes with an arbitrary terminating rule. In addition, while
merging the resulting sets, only some offers are picked.

Extensions to the import algorithm

The processing of an import appears to have similar structure in both distributed traders and in
federated case. The difference is actually shown in the federation establishment process and the
complexity of communication during import. In distributed traders, the constellation of trader
capsules is static and established at the installation time of the trader. The communication chan-
nels between the trader capsules are also continuously present. In trader federations, the federa-
tion establishment is invoked by import requests or by administrative operations on the running
trader object. The communication channels between trader objects are created and destroyed at
run-time, depending on the traffic between traders.

When a federation is frequently exploited, the involved traders can optimise the imports by
techniques suitable for distributed traders. However, even in such federations, the possibility

5.3 Cooperation of traders 107

of independent changes for example in type systems may cause termination of the cooperation.
Therefore, the essential feature of federated traders is the negotiation capability.

As a summary of the above discussions about federated and distributed traders we give in
Figure 5.7 an extended algorithm for processing an import. The algorithm allows high paral-
lelism, but it does not yet offer an answer to the problem of how to control the communication
between two traders and how to restrict the amount of unnecessary processing and data trans-
mission.

accept the request

apply cardinalities

return to the importer

evaluate
required
property
values

search in
database
with matching
criteria
and announce
hits to the index

sort it

collect index
of reported

according to
the preferences
and collapse
according to
cardinalities

join the
preferences

join the
matching
criteria

arbitrate
cardinalities

criteria
termination
arbitrate

links
select

set alarms

delegate
imports
through
selected
links

report
import
responses
to the
index

offers and

create import policies for delegated imports

Figure 5.7: Search algorithm used within a cooperative trader.

The communication problem can be tackled by studying the possibilities of optimising the
import performance, see Section 5.3.6.

5.3.5 Administration of trader cooperation

Administrative actions that can affect any trader federation can take effect only on one trader
object. Administrative actions that affect potential trader federations include the creation and
modification of links and trader’s import policies stored per link.

A trader federation is not a static constellation of traders. Instead, each import can lead to a
different trading graph. In cases, where a group of traders communicates frequently, better per-
formance is reached if a permanent communication channel is maintained between them. We will
see later in Chapter 9 that the federated system binding mechanism supports such functionality.
Therefore, it is not a question of administrative actions at all.

108 5 TRADING MECHANISM

The establishment of a federation between traders requires that some basic assumptions about
the communication match: service types understood, properties, information exchange protocols,
and security systems involved. One of the characteristics for federated systems is the support
of constant and independent evolution of the systems. Therefore, any of these assumptions may
change. This may either increase the number of potential federations between traders, or decrease
it.

Traders can store information about potential federations into links. If the type system used
by a neighbouring trader is changed, all links referring to that trader should be reconsidered and
modified. Even if the type information is stored to type repositories, the link information may
still include type and interceptor names within link criteria.

Basically, the same administration rules are suitable for distributed traders as well. However,
the constellation tends to be more static, and the trader capsule properties tend to be similar
to each other. Still, the service types used by each trader capsule may be different because of
partitioning of offers can be based on their type.

5.3.6 Optimising the trader cooperation

Essential for trading applications is the response time of imports. In order to optimise import
performance, the interesting offers should be made available as close to the importer as possible.
However, the optimisation should not overload the communication network.

Properties of the basic import functionality

The basic import behaviour already gathers some cached offers to the traders that reside on the
route from the importer to the trader providing the offer. A simple optimisation solution is to
store these temporary copies for further use. The solution creates no extra network load, but a
deletion mechanism for outdated offer copies is needed. The time-to-live offer property can be
exploited for this purpose.

The simple caching solution also automatically creates and maintains a set of actively used,
cached offers. Users typically use a rather small set of applications that are relevant to their work,
and each application may induce a set of imports, repeating their matching criteria and import
policies.

Caching allows independent users, importing from the same trader, to reuse cached offers.
The effect experienced by the users depends on the import policies used in the import. If search
time is not expressed in import policy, the users experience a shortened response time. If response
cardinality limits the import, the result is produced with fewer resources. Finally, if no resource
limits are given in addition to search time, the response is a result of considering more offers or
importing from a greater number of traders.

In a general case, any trader can occasionally import some offers from another trader. For each
service type there tends to be a separate network of frequently used traders. Between traders, that
frequently import from each other, a communication channel can be established and maintained
permanently or based on communication frequency thresholds.

The response times for imports are affected by hit ratios of offer caches in individual traders.
Figure 5.8 illustrates how the increasing hit ratio improves the performance of imports. We as-
sume that the imported remote offers come from the distance of one hop only.

5.3 Cooperation of traders 109

There is not enough practical experience on trading applications for well-founded claims on
the hit ratios. Some commercial WWW based applications are in use, but the trading interface is
mainly used as an object database access interface. As the offer spaces are centralised by nature,
no characteristic features of trading are actually shown. Therefore, we would need more concrete
experience in world-wide environments.

We can however relate the caches within traders to two other types of caches with better
known characteristics: caches for virtual memory and for WWW servers. The characteristic load
of virtual memory contains memory references generated by some program code, with locality
properties. A typical virtual memory hit ratio is above 95 % [220]. The characteristic load of
WWW servers contains references to Web pages generated by a group of users with no strong
locality properties. However, the theme of the pages visited causes some grouping effect. A
typical Web-cache hit ratio is reported to be in the range of 24 - 45 % [49, 250]. The characteristic
load of a trader would be generated by the personel of an organisation using applications related
to the organisation goals. The locality properties of the load are not as high as in the case of virtual
memory, but higher than with WWW. Therefore, we assume, that a trader cache would have a hit
ratio in the range of 60 - 80 %. According to Figure 5.8, we can assume an average response time
in the range of 10 – 70 ms, which appears reasonable for most applications.

Performance measures on imports also depend on the scope of the search: whether the search
is assumed to produce any single suitable result or to do a more thorough search. Cached offers
can be held relatively long times in order to improve the cache hit ratio. On the other hand, too
much memory should not be consumed.

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

"Trader_hit_ratio"
"Virtual_memory_hit_ratio"

"Web_cache_hit_ratio"

R
es

po
ns

e
tim

e
in

 m
ill

is
ec

on
ds

Offer cache hit ratio

Figure 5.8: Analysis of the hit ratio in the offer cache to the expected response time.

110 5 TRADING MECHANISM

Active alternative: working set analogy

The performance of imports can potentially be improved by an aggressive working set update.
Such an update must be based on predictions on future imports. We assume that imports created
by a group of users follow a pattern characteristic to the applications used. Therefore, we can
assume that the offers requested also follow a characteristic pattern, in analogy to the working
sets [43] appearing in virtual memory systems. We can characterise a working set as a group
of memory pages typically used within a limited time period in a computer system. The same
phenomenon is present here, although in a wider-spread environment.

The working set analogy can be employed by creating typical sets of offers that are commu-
nicated whenever one of the offers matches an import. Successful use of the analogy requires, that
all traders would have a similar import profile. However, this is seldom true. In fact, there would
appear to be a set of working sets, one for each importing trader. Each offer would be flagged
by the working set it belongs to and protocols would be required for duplicating the working
set offers efficiently, without too heavy network traffic. Especially any modifications should be
propagated.

The working set analogy is problematic, because it involves more than one cache for each
trader to update. The potential number of involved traders is large, and it would in general case
be impractical to have all importers listed. In a limited case, like in distributed trader constella-
tions, such protocols would be efficient. Also, in federated trading cases, federations with long
duration can be supported, because the number of traders involved would be controllable.

The aggressive update propagation may produce too heavy traffic, and thus we analyse the
number of messages required. We assume a single trader providing updates for its client traders.
In addition to the number of clients, we consider also the number of offers involved, and the
frequency of update propagation. Figure 5.9 illustrates the increase of messaging in the system,
in cases where the trader repository includes 100, 1000, and 10000 offers, and the updates are
performed at intervals of 10 seconds, 1 minute and 1 hour. We should expect the trading service
to create at most equal network load with DNS services. In September 1991, the DNS contribution
to NSFnet backbone was about 270 messages per second [39]. It would only take two aggressively
updating traders with ten clients to reach the same level of load.

Sharing and replicating offers

In some cases, the trader cooperation may be so frequent, that it is reasonable to replicate a set of
offers in several traders. For instance, when a computing centre provides some basic service for
all departments in a company, the computing centre offers might be replicated to all departmental
traders.

The technique for maintaining the replicated offers depends on the trader implementation
environment. In a distributed system environment, for example a virtual shared memory service
can be used. Thus the trading mechanism itself does not need to be involved in the replication
functionality. In a federated environment such service does not appear, and therefore the offer
sets should themselves include corresponding facilities, in the manner that is shortly described.

Active propagation of all changed offers would in general create too much traffic to the net-
work – the number of offers was considered large enough to justify development of an additional
information retrieval mechanism. However, it is natural for the importing trader to create predic-
tions on the required set of offers, and for instance, to activate prefetches from remote traders. The

5.3 Cooperation of traders 111

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

pe
r

se
co

nd

Number of clients

’100 offers, 10s intervals’
’1000 offers, 60s intervals’

’10000 offers, 3600s intervals’

Figure 5.9: Analysis of the number of messages required for aggressive update propagation.

active partner is the one that supports the clients and thus has knowledge about the behaviour
patterns.

Active propagation of changed offers is reasonable in cases where the imports are much more
frequent than the changes. For example, in a telephone switch, the route information for a phone
is static in relation to the frequency of phone calls.

The techniques of pulling and pushing offers to another trader can be combined. The com-
bined technique requires that each offer includes, as offer properties, some additional manage-
ment information. In offers that are locally created by export, we must add a modification action
policy, to indicate what actions should be taken when the offer is modified. The choices include
(i) ‘none’ to indicate that the simple import method for propagating the offer is sufficient, and (ii)
a protocol name with a list of target traders to indicate with which protocol and to which traders a
further update is needed. In cached offers, that are either imported or actively copied from other
traders, a storage policy is required to indicate when the offer can be destroyed or how the offer
can be updated. The information required for requesting active update is similar to that of proxy
offer. The resulting offer structure is summarised in Figure 5.10.

Because the traders may represent sovereign administrations, neither the push nor pull side
of the technique can be omitted. Each side can independently decide how long the offers are
available, considered relevant, and considered to contain up-to-date information. For example,
when two organisations buy services, the intervals for checking prizing information may be dif-
ferent. The selling organisation bills according to its own prizing information, regardless whether
the buyer based the decision on old or new advertisements.

112 5 TRADING MECHANISM

* an offer identifier,
* a service type identifier,
* exporter policy, including access rules or interface for

executing access rules, and time-to-live values,
* modification policy, including active update propagation information,
* a flag differentiating between normal offers,

proxy offers and cached offers,
* in case of proxy offer:

- an interface reference,
- instructions for creating a request to be sent to the interface,

* in case of normal offer a set of items containing:
- a property name,
- either a property value, or

an interface reference and instructions for invocation,
* in case of cached offer:

- items of a normal offer,
- items of a proxy offer referencing to another trader.

Figure 5.10: General offer structure for cooperating traders.

Figure 5.11 illustrates the effect of splitting the offer space to several traders. The replicated
offer space can be exploited by partitioning the clients so that the number of requests to the trader
is equally distributed. However, at the same time, the change propagation requires more mes-
sages. In a federated case, the offer space is partitioned, but the caching effect allows some of the
offers to be picked up from traders that have earlier imported the offer. Each client is assigned
to a certain trader similarly to the scenario with replicated traders. However, the propagation of
the request is only hindered by hits in the offer cache, if the request is about a foreign offer. We
assume that each trader receives requests on the same frequency, denoted by 1. In the federated
case, each trader is able to supply the requested offer by probability of 0.5 or 0.75. The offer cache
hit ratio is 0.1 or 0.2

However, although the number of queries seems not to scale, the situation is not so bad after
all. The trading graphs are established separately for each service type, and thus the load can be
partitioned based on the service type. If the traders support only a few service types, the number
of requests is small in comparison of the total number of requests.

Long-lived imports

The frequency of imports can be decreased by allowing the importers to keep an imported offer
for a defined time with a guarantee that any changes to the offer are notified. For instance, if the
interface referred by an offer is deleted, the importer receives a notification of the withdrawal of
the offer. This kind of behaviour is called long-lived import [87, 166].

The technique requires that a list of notification addresses is available for each offer. De-
pending on the computing platform, different techniques can be used. If the computing platform
supports objects and remote object references, the importer can obtain references to offer objects
by importing. When the offer object within the trader is modified, the modifications are also vis-
ible to the importer keeping the reference. When the offer object is removed from the trader, the
reference held by the importer becomes invalid. However, the importer may still be unaware of
the changes and try to misuse either the reference or the offer contents. If the computer platform
does not support objects or object references, the import response lists a set of property names
and values. The offer stored within the trader must include a list of importers in order to be able
to send change messages.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

P
or

tio
n

of
 q

ue
rie

s
to

 a
 s

in
gl

e
tr

ad
er

Number of traders

’Replicas’
’Partitions with 0.5 sufficiency, 0.1 cache hit ratio’
’Partitions with 0.5 sufficiency, 0.2 cache hit ratio’

’Partitions with 0.75 sufficiency, 0.1 cache hit ratio’
’Partitions with 0.75 sufficiency, 0.2 cache hit ratio’

’Partitions with 0.75 sufficiency, no cache’

Figure 5.11: Analysis of the distribution of requests to traders.

Long-lived imports do not guarantee anything of the importer behaviour. The importer may
keep using the information from an outdated offer, although the trader has invalidated it. Still,
the trader is forced to use resources for maintaining address lists and sending notifications. The
mechanism also trusts in a shared time service to guarantee that the importer and the trader know
when the import deceases.

Cooperation contracts

We have earlier discussed links between traders as single-sided references from an importing
trader to another. Instead of links, cooperation contracts can be used for similar purpose.

The cooperation contracts (federation contracts [8], also implemented in [42]) differ from links
by guaranteeing that the actual communication between the traders succeeds. The guarantee
covers matching service types, access rights, and communication protocols. However, there are
no availability guarantees involved.

The cooperation contract is established by a mutual negotiation protocol. The initiating trader
creates a catalogue of its functional capabilities and sends it to another trader. This other trader
can response to appropriate requests by sending matching entries of its own catalogue and the
received catalogue. When both traders have a copy of the negotiated catalogue of capabilities, a
cooperation contract becomes established and is stored to both traders.

In addition to import actions, the cooperation contract can cover export, modification, and
withdraw actions as well.

Chapter 6

Support for trading mechanism

The users of trading services assume that service types and property specifications are simil-
arly understood by importers, exporters and traders. The users also assume that federation or
distribution of the trading service itself is masked, i.e., the users expect a federation (and distri-
bution) transparent trading service. The traders can meet the transparency requirements either
by themselves performing necessary mappings and transformations or by exploiting federation
transparent services.

In this chapter, we study services for maintaining type information, name information, and
other supporting services required by trader objects. Alternative ways of constructing a trading
service, by exploiting the services described in this chapter, will be shown in Chapter 7.

6.1 Naming

The object name management functions have a key role in the open architectures. Names are
used for addressing all kinds of objects, for example interfaces, behaviours, type descriptions,
and type relationships. Traders use name services for various reasons: for identifying offers,
links, importer and exporter objects, and for example for type names, property names, protocol
names, and policy names. Most of these names are used only within the trading domain and
never passed to other domains. However, type names and property names are passed to other
traders during federated imports. Section 6.2 will show how these special cases are supported.

To support other infrastructure functions, the object name management must offer operations
for assigning and reassigning names, deleting names, communicating names across a transport
network, making synonyms to locally and remotely managed names, and comparing names dis-
regarding their location.

6.1.1 Naming systems

A well-established set of distributed naming systems is currently in use. The interesting areas
with different kind of names include

� addresses for computers in various data communication protocols,
� identities for resources controlled by various operating systems and resource managers,
� identities for objects and interfaces controlled by various distributed system services,

116 6 SUPPORT FOR TRADING MECHANISM

� names for service types and properties including QoS properties, and
� names for service behaviour.

This list refers to ‘addresses’, ‘identities’ and ‘names’. All these variants refer to a unique
concept of some kind, but the properties of these variants differ.

An address is a location description for a communication partner, expressed in terms suitable
for a communication protocol. Each communication protocol, for example ISO/TP or TCP/IP,
have different conventions for structuring addresses. An address is a more convenient way of
expressing the target of a message than a route description that defines which signalling resources
should be used for reaching the target.

An identity is a globally unique reference to a resource, interface, object, or other entity – even
a user. Usually, for communicating with the identified entity or for accessing the identified entity,
the identity is mapped to an address. As the communication protocols for separate naming sys-
tems, the identity management systems create an additional unifying layer on top of them. The
identities of addressable entities are collected to a single name space with a single naming con-
vention. This allows easy use of identities and still allows access to the heterogeneous addressing.
An example identity system is X.500 Directory service [105].

A name also allows separation of name spaces, however, not based on differences in under-
lying technique, but based on separate administration. Separate administration means that the
name spaces can evolve independently: they can have different conventions, they may use the
same names for different entities freely, they may use different names for the same entities freely,
etc. Actually, having discrepancies in naming the same entities is not a real threat in this case:
separate administration also means that the controlled entity sets are separate. However, names
are also used for concepts like behaviour patterns and service types, that are logically shared, but
not concrete resources. Still, each open system must have concrete expressions, names, for the
concepts.

6.1.2 Scope of naming systems

In all naming systems, the names are required to be ‘globally unique’, which must be interpreted
as ‘unique within the scope of the naming system’. For different naming systems, the natural
scope differs. In each computing node, a set of naming systems is present, each having an inde-
pendent scope. For example, in Figure 6.1 the computing node X uses separate naming systems
for behaviour patterns, interface identities, and TCP/IP addresses. The behaviour patterns are
controlled in node X, and mapped to behaviour patterns in other nodes when necessary. The
node X is part of a distributed computing environment that forces interface identities to be under
a centralised control in node Z. The control of TCP/IP addresses is world-wide.

The importance of integrating the name systems of individual computing systems varies de-
pending on the kind of name system used. In addressing systems, a set of world-wide systems
is necessary. The systems must be joint together to a federation through a gateway system that
also routes the communication traffic to the network with different protocols. In identification
systems, the need is similar. However, the scoping rule is not any more just technical but also
organisational, administrative. Still, integration requires that the name spaces are joint. There
is no theoretical reason for this, instead a practical reason: current distributed platforms already
include such naming services. In systems, where plainly ideal concepts are named, other mech-
anisms can be used. The naming domains are rather large and extra overhead is created only
when a domain boundary is crossed. There has not yet been a practical integration step for these

6.1 Naming 117

controller TCP/IP addresses controller

NODE X NODE Y NODE Z NODE W

controller

controllerinterface identifiers

names
behaviour inter-

ception

controller

names
behaviour

Figure 6.1: Scopes for naming systems.

names, so the naming systems are very different. Integrating existing systems to a single name
space would be impractical and would lead to non-evolving system design.

In the following, we discuss naming concepts for distributed and federated naming. A feder-
ated naming service allows

� multiple roots for the naming hierarchy,
� multiple naming conventions used simultaneously,
� an open set of protocols for communicating between name servers, and
� resolution of potential name overlaps at communication time.

The difference between a distributed and a federated name system can be clarified by an
example, the distributed name service DNS used in Internet. Although DNS covers, in many re-
spects, multiple administrative domains, we still claim it to be an example of distributed naming.
The reasons for this classification include the following: First, the naming domains share a single
naming convention. The naming convention ensures that each domain produces only such names
that no overlap is possible. Second, communication between name servers is performed with a
closed set of protocols. Third, the resolution is based on a single, world-widely accepted root for
the naming hierarchy. All names are relative to this root.

6.1.3 Naming concepts

Context relative naming is a commonly accepted design for naming systems in distributed envir-
onments [177, 243]. Especially, federated naming framework is included as a component to the
ODP reference model [98].

Naming context is a set of relations that bind together names and entities. Formally, we give
the following definition [110]:

Definition 6.1 Context is a 3-tuple (T, R, E), where

� T is a set of possible terms, fulfilling the requirements of the naming convention in use by a naming
authority;

� E is a set of nameable entities under the control of the name authority; and
� R is the set of relations binding together terms and entities.

118 6 SUPPORT FOR TRADING MECHANISM

In this definition, we deliberately avoid using the word ‘name’ in order to avoid the usual confu-
sion between potential names that are still unbound and the already bound names referring to an
entity. To match Definition 6.1 we define also ‘name’:

Definition 6.2 Name is a relation (t,e) that belongs to the set R so that t belongs to T and e belongs to E.

This definition slightly differs from the usual meaning. We require that the whole relation (t,e) is
considered as a name, instead of t alone.

In a federated environment, multiple naming systems must cooperate. Therefore, naming
conventions and authorities over nameable entities must be considered. In a distributed environ-
ment, there can be a single authority for naming conventions, and in that case, the relation (t,e)
can be in practice replaced by t alone. However, in federated environment, such simplification
causes semantical difficulties.

Contexts can be organised into a global hierarchy that has one or more roots for starting glob-
ally unique names. Contexts can also be organised to a free-structured network where each con-
text can use itself as a starting point for the globally unique names it is able to use. In this design,
the clients of two contexts cannot directly adopt names from each other, as they are able to do
with the hierarchical, single-rooted model. The two models are illustrated in Figure 6.2.

root (/)

fi

helsinki hel

de

cs

me

us

helsinki

minä

me

yhteinen

minunmy

Figure 6.2: Single-rooted naming graph and a free-structured naming graph.

User name context can be separated from the infrastructure name contexts.
Naming domain is controlled by a single naming authority, a name server. A naming context

can be supported by multiple naming domains. In that case, the term space and the entity space
of the context must be partitioned so that each name server can operate independently from the
others.

Formally, we can define [110]:

Definition 6.3 Domain is a 3-tuple (T, DomD(R), E), where

� T is a set of possible terms, fulfilling the requirements of the naming convention in the naming
context;

� E is a set of nameable entities under the control of the naming context;
� R is the set of names in the context; and
� DomD(R) is the subset of R that is maintained and controlled by the naming authority at the do-

main D.

6.1 Naming 119

Naming federation is a group of naming domains that are able to resolve names in coopera-
tion. Federation occurs at name resolution time. The name servers do not enter any fixed con-
stellation, or join their name spaces. Instead, the name resolution process propagates through the
name graph.

6.1.4 Federated name service

The requirements for a federable name service differ slightly from the requirements for a distrib-
uted name service, because holding a term only cannot be assumed to carry enough information
about the name binding in a federated environment. Therefore, the distinction between bound
names and unbound terms is essential. In addition, it is important that multiple naming systems
do not directly bind their terms to entities, but only a single naming system has direct control over
the entity itself. In ANSA architecture, the concept of administrative naming system is used [243].
Other naming systems bind their terms to the administrative names.

The federation model affects both the structure of name objects and the naming related activ-
ities.

Name objects

In a federated name service, the names are objects that consist of

� name-server interface reference,
� term to be interpreted by that name server,
� name class (interface name, behaviour name, etc. to help the name server to choose a syntax

for interpretation),
� immutability policy,
� relationships to other names (such as ‘synonym’), and
� cache, time-to-live for cache, and re-evaluation instructions.

In comparison to DNS name objects, the above specification adds to a single name the prop-
erties that are defined for the group of names maintained by a domain. In DNS, all names within
a name domain are transferred to secondary name servers at the same time. The group of names
has a time-to-live property, they can be accessed through a given IP address, and they all use
the same syntactic format. This information is either explicated for each domain, or is implicitly
known because of the DNS protocol specification. This design for name objects follows the same
rules as we used to optimise the federated trader imports.

We need to have a small set of immutable names that are stored to all computing systems
for facilitating name management. A set of name servers must be globally named, also the name
management operations, and the attribute names and allowed values for them. In addition, the
name for operation invocation behaviour must be globally understood. The rest of the names can
be constructed based on the initial set. Such initiating names must be standardised in order to
facilitate basic infrastructure services in federated systems.

Activities

Name binding, and name unbinding activities change the contents of a naming context. The
activities are performed in the naming domain that controls the name objects involved.

120 6 SUPPORT FOR TRADING MECHANISM

Name resolution process searches for a given term t in a local naming context and finds out
the names (t,e). The result is used for referencing the entity e in a technology dependent way. If
the initial name to be resolved has some structure, each component in the structure is resolved
separately in a sequence where the found entity e is used to resolve the remainder of the name
structure.

Name communication transmits names (t,e) from sender to receiver through the infrastruc-
ture. During communication, the infrastructure may create an additional name (t2, e) or (t2, (t,e)),
at the target naming domain.

Name comparison resolves two names up to a point where it is possible to determine, whether
they denote the same entity or not. Even if the resolution is successful, the comparison result
may be undetermined, for example because of access restrictions to the names or entities. The
comparison operation may thus terminate with outcome of ‘same’, ‘different’, ‘comparison un-
determined’, or ‘comparison operation failed technically’.

6.2 Type repository services

The type repository service mediates type information that is available at run-time in federable
systems. Traders use type repository services for checking conformance between object interfaces
or for transforming other descriptive information about objects to locally acceptable representa-
tion formats. Traders could include the management of type information themselves, but separat-
ing type management aspects to an independent service provides flexibility in configuration and
supports evolution of the systems.

6.2.1 Federation of type systems

In a federated system, each participating federable system may use a separate type system. Each
type system expresses a set of logical, abstract type concepts and corresponding technical solu-
tions that are dependent on the computing platform in that system. For interoperation between
the technical solutions, a logical equality of abstract types is necessary. At technical level, in-
teroperation requires a relationship from a technical type representation in one type space to
another technical representation in another type space. This relationship is associated with the
technical conversion tools (i.e., interceptors) needed for the replacement of one technical type
with another. Concrete type mapping problems between different distributed platforms have
been studied in [23, 83]. The type repository function can also be used for mapping between dif-
ferent type abstraction layers, for instance, between the end-user view to service types and the
system designer view [194].

The federated system that is able to match different representations for a shared abstract
type, and to find suitable templates for the concrete type is illustrated in Figure 6.3. The top-
most layer represents the idea of an abstract type. It is a logical entity with no single rep-
resentation. The second layer represents a group of relevant representations for the abstract
type. Each of these representations is possibly used in a different federable system. The map-
ping between the representations is done by introducing their relationship to the ‘ideal type’.
The lowest layer represents the implementation layer, the templates. For each representation
of the abstract type there is a set of templates. At this layer also interceptors are identified for
implementing the necessary conversions between the objects fulfilling similar types. The in-
terceptors bridge between the types and the templates. An example: the ideal type is billing,

6.2 Type repository services 121

the representation of the type denotes an interface with operations ‘SendBill(addressee,
amount) ’ and ‘ReceiveMoney(from, amount) ’, and finally, a template supports an operation
like ‘Bill(ToWhom, HowMuch, Currency) ’. (The three layers of Figure 6.3 can be compared
with the layers of abstract schemata in federated databases, as described in Section 2.3.4.)

abstract type

interceptor

type description is equal to type description

type/template definition type/template definition

type abstraction

type organisation

template organisation

Figure 6.3: Three layers of type abstractions.

The conceptual requirement for federation is that the type systems include the same abstract
types [112]. Potential for federations is increased by standardising type systems. However, also
nonstandard types can be included. This supports system evolution and allows, for example,
interworking between the products of the same vendor although more generic cooperation is not
possible.

The practical requirement for a type federation is that the technical solutions at each involved
system can cooperate at least through an interceptor.

6.2.2 Type related activities

The type repository service offers operations for

� publishing realisations of abstract types,
� checking whether two type realisations are conformant and interchangeable,
� retrieving subtypes or supertypes of a type realisation,
� retrieving templates for a given abstract type,
� translating one type realisation to another,
� retrieving names for abstract types and type realisations in other type domains.

These operations have an essential role in federated systems. In the federated binding process,
the type repositories map together type and template descriptions across type system boundaries.
In other applications, traders use type repositories for an external source of offer structuring and
transformation rules.

In the following, we study the management of type definitions and relationships.

6.2.3 Type definitions

A type system consists of type descriptions representing for example interface types and related
templates. Each type description is structured depending on the rules for the abstract type it

122 6 SUPPORT FOR TRADING MECHANISM

represents. An abstract type concept hierarchy was already introduced in Figure 2.3. In the draft
type repository function [97], a set of abstract types with the same role in the system is called
as target concepts. For example, service types, interface types, and behaviour types are target
concepts.

A type definition represents an instance of an abstract type. A type definition includes a col-
lection of type descriptions, possibly in different languages [97]. A type description is a concrete
expression for an abstract type. A type definition can also contain maintenance information for
the type repository system to be able to handle the definition and description objects.

Relationships can be defined between type descriptions based on their representing of the
same abstract type. The relationship can be equality, or replaceablity via interception. If inter-
ception is required, the interceptor interface references are stored to the properties of the relation-
ship [112].

6.2.4 Service type definitions

For trading, service types are especially interesting. A service type definition is uniquely named
within the type domain. Its realisations are defined as a set of interface type definitions with
associated attributes. The attributes reflect the contract schema specific for the described service
type. Suitable attributes include quality of service issues and communication protocols.

Interface types can be expressed in various languages. For operational interfaces, a commonly
used description language is the CORBA IDL. The IDL supports expression of operational inter-
faces only, and it does not include any aspects of behaviour at interfaces. For other attributes,
there seems not to exist a commonly used description language. Instead, for example for avail-
able protocols, name enumerations are used. A study of type expressions in different system
environments is presented by [83]. Most type definitions actually represent templates.

In principle, it would be possible to deduce interface conformance based on the stored in-
terface type descriptions [97]. However, the descriptions may vary in both their language and
their presentation style, and therefore the deduction process is not reasonable during the binding
process. In a general case, the process is probably intractable [187]. Still, deductions can be done
independently and the deduction results can be stored to the type repository [111]. The deduced
relationships are called ‘asserted relationships’ [97].

The interface types can have three kinds of basic relationships. First, interface types can be
separate representations of technically same interface. Second, they can be separate representa-
tions of interfaces with a subtyping relationship. This means, that one interface can be replaced
with another without other considerations: the requested operability is supported, but some ex-
tra functionality is present on the subtype interface. Third, the represented interfaces can support
the same abstract service but differ technically so that interceptors are required.

Because the relationships between interface types may require interception information to be
stored, we store type relationship objects to the type repository along with the type descriptions.
A type relationship refers to two type descriptions and includes information for interceptor in-
stantiation. In addition to service types and its component types, such as interface types, the type
repository can store also data type names, behaviour type names, and protocol names. Different
representation domains can appear also within a single system, in order to allow different type
information users to use expressions suitable for their tasks.

6.2 Type repository services 123

6.2.5 Type definition manipulation

Modification of a type definition causes mismatches between the type system and the objects
exploiting it. Therefore, a type definition is never instantly removed from the type system, but
marked as deprecated. New offers or links cannot be created based on that type, but existing
objects can still be interpreted based on the definition [97]. Various mechanisms can be exploited
for finding out when the type is actually not used any more. Construction of such a mechanism
is easy in case of a full cooperation contract protocol, because each link pointing to a type system
also has information stored to the system pointed at. In other designs, such information is not
available.

Deletion of types is eventually necessary, because the type repository is finite in size and the
search times in the repository grow as the repository size grows. The type definitions can be
assigned with a property indicating their intended permanence [97]. Types can be classified as
immodifiable, modifiable and temporary. Immodifiable are actually never removed from the type
system, and links using such type definition can be safely used. Modifiable types are managed by
some kind of announcement protocol for changes or deletions, or the exploiters are expected to
check the definition often enough for their own purposes. A type definition, that has been flagged
to be temporary, discourages all external use.

6.2.6 Suggested realisation of service type repository

A type repository includes a set of type descriptors. A type descriptor consists of

� type repository interface reference,
� type name to be interpreted via that interface,
� classification for the abstract service type (service type, interface type, behaviour type, etc.

to help the type repository server to choose a structure for interpretation),
� names of component types (such as signature and behaviour type names),
� immutability policy (such as ‘immutable’, ‘mutable using protocol’, ‘temporary’),
� notification protocol for modified definitions,
� relationships to other types either within the same type domain or in other domains (such

as ‘equal’, ‘subtype’, ‘interceptable’),
� interceptor interface reference, and
� cache for type descriptors from other type repositories, time-to-live for cache, and re-

evaluation instructions.

Other suggestions (like [83, 11] and [162]) differ from this in four aspects.
First, interceptors are usually not included to the responsibilities of type repositories. Instead,

traders are assumed to instantiate the necessary interceptors [79]. This task can however be as-
signed to the binding process as well (see Chapter 9).

Second, it is usual that a single protocol is used for all exchange of type information, including
the distribution of changes in type definitions. In this model, we suggest that each type carries a
protocol name in case active propagation is required. This design repeats the design suggested
for offers stored to traders, and name objects in federating name servers.

Third, type descriptions from other type domains are usually not cached within the type re-
pository. There is no need for caching, because the type repositories are used separately. For

124 6 SUPPORT FOR TRADING MECHANISM

example, a trader requests the target system types separately and caches the responses if optim-
isation is considered. However, we believe that all type management aspects should be embedded
to the type repository service itself.

Fourth, an additional abstraction level of abstract service type is used here. This is reason-
able, because various business area service types are under study in consortia like OMG. They
are going to provide a framework of services for general use in business domains. Such a frame-
work is on the correct abstraction level to be used as a grouping concept. A similar approach
has been presented where artificial intelligence techniques are applied in the context of type re-
pository [194, 61]. The work suggests that different user groups describe a type with different
concepts. The type repository matches these descriptions to a single type name, which in turn
can be interpreted to a computing system specific description.

6.3 Storage

Trading function, as well as naming and type repositories, require support of information storage.
It is not necessary to use a distributed storage service, such as a distributed database. Instead, the
distribution aspects are governed by function specific behaviour. Furthermore, in a federated
environment, distribution of functionality at the level of storage service is not applicable. Still,
if trading is exploited in a distributed system only, solutions like shared virtual memory can be
used for improving the system performance.

The characteristics of trading function set special requirements for the storage system. For
example, because the goal of trading is to provide some suitable offers fast, high consistency of
the stored information is not a primary goal.

We set the following requirements for the storage system [130]:

� The access and update of information items (offers, properties) must be very fast.
� The storage must be able to handle virtual data. Virtual data values can be evaluated by

demand at the time of access. The evaluation of virtual values becomes part of the search
process within the storage, and it should allow reasonable amount of concurrency but still
remain in given resource boundaries. The mechanism for accessing virtual data can also be
used for predicting new values, based on the history of previous values.

� The access time and the cost of searches from the storage should be minimised by caching
the virtual data values after evaluation. Yet, the caching mechanisms should be sensitive to
the class of data and the cost of its evaluation.

� The storage should be able to give answers to queries even when some of the data is miss-
ing, or the evaluation of virtual data is unsuccessful (within given time limits). Incomplete
results shall be handled separately within the actual services themselves (the trading func-
tion, the type repository function), because of the different semantics.

� There is a need to update the schemata of the stored information objects without disturbing
the running searches. Changes are due to new service types and new cooperation policies
that are constantly introduced within the global system.

In a federated environment, each subsystem has a private storage. The subsystems can independ-
ently select the storage technology. They can also independently decide about the schemata of the
stored information objects. However, when cooperation with other subsystems is required, the
object schemata must be negotiated by the system administrators. The requirement of autonomy
does not necessarily lead to a distributed database problem: the system function standards will
eventually describe, how agents at each subsystem should act as clients for each other.

6.4 Operation invocation 125

6.4 Operation invocation

We can take two different approaches to the invocation of operations at the target trader interface.
In a distributed environment, the client can use an engineering level addressing mechanism

for the trader and invoke the operation without any transparency or quality of service require-
ments. This can be done for instance on any straightforward RPC implementation that trusts in a
single administration on both the client and server side. However, if we wish to exploit trading in
a federated environment, also the operation invocation mechanism for trading operations must
follow the federated design.

In a federated environment, a major problem is that the platforms may have different invoc-
ation techniques. The problem is solved in a generic way as described in Chapter 9. Although
the generic model exploits trading as part of the mechanism, the traders can still use a simplified
version. Instead of trading, they use naming when addressing each other. The trader names are
found by passing trading service offers or by establishing links between traders, as described in
Chapter 5. The federated binding mechanism creates a channel between the client-trader interface
and the server-trader interface. The components within the trader are independently selected by
the federating systems so that the channel sections meet at the border, at a communication port
with some protocol agreed. For the binding requests, there is an initial network of systems that
accept requests from each other using a predefined protocol.

6.5 Security and trading service availability

In this dissertation, we concentrate on the mechanisms that allow new cooperation relationships
to be established automatically. However, the mechanism must be restricted in order to ensure
security and supplemented in order to improve dependability of the trading service. Although
the security aspects are not within the scope of this dissertation, this section includes some obser-
vations about dependability and trust of trading systems.

Combining secured services and trading

Traders can be used for isolating systems form each other, when they include both secured and
public services. Public services can be announced through the trader, and meanwhile, only au-
thenticated clients have knowledge about the secured services.

Problems arise if secured services are traded. In that case, all offers must be protected as
carefully as the services themselves, i.e., the service offers may not be available for clients unau-
thorised to use the services. If several security groups use the same trader, also each offer must
be further tested for access control before revealed to the importer. This may cause decreased
performance. Therefore, it is recommendable that each separate security group uses an isolated
trader. Federation is not recommended for secure services.

Threats for trading service

In addition to the traditional threats of message passing (like eavesdropping, replaying messages,
changing messages) trading services have some special concerns.

Trading service availability can be compromised by flooding a trader with offers or compu-
tationally intensive import requests. The potential can be decreased by including import policies

to the trader. The policies can effectively restrict the resources used for a single request. Also, the
policies can restrict the frequency of requests from a single object.

Exporters can mislead a trader to execute unwanted operations by selecting improper inter-
faces to be used for dynamic property value evaluators. The trader administrator can prevent
this in two alternative ways. First, the trader’s export action policy may restrict the interface
types within each offer. Second, the administrator can deny the use of dynamic properties totally.

Trading service availability

The trading service is in many cases a potential single point of failure in a system. Therefore,
special care must be taken to ensure the dependability of the traders.

The trading service availability can be improved by traditional database replication mechan-
isms with log-based recovery [32]. However in some systems, the recovery phase may be too long
in comparison to the frequency on which offers or property values are changed.

Another approach for improving trading service availability uses active replicas and a proxy
agent that multiplexes the requests to a selected object [259, 126]. The multiplexing decisions are
done based on the response times of the replica group members. The mechanisms also allow load
balancing within the replica group.

Federated security services

Security of a federated system requires that the peer objects are trusted and that there exists a
trusted third party for authentication [165]. The main goal in current security services is to protect
the communication that is assumed to tunnel via a hostile environment.

In principle, federable systems are free to join federations, but the community of federated
systems only accepts new members if it has reasons to trust the new member. In current systems,
like Internet, a system is trusted, if an existing member agrees to join it to a well-administered
naming domain. However, this kind of mechanism is not sufficient for secure federated systems.
All addressable systems are not equally trustworthy [237].

The OMG consortium is working on a secure interworking model [171]. The model trusts in
a shared OMG platform architecture. The mechanism is not sufficient for federated systems.

A solution to the trust problem may be found from other areas of human life: law of contract
and notary. When two organisations make a legal contract on something they can ask the services
of a notary. The notary may have records about the trustworthiness of the organisations, and the
notary usually stores a copy of the contract so that it cannot be repudiated. In computer networks
national notary can be used for logically ‘closing’ the network. Anybody can connect a computer
to the network, but everybody is considered suspicious in the beginning. If a trusted binding
is required, a suspicious system may not be involved in the establishment process. Everybody
is however free to request that a notary gives a ranking for the system trustworthiness. In the
binding process between objects, an object may be reachable or not depending on the rank of its
supporting system. The notaries can be used for building a set of semi-trusted systems. The PGP
system (pretty good privacy) [260] already presents a system with this kind of features. However,
the problem of trust between systems cannot be solely solved by the computer science methods,
instead international laws must be introduced on the field.

Chapter 7

Realising trading functionality

Trading functionality can be implemented on top of the platform services discussed in the previ-
ous chapter. However, the appropriate design it is not straightforward. The design must consider,
beside the local organisation, also the cooperation facilities of the trader. In this chapter, we dis-
cuss the effects of two different approaches. The first approach trusts in a set of integrated mid-
dleware services and resolves all trading and type system related problems within the trader. The
second approach exploits the federated system model at various layers: it builds trading services
on transparent naming federations and on transparent type system federations.

7.1 Interworking model

In the interworking model, the trader designer trusts that the cooperating traders work on plat-
forms with a shared architecture. Therefore, assumptions can be made on communication system,
naming system, subtyping system and description languages used to describe types. In this en-
vironment, the only problem related to administrative domains is the potential use of different
type systems. Therefore, separate type repositories are used for each administrative domain, and
the traders explicitly make type queries to these type repositories. The design is illustrated in
Figure 7.1.

In this interworking model, the administrative domain is equivalent to the type system do-
main. This interpretation is commonly used in projects working with CORBA platforms.

The design problems to be solved in this model include the following questions:

� How a trader propagates a request to another trader?
� How modification or deletion of a type definition affects trading?
� How modification in a type system is propagated from one trader to others?

When a trader intends to propagate a request (import or export) to another trader, it must first
check that the type definition involved in the operation is similar on each type system domain or
whether some translation is necessary. The mechanisms for doing this were already discussed
in Section 6.2: searching based on type name, asserted relationship, or comparison of interface
signatures.

Modification of a type definition causes new versions of the types to be created. The existing
service offers and links are preserved by the trader, but new offers are expected to refer the new

128 7 REALISING TRADING FUNCTIONALITY

description
language
system

subtyping system

naming system

communication system

type type
repository repository

trader trader

Figure 7.1: Interworking model.

type version. Similarly, type deletion takes full effect only after the final offer has been withdrawn
from the trader.

If cooperation contract protocol (recall Section 5.3.6) is used, the trader whose type system is
changed, can start a renegotiation of the cooperation contract each time a service type is intro-
duced, modified, or deprecated. In other cases, traders must actively browse each other’s type
systems before each interaction. The amount of queries can be decreased by caching immutable
type definitions of other type systems within the trader.

7.2 Federated model

In the federated model, the trader designer assumes that the cooperating traders work on separate
platforms without a shared architecture and have separate designs for type systems. Even name
systems are not necessarily under shared control. Therefore, assumptions can be made only on
communication system.

In this environment, it would not be reasonable to expect the traders to explicitly manage all
administrative domains of all the middleware services. Instead, all middleware services includ-
ing the type repositories are exploited in a federation transparent way. The traders make only
local queries to the local type repositories, and local name servers, which in turn take care of co-
operation with the corresponding services at the other trader’s domain. The design is illustrated
in Figure 7.2. It should be noted, that there is no requirement for the naming system domains
and type repository domains to coincide with trading domains. Each trader has one interface for
each of these services to support it, but for example a type repository may support many trading
domains.

The design problems to be solved in this model include the same questions as in the inter-
working model. In the designs, the responsibilities for actions have been placed differently. The

7.3 Channels between traders 129

bootstrap naming system

trader trader

naming
system

naming
systemmappings mappings

type
repository

type
repository

description
language
management

description
language
management

relation-
type

ships

type
relation-
ships

communication system

Figure 7.2: Federation model.

supporting services must be federated and offer a federation transparent communication envir-
onment for the traders. The situation is briefly studied in Section 7.3.

The federation model introduces also a new problem. The model cannot assume any more
that all service types are defined in a single language, not even within a single type system. This
problem is solved by including several language expressions into each type definition, as de-
scribed in Section 6.2.

7.3 Channels between traders

In order to understand how a trader propagates a request to another trader in the federated
model, we study the channel between two traders. The example illustrated in Figure 7.3 is an
extreme case. Most federations are expected to occur between domains that have some resemb-
lance with each other. In this section, we only consider the structure of the channel, in Chapter 9
we study how the channel is created. For the federation model, only the two topmost components
are interesting.

In the federated model, the trader constructs the request in the format it would require from
its own clients. This is in contrast to the interworking model, where the propagating trader must
format the request in such a form that is required by the clients of the target trader. The channel
between the two traders is, in the federated model, able to do all necessary transformations for
the request.

The client stub (Figure 7.3) represents the client role interface. It is not a generic RPC client
stub, but an entity that is responsible of checking and translating application type specific aspects

130 7 REALISING TRADING FUNCTIONALITY

channel

controller

type

interceptor

server

stub

server

binder

server

protocol

object

trader A

client

stub

client

binder

client

protocol

object

type

interceptor

protocol

interceptor

trader B

Figure 7.3: Channel between two traders.

of messages that pass through the channel. In this case, the client stub must be aware of the import
and export operation parameters, like service type and associated property types. The client stub
interrogates the local type repository for a suitable transformation routine for the message based
on the local service type name and the target trader interface reference.

The type repository server is able to identify the target type repository by the information it
can find based on the target trader interface reference. The type repository server may trust in
the locally asserted relationships to the target system types and return a reference to a suitable
interceptor. On the other hand, the type repository server may invoke a search of conformant
types at the target type repository server. The result of this search is then cached as asserted
relationships.

In comparison of the interworking model, the federated model moves two tasks from the
trader design to other system components. First, the transformation of trading related requests
is moved from the trader object to the client stub. This move allows the trader implementer
to exploit generic binding services for federated systems. Generic services are more critical for
the system behaviour and performance, and therefore the developers make more effort for their
correctness and optimisation. In addition, usage of a generic service also reduces the amount of
heterogeneity in the systems. Second, all type conformance related aspects – decisions related to
propagation of type changes and caches of relationships – are embedded to the type repository
service.

7.4 Performance considerations 131

7.4 Performance considerations

The models can be characterised by the amount of network traffic they generate, the amount of
storage they need at each trading domain, and the expected response times for import operations.

We can study the behaviour of the trader and type repository combination in three different
scenarios. In the first scenario, traders hold standard links to each other. In the second scenario,
traders negotiate cooperation contracts. In the final scenario, traders hold type specific links to
each other. These scenarios do not differentiate whether the stored information is within the
trader or within the type repository and thus the scenarios apply equally both to the interworking
and to the federative model.

In the first scenario, three queries are involved each time a cooperative trading request is pro-
cessed. First, the importing trader queries the target trader for the type repository interface. A
standard link contains an interface reference to target trader interfaces for importing and export-
ing. Either of the interface references can be used for interrogating the target trader for its type
repository interface. Then, a query for conformant type specifications is performed. For each
trading request, only the service type requested is checked. Finally, the actual trading request is
performed.

This scenario implies that each import request requires six messages to be passed across the
network. However, cached information does not exist and thus no additional memory require-
ments are present. The drawback is however the slow response times because of the high traffic.

As an optimisation, the responses for conformant type specifications can be stored when quer-
ied for the first time. As well, the type repository interface of each trader can be stored for further
use at the initial query. However, the information is updated at some intervals. This optimisation
behaves like the third scenario, when implemented efficiently.

In the second scenario with cooperation contracts, queries about the type repository and con-
formant types are performed before entering a cooperation phase. The contract is stored on both
the requesting trader and the target trader. It contains all type relationship information applicable
between the two traders. The negotiation is performed each time the type space of either trader
changes. However, during a single trading operation after the negotiation, only a single query for
the actual import is needed.

The drawbacks of this scenario are high memory requirements and high deviation of expec-
ted response times. The memory requirement at each trader increases linearly when either the
number of cooperating traders increases, or the number of service types increases. The response
times of import operations fall in two groups. Fast responses are achieved under normal oper-
ation when the cooperation contract is in effect. Each import operation only involves a request
and a reply message. Very slow responses are given when an import is started during a coopera-
tion contract negotiation. The import operation must wait until the negotiation is finished, which
requires an interrogation for each involved service type.

In the third scenario, the previous two approaches are combined. A link is negotiated when a
change takes place, but the amount of information stored or cached is restricted. Also the amount
of messages is restricted, because only one service type is involved. The requesting trader has
grouped the links based on its local type system. Each of the type specific links carry both the
target trader and the target type repository references, and also cache for applicable interceptors.

7.5 Global trading system organisation

In a global environment, the performance of the trading service is dominated by network delays
in communication. We have learned, that trading graphs should be restricted in depth depending
on the network delay (LAN or WAN) to 3-4 hops (recall from Figure 5.6). We have also learned
that the best method for decreasing the load of a single trader in the global system is to isolate
different service types to separate traders (recall from Figure 5.11).

The study of cooperation between traders and type repositories have further shown, that each
type system involved creates an additional negotiation level. Instead of using 3-4 hops solely for
the cooperation between traders, we have to allow 1-2 cycles for type repository negotiations.
The type repositories can work on 1-2 interrogations only if the trader links are either optimised
standard links or type specific links. This gives further support for the organisation of offers based
on their service type.

Similarly to trading, type repositories also benefit from caching and prefetching strategies.

Chapter 8

Discussion on some traders

In this chapter, we discuss some trader realisations. Two trader designs are discussed in length,
the ODP trading function standard [96, 108, 7] and the DRYAD trader prototype [126]. From some
other traders we point out their contributions. The chapter is concluded with a comparison of the
designs.

8.1 ODP trader

In the ODP reference model standard the role of trading is expressed in two ways. Firstly, the
trading function is defined to offer means to advertise and retrieve information about available
services in the system, i.e., to mediate information about object interface instances. Secondly, each
object in the system is statically bound to a trading service interface. Only the trading service is
guaranteed to be available for all objects, although for example a binding service would be more
essential as we will see in Chapter 9.

The ODP trading function is not dependent on any specific platform, instead the assumed
environment is expressed in terms of ODP engineering viewpoint language.

OMG has adopted the ODP trading function standard computational specification as its object
trader service [169, 173]. The OMG submission is a joint submission of AT&T/Lucent Technolo-
gies, CRC for Distributed Systems Technology, Digital Equipment Corporation, Hewlett-Packard
Company, International Computers Limited, Nortel Limited and Novel, Inc.

The TINA architecture also includes a trading service in the DPE architecture [213, 224]. The
trading service sketched resembles the 1992 working document on ODP trading [87]. However,
we expect the current ODP trading function standard to be adopted and implemented in TINA
auxiliary projects.

8.1.1 Trader object composition

All trader objects contain

� a set of offers available for import,
� a set of attributes that provide information about policies affecting trader behaviour at run-

time, or affecting the import policy of a propagated import,
� a set of interfaces.

134 8 DISCUSSION ON SOME TRADERS

Traders can contain different sets of interfaces, thus providing different levels of functionality.
The functionality levels are expressed as standardised conformance classes.

Depending on the conformance class of the trader, it can also contain

� a set of links representing paths for propagating queries to other traders, and
� a set of proxy offers that are an intermediate form between offers and links.

We will first review the offer space and trader attributes. Then we will review the activities
related to each conformance class separately. The two cooperation constellation forms, exploiting
links or proxy offers, will be discussed in the context of the appropriate conformance classes.

Offer space

The ODP trader can include normal or proxy offers. We discuss proxy offers later in Section 8.1.6.
The normal offers include a property name, service type name and a sequence of properties (Fig-
ure 8.1).

The trader can exploit the service type name for querying the type repository for an interface
type name for the service described, and a list of properties. Each property is defined by its name
and data type, and it can in addition be flagged to be ‘mandatory’ and ‘readonly’. A non-flagged
property is considered to be ‘changeable’ and ‘non-mandatory’. A ‘mandatory’ property must
always be present in all offers of that service type. A ‘readonly’ property is considered immutable.

typedef string Istring;
typedef Istring PropertyName;
typedef sequence<PropertyName> PropertyNameSeq;
typedef any PropertyValue;
struct Property {

PropertyName name;
PropertyValue value;

};
typedef sequence<Property> PropertySeq;
struct Offer {

Object reference;
PropertySeq properties;

};
struct OfferInfo {

Object reference;
ServiceTypeName type;
PropertySeq properties;

};

Figure 8.1: IDL specification of offers in ODP traders [96].

Attributes to describe trader policies

The trader policies specify which optional capabilities are supported by the trader. The trader
attributes also express what kind of offers are accepted from exporters and what facilities are
available for importers. These policies are made available to trader attributes (Figure 8.2) so that
external objects, like other traders, can query the attribute values.

The ODP trader includes three methods for managing changes of service offers: dynamic
properties, modifiable offers, and proxy offers. For dynamic properties, normal service offers
include a reference to a private service offer evaluator interface for each dynamic property. A

8.1 ODP trader 135

interface SupportAttributes {
readonly attribute boolean supports_modifiable_properties;
readonly attribute boolean supports_dynamic_properties;
readonly attribute boolean supports_proxy_offers;
readonly attribute TypeRepository type_repos;

};

Figure 8.2: IDL specification for trader policy attributes [96].

proxy offer includes only an evaluator interface that can be used to interrogate for a suitable
service offer. The benefit of proxy offers is that the external evaluator may do other tasks in
addition to the offer selection. For instance, the evaluator may reserve resources for the service,
log usage of the service, or the server can be instantiated as the service offer becomes selected.
The third method of making changes to service offers is to use the modify-service-offer operation
that is specified for exporters to use.

The trader policy attributes also specify which type repository interface it uses to obtain type
descriptions.

The standard also specifies another set of trader attributes. These attributes set technical limit-
ations for the import operation execution (Figure 8.3). These policies restrict the number of offers
to be searched, the number of matching offers to be sorted, the number of matching offers to be
returned, and the number of links to be traversed in sequence in a path leading from trader to
trader. The scoping policies also require the trader to state, when it federates with other traders:
always, only when no local offers are suitable, or never.

interface ImportAttributes {
readonly attribute unsigned long def_search_card;
readonly attribute unsigned long max_search_card;
readonly attribute unsigned long def_match_card;
readonly attribute unsigned long max_match_card;
readonly attribute unsigned long def_return_card;
readonly attribute unsigned long max_return_card;
readonly attribute unsigned long max_list;
readonly attribute unsigned long def_hop_count;
readonly attribute unsigned long max_hop_count;
readonly attribute FollowOption def_follow_policy;
readonly attribute FollowOption max_follow_policy;

};

Figure 8.3: IDL specification for trader import policies [96].

These policies can be nominated by the importer too, but during an import the actual value
is limited by the corresponding trader attribute. ‘Search_cardinality’ is a policy for nominating
upper bound for the number of offers to be searched. ‘Match_cardinality’ is a policy for nom-
inating upper bound for the offers to be selected in the search process. ‘Return_cardinality’ is a
policy for nominating upper bound for the offers to be returned to the importer. ‘Hop_count’ is a
policy for nominating upper bound for the depth in the trading graph to be traversed. ‘Max_list’
determines the upper bound for the number of items in any list returned by the trader. The rest
of the items to be returned must be included to the corresponding iterator object.

Both attribute sets are packed to interface structures in the IDL specifications (Figures 8.2
and 8.3). This is the idiosyncrasy of IDL for expressing that other objects – like other traders – are
allowed to query the attribute values.

136 8 DISCUSSION ON SOME TRADERS

ODP trader interfaces and conformance classes

The ODP trading function standards define five interfaces: Lookup, Register, Link, Proxy and
Admin. Lookup interface supports operations for importing offers from the trader. Register
interface supports operations for modifying the set of normal offers stored within the trader.
Proxy interface is analogous with Register interface, but supports operations for modifying the
set of proxy offers instead. Link interface supports operations for creating and modifying links
to other traders. Admin interface supports operations for modifying the trader attribute values.
Not all traders are required to include all these interfaces.

The ODP trading function standard specifies six conformance classes for implementations:
query trader, simple trader, stand-alone trader, linked trader, proxy trader, and full-service trader.
The trading function features are linked in a set of interfaces so that the conformance classes can
be constructed by composing the interfaces, as shown in Figure 8.4.

interface TraderComponents {
readonly attribute Lookup lookup_if;
readonly attribute Register register_if;
readonly attribute Link link_if;
readonly attribute Proxy proxy_if;
readonly attribute Admin admin_if;

};

Figure 8.4: IDL specification for a full-service trader object [96].

8.1.2 Query trader

A query trader can serve a Lookup interface, that implements only a ‘query’ operation. The query
operation interface is specified in IDL in Figure 8.5. The input parameters represent matching cri-
teria (‘constr’), preference criteria (‘pref’), and technical selection criteria (‘policies’). The potential
content of the ‘policies’ parameter is represented in Figure 8.6. Most of the import policies restrict
the same aspects as the trader import policies. However, importer can also restrict type conform-
ance to exact match instead of allowing subtyping rules to be used. In addition, the importer can
force the query to be started at another trader by specifying a starting trader. Further parameters
of the query operation define what are the desired property values to be returned.

The output parameter set of the query operation introduces a combination of techniques for
transporting offer contents. The first output parameter includes a list of offers represented as
pairs of field name and value. The second output parameter includes an offer iterator1 interface,
that can be used for retrieving offer object interface references. Depending on the platform, either
of these parameters is natural to use. The trader attribute ‘max_list’ defines the length of the
list in the first parameter, and thus the list may be empty. The offer iterator must always be
present, although the number of offers within the iterator may be zero. The last output parameter
expresses which import policies restricted the query processing. If the list is empty, the search
space was exhausted.

The doubling of the actual output parameter, for allowing two technical solutions, is clearly
a committee compromise. However, this compromise is unnecessary: The prescription is given

1Iterators are commonly used in IDL specifications. An iterator is an object that contains a set of objects of the requested
type. The iterator interfaces supports an operation for querying how many objects are still available, an operation for
accessing the next object in line, and finally an operation to destroy the iterator object itself. In other words, an iterator is
a small repository object that implements a finite, typed list of objects and can be destroyed on request.

8.1 ODP trader 137

void query (
in ServiceTypeName type,
in Constraint constr,
in Preference pref,
in PolicySeq policies,
in SpecifiedProps desired_props,
in unsigned long how_many,
out OfferSeq offers,
out OfferIterator offer_itr,
out PolicyNameSeq limits_applied

) raises (
IllegalServiceType, UnknownServiceType, IllegalConstraint,
IllegalPreference, IllegalPolicyName, PolicyTypeMismatch,
InvalidPolicyValue, IllegalPropertyName, DuplicatePropertyName,
DuplicatePolicyName

);

Figure 8.5: Query operation [96].

struct LookupPolicies {
unsigned long search_card;
unsigned long match_card;
unsigned long return_card;
boolean use_modifiable_properties;
boolean use_dynamic_properties;
boolean use_proxy_offers;
TraderName starting_trader;
FollowOption link_follow_rule;
unsigned long hop_count;
boolean exact_type_match;
OctetSeq request_id;

};

Figure 8.6: Policies for governing the query operation [96].

at the computational viewpoint, which deals only with information exchange patterns between
logical objects, not actual data structures. Therefore, the two solutions would be equally valid
engineering viewpoint refinements for the computational interface with a sequence of offers. The
use of IDL as a computational description language misleads the reader to consider the specific-
ation more concrete as it should be. The actual realisations would implement either solutions,
and cooperation across the technical boundary would only need an interceptor. With the current
solution, each implementation is practically forced to include both techniques.

In the various development phases of the ODP trading function standard, a sequence of
slightly differing language specifications has been presented. The major problem has been that,
as we recall from Chapter 5, there are both a logical and a technical reason for ordering the match-
ing offers to be returned to the importer. Different ways of combining the criteria to one or more
criteria parameters require a slightly different syntax.

In the final standard, there is only one criteria language. Only the expressive power of the
language is enforced by the standard but also gives a universal syntax. Unfortunately, the final
version of the language is the most restrictive among the proposed languages. The language
includes features that were already presented in Section 5.2.5. The constraint language BNF is
included to the standard and presented in Figure 8.7.

Both the trader policies and the importer policies may independently inhibit the usage of
dynamic properties in normal offers, inhibit the usage of proxy offers, or inhibit the usage of the
modify operation. Reasons given for such inhibition are normally security related, sometimes

138 8 DISCUSSION ON SOME TRADERS

<constraint> := /* empty */ | <bool>
<preference> := /* empty */ | min <bool> | max <bool>

| with <bool> | random | first
<bool> := <bool_or>
<bool_or> := <bool_or> or <bool_and> | <bool_and>
<bool_and> := <bool_and> and <bool_compare> | <bool_compare>
<bool_compare> := <expr_in> == <expr_in> | <expr_in> != <expr_in>

| <expr_in> < <expr_in> | <expr_in> > <expr_in>
| <expr_in> <= <expr_in> | <expr_in> >= <expr_in>
| <expr_in>

<expr_in> := <expr_twiddle> in <Ident>| <expr_twiddle>
<expr_twiddle> := <expr> ~ <expr> | <expr>
<expr> := <expr> + <term> | <expr> - <term> | <term>
<term> := <term> * <factor_not> | <term> / <factor_not> | <factor_not>
<factor_not> := not <factor> | <factor>
<factor> := (<bool_or>) | exist <Ident> | <Ident>

| <Number> | - <Number> | <String> | TRUE | FALSE

Figure 8.7: BNF definition for the ODP trader criteria language [96].

also performance related.
If the trader supports dynamic values, it must do so by using DynamicPropEval interface sig-

nature (Figure 8.8). The evaluation behaviour is not defined but left for further study. Committee
conflicts, that were caused by defining the dynamic property evaluation interface, were masked
by defining the input argument ‘additional info’ to carry all those extra arguments suggested.

module CosTradingDynamic {
exception DPEvalFailure {

CosTrading::PropertyName name;
CORBA::TypeCode returned_type;
any extra_info;

};
interface DynamicPropEval {
any evalDP (

in CosTrading::PropertyName name,
in CORBA::TypeCode returned_type,
in any extra_info

) raises (
DPEvalFailure

);
};
struct DynamicProp {

DynamicPropEval eval_if;
CORBA::TypeCode returned_type;
any extra_info;

};}; /* end module CosTradingDynamic */

Figure 8.8: Interface signature for dynamic property evaluator [96].

8.1.3 Simple trader

A simple trader can serve Lookup and Register interfaces. The register interface (Figure 8.9) must
support operations ‘export’, ‘withdraw’, ‘describe’, ‘modify’, ‘withdraw_using_constraint’, and
‘resolve’. A trader that accepts offers must specify what restrictions it has to the offer structure.

The export operation takes an interface reference and a list of property values together with
a service type name. It returns an object identifier, that can be further used as a key to the offer
space in ‘withdraw’, and ‘modify’ operations.

8.1 ODP trader 139

OfferId export (
in Object reference,
in ServiceTypeName type,
in PropertySeq properties

) raises (InvalidObjectRef, IllegalServiceType,
UnknownServiceType, InterfaceTypeMismatch,
IllegalPropertyName, PropertyTypeMismatch,
ReadonlyDynamicProperty, MissingMandatoryProperty,
DuplicatePropertyName

);
void withdraw (

in OfferId id
) raises (IllegalOfferId, UnknownOfferId, ProxyOfferId
);
OfferInfo describe (

in OfferId id
) raises (

IllegalOfferId,
UnknownOfferId,
ProxyOfferId

);
void modify (

in OfferId id,
in PropertyNameSeq del_list,
in PropertySeq modify_list

) raises (
NotImplemented, IllegalOfferId,
UnknownOfferId, ProxyOfferId,
IllegalPropertyName, UnknownPropertyName,
PropertyTypeMismatch,ReadonlyDynamicProperty,
MandatoryProperty, ReadonlyProperty,
DuplicatePropertyName

);
void withdraw_using_constraint (

in ServiceTypeName type,
in Constraint constr

) raises (IllegalServiceType, UnknownServiceType,
IllegalConstraint, NoMatchingOffers

);
Register resolve (

in TraderName name
) raises (IllegalTraderName, UnknownTraderName,

RegisterNotSupported
);

Figure 8.9: IDL for the register interface operations [96].

The other operations at the interface – ‘describe’, ‘withdraw_using_constraint’, and ‘resolve’
– are redundant.

‘Describe’ is a subset of query operation at the Lookup interface. The motivation of includ-
ing a simple query operation at the Register interface was related to conformance requirements.
The simple query operation allows exporter objects to check whether their offers are correct and
up-to-date and still be bound to the Register interface only. This is claimed to decrease the imple-
mentation cost of exporters because they are not required to include full query operation just for
being able to have a type conformant interface with the trader they use.

‘Withdraw_using_constraint’ replicates the ‘withdraw’ operation. Instead of the offer iden-
tifier the operation gets a matching constraint as an input parameter. The constraint language
is capable of presenting a constraint that simply identifies an object. The operation ‘with-
draw_using_constraint’ is result of the different design goals. On one hand, a single operation
that is suitable for both end-user and administrative needs was expected. On the other hand,

140 8 DISCUSSION ON SOME TRADERS

a simple operation was expected that can be required in all implementations. However, in the
conformance requirements the whole interface is required. Thus, there is no acceptable way of
supporting only the simple withdraw operation.

The ‘resolve’ operation translates a trader name to an interface reference, based on the naming
system supported by the trading graph within a single administrative domain. If the trading
graph exceeds the limits of an administrative domain, no trustworthy knowledge about the link
names can be available.

8.1.4 Standalone trader

A stand-alone trader has the properties of a simple trader and includes in addition an Admin
interface. The Admin interface includes operations for setting the various policy related attributes
in the trader. It also has browsing operations for the offers and proxy offers.

8.1.5 Linked trader

A linked trader is similar to a stand-alone trader but has an additional Link interface for ma-
nipulating links. A linked trader must also be conformant to a Lookup interface in an importer
role.

Links can be used for operations on Lookup, Register, and Proxy interfaces. In earlier versions
of the ODP trading function standard, several cooperation scenarios were attempted. In some
phases, the cooperation between traders took place only by allowing a trader to import from
another trader. In still earlier versions of the standard, a very detailed protocol was defined
for maintaining a channel between the cooperating traders. The protocol required additional
functionalities of traders, especially a private binding mechanism. The protocol also required a
great amount of information to be cached for each potential cooperation partner. Finally, need
for different levels of cooperation relationships was identified, and only the basic version with
import capabilities was expected to be included into the standard.

A link

� refers to a Lookup interface of a target trader,
� refers to a Register interface of a target trader,
� includes the link’s default follow policy, that is used when an importer does not specify a

‘link_follow_rule’ policy, and
� includes the link’s limiting follow policy, that overrides the importer’s ‘link_follow_rule’

in cases where the limiting follow policy is exceeded.

‘Follow_policy’ specifies under which conditions the link can be traversed. The policy values
are ‘local_only’, ‘if_no_local’ and always, in an ascending order. The value ‘local_only’ indicates
that the link is never followed unless explicitly named in an operation. The value ‘if_no_local’
indicates that the link is followed when the local search could not provide any offers. The value
‘always’ indicates that the link is always followed unless some policy denies the propagation.
Each link has private follow policies included. They are used when an import is traversed through
the link. The corresponding trader properties give values to be used when a link is created.

The Link interface signature is given in Figure 8.10. The interface supports operations
‘add_link’, ‘remove_link’, ‘modify_link’, ‘describe_link’ and ‘list_links’. Operation ‘add_link’ cre-
ates a new link structure, and therefore, the target trader Lookup interface is given. In addition,

8.1 ODP trader 141

the follow policies default and maximum values are defined. However, the link structure in-
cludes also a reference to the Register interface of the target trader, which cannot be initiated to
the link structure with ‘add_link’ operation. Neither is operation ‘modify_link’ able to manipu-
late this information item. Operation ‘modify_link’ can only manipulate the follow policy values.
Link name is used as an identifier for all link manipulation operations. ‘Describe_link’ shows the
values stored to a single link structure, while ‘list_links’ produces a list of link names only.

void add_link (
in LinkName name,

in Lookup target,
in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule

) raises (
IllegalLinkName, DuplicateLinkName,
InvalidLookupRef,
DefaultFollowTooPermissive, LimitingFollowTooPermissive

);
void remove_link (

in LinkName name
) raises (

IllegalLinkName, UnknownLinkName
);
LinkInfo describe_link (

in LinkName name
) raises (IllegalLinkName, UnknownLinkName
);
LinkNameSeq list_links ();
void modify_link (

in LinkName name,
in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule

) raises (IllegalLinkName, UnknownLinkName,
DefaultFollowTooPermissive, LimitingFollowTooPermissive

);

Figure 8.10: IDL specification for Link interface [96].

For interworking between traders, an arbitrary network of traders can be established, and
therefore, loops can occur during imports. In the ODP trading function standard, using a hop
count that terminates the process when the hop count reaches zero, was not considered effect-
ive enough. More active loop detection can be performed in a distributed manner so that each
request carries a request identifier and each trader remembers all recent queries received from
other traders. The ‘request_id_stem’ is used in the mechanism for loop control to create a separate
value set for request identifiers at each trader. The solution contradicts the federated architecture
model, but some reasoning behind the solution was given: most loops involve only two traders
and the amount of unproductive processing can be huge. However, we have already concluded
in Chapter 7 that a reasonable hop count in most cases is 1-3, which restricts the loops efficiently.

8.1.6 Proxy trader

A proxy trader is similar to a stand-alone trader but has in addition a Proxy interface (Fig-
ure 8.11)for manipulating proxy offers. A proxy trader must also be conformant to a Lookup
interface in an importer role.

The proxy offer contains service type and properties of a service offer. It is matched in the
same way as normal offers. However, the proxy offer refers to a Lookup interface instead of

142 8 DISCUSSION ON SOME TRADERS

struct ProxyInfo {
ServiceTypeName type;
Lookup target;
PropertySeq properties;
boolean if_match_all;
ConstraintRecipe recipe;
PolicySeq policies_to_pass_on;

};
OfferId export_proxy (

in Lookup target,
in ServiceTypeName type,
in PropertySeq properties,
in boolean if_match_all,
in ConstraintRecipe recipe,
in PolicySeq policies_to_pass_on

) raises (IllegalServiceType, UnknownServiceType,
InvalidLookupRef, IllegalPropertyName,
PropertyTypeMismatch, ReadonlyDynamicProperty,
MissingMandatoryProperty, IllegalRecipe,
DuplicatePropertyName, DuplicatePolicyName

);
void withdraw_proxy (

in OfferId id
) raises (IllegalOfferId, UnknownOfferId,

NotProxyOfferId
);
ProxyInfo describe_proxy (

in OfferId id
) raises (IllegalOfferId, UnknownOfferId,

NotProxyOfferId
);

Figure 8.11: IDL specification for proxy offer [96].

the actual offered service. Therefore, the request is modified using the ‘ConstraintRecipe’ rules
and forwarded to the Lookup interface. The original type parameter, preference parameters, and
desired properties are passed on unchanged, but constraint parameters, policies and cardinalities
are modified to suit the trader needs. With the parameter ‘if_match_all’ the proxy offer exporter
can notify the trader that the proxy offer is a valid match for all imports of the specified service
type irrespective of the importer criteria on property values. This approach would make the proxy
offer similar to a type specific link, without any control mechanism for import propagation.

The proxy offer works like a simplified link. The type system in the object referred to and in
the calling trader must be equal, but the query interface signature in the referred object can differ.
Therefore proxy offers can be used to encapsulate other objects than traders to the trading system.
The same functionality could be expressed by using interceptors together with links.

8.1.7 Full-service trader

A full-service trader includes Lookup, Register, Admin, Link and Proxy interfaces. It also has to
be conformant with Lookup and Register interfaces in importer and exporter roles correspond-
ingly.

8.1.8 Exploitation relationship to other services

The ODP trading function is expected to exploit the ODP type repository service. However, the
schedules of the standards are such that the ODP trader function had to have a private, simple

8.2 DRYAD trader 143

type system specified. It is going to be replaced by the type repository function standard [97]
when it reaches international standard status. However, there is a discrepancy, because OMG
assumes the type repository documented in the trading function standard to be sufficient and
thus final. For CORBA platform purposes the trading type repository is sufficient, as we can
recall from Sections 4.4 and 6.2. However, for open system and for federation between open
systems the solution is not sufficient, because it does not include any mechanisms for defining
relationships between type descriptions.

The ODP trading function specification also mentions that a federated naming service is re-
quired. However, the relationship between naming and trading is not clarified, except for the
‘resolve’ operation that indicates a number of private, global naming systems to exist.

An additional standard gives requirements for systems that implement ODP trading function
on top of X.500 Directory service [100]. The standard has difficulties in exploiting the ODP refer-
ence model, because X.500 does not follow ODP guidelines. However, the mapping can be done.
For X.500 technology dependent reasons, the standard prescribes also some aspects not included
in the trading function specification itself [96]. These aspects include some security considera-
tions, data formats, and policies.

8.1.9 Conformance testing

For each standard, a set of conformance tests should be defined, to allow vendors to assure that
their implementations behave according to the standard requirements. The test cases for trading
service were supposed to be created on the basis of a formal specification of the functionality. For
earlier trading standard versions, such a specification existed [88].

Currently there is no conformance testing arranged for trader implementations, because the
conformance testing specification for traders is missing [101]. The major problem seems to be the
lack of general framework for the ODP conformance testing methodology.

8.2 DRYAD trader

The DRYAD trader is a prototype service developed during the research leading to this disserta-
tion.

The DRYAD trader is designed to be part of the federated binding process, but there are no
restrictions to use the mechanism for other purposes, too. The DRYAD trader design has initially
been influenced by the very early ODP trader drafts, but later been used to initiate contributions
to the ODP trading function and other component standards. In the following, we first review
the DRYAD trader design and discuss then some performance measurements.

8.2.1 Trader object composition

The DRYAD trader object (Figure 8.12) [125] consists of

� a trader repository object, that has two parts: the offer space for information about offered
services, and the trader address storage for finding other traders from the network,

� a type repository object,
� a policy repository object, that includes trader’s import and export action policies,
� a template repository object for creation of new processing entities, and
� a concierge object to control the processing.

144 8 DISCUSSION ON SOME TRADERS

offer

space

trader

repository

trader

addresses

policy

repository

type

repository

template

repository

type

manager

offer

handler

interceptor
pair

service

interface
agent

Debbie

persistent part

non-persistent part

concierge

Figure 8.12: The DRYAD trading system components.

The repositories are aggregated into one object. The trader interface is controlled by a conci-
erge object, and the repositories rely on Debbie database system [130] services.

Initially only one active object, a concierge, is running together with the Debbie system. The
concierge watches the incoming communication ports (import, export and administration) and
requests the Debbie engine to create a new active object to handle each incoming message. The
concierge was also designed to support a replica group of trader component objects [259] for fault
tolerance. The active objects are instantiated by letting the Debbie system to execute methods
from object templates that are stored in the template repository.

Each repository object has one or more active processing objects working on it: The trader
repository has agents for handling import requests and offer handlers for handling export and
withdraw requests. Each import is processed by a private agent instance. The type repository has
a type manager to response to queries.

The repository objects themselves are passive. The Debbie database can store persistent and
non-persistent information. The offer space of the trader repository is by a policy decision stored
non-persistently. The other repositories must be persistent, because they are used at the start-up
of the trader.

The trader object is accompanied by interface interceptors. The interceptors are exploited
when import requests are directed from a DRYAD trader to another trader implementation, or a
foreign trader imports from a DRYAD trader. A DRYAD trader offers two types of interfaces, a
native interface and an IWT interface for importers [178]. The IWT interface is specified by the
IWT project (Interworking of Traders) [246].

In the following sections, the type and policy repository structures are introduced. As the
components coexist in the same database, also an allocation scheme is shown: an implementation
object may contain both a type object and a set of policy objects. This introduction is followed by
a description of offer space objects.

8.2 DRYAD trader 145

8.2.2 Internal type repository

The type repository includes a type description object for each service type. The object is a com-
pound object and it has the following structure:

� the abstract type name,
� a verbal, natural language description of the service type semantics,
� information about the service type’s visibility to other trading domains,
� a set of attribute objects, and
� a set of interceptor objects.

The attribute objects in turn consist of the attribute name, verbal description, data value type,
unit of value, and default virtual value of the attribute. Technically it also includes caching time
for the evaluated values. Examples of attribute specifications are

{name = InterfaceSignature,
data type = XDR description (corresponds to IDL descriptions),
unit = NIL (not applicable with this data type), default value = NIL,}

{name = Location, data type = set of addresses, unit = NIL,
default value = NIL}

{name = QueueLength, data type = Integer, unit = Bytes,
default type = "lpq -P$ID"}

Each type interceptor object defines the relationship between a locally known type and a type
known in the remote domain. As import requests can span several type domains, translation
between logically similar but technically distinct types is required. To carry the required mapping
information, we introduce an interceptor object that consists of

� local name for the remote type management domain,
� name for the wanted service type within the remote type management domain, and
� for each local attribute a rule for transforming the values retrieved from the remote trader.

The transformation rules are constructed from arithmetic and string manipulation operations
over the attribute values. Also some functions are available for accessing the attribute type in-
formation from the remote type domain: data type, high and low limits of potential values, and
unit of the attribute value. The transformation rules can also include conditional statements and
comparisons.

The type repository of the DRYAD trading system assumes that service types are matched by
names. It also assumes that service types are abstract and therefore can be represented by several
interface types. The importers request for offers of a certain interface signature type. Subtyping
of service types or interface signature types are currently not supported.

The example in Figure 8.13 shows what kind of attributes could be used in the DRYAD trading
system. The example service type is an operation to sell a book. Books can be purchased by
naming the type of book, for example a detective story, the author, the range of price, or the
language. This helps to define with which application specific parameters the offered operation
is able to work. Furthermore, we can include technical attributes, such as time intervals that are
allowed for computing, and technical details about the interface location and access technique.
Especially, the actual parameter list and operation name can be included as attribute values, that
mediate between application concepts and the implementation technique. These attributes are
based on the binding liaison.

146 8 DISCUSSION ON SOME TRADERS

stringset book-type
string author
interval prize
stringset language
choice [interrogation | announcement] communicationstyle
interval timetocompute
signature invocationtechnique
interface identifier (or addressstruct location)

Figure 8.13: Example of a service type "purchase-book".

8.2.3 Internal policy repository

The trader policies used in the DRYAD software are defined separately for each service type. The
policies are

� import action policy, that consists of import acceptance policy, federation policy, selection
policy, and resource consumption policy, and

� export action policy that includes only export acceptance policy.

The acceptance policies restrict the set of potential importers or exporters per service type. The
policies are expressed as evaluation rules and each request is tested against these expressions. We
represent the acceptance policy as regular expressions on addresses. An address consists of a host
name, a port number, a protocol name, a file name, and a process number.

The federation policy defines which other traders are requested for import and in which order.
We represent the federation policy as a partially ordered list of trader names.

The selection policy includes system matching and system preference criteria for selecting of-
fers. The criteria are represented with the same language constructs as the importer’s selection
criteria (see Figure 8.14). The trading system can be configured to have different roles over differ-
ent service types, e.g., a consultant or a trustee (recall Section 5.2.6). The arbitration policy is real-
ized by rule priorities incorporated in all selection criteria and policy rules. The criteria priorities
are the following (in descending order): (i) the system requirements, (ii) the user requirements,
(iii) the user preferences, and (iv) the system preferences.

In the DRYAD trader implementation, many policies can be changed at run time through
the management interface. Only the export action policy is fixed: the offers are stored non-
persistently (i.e., a new trader instance does not adopt the offers exported into the previous one)
and an offer may be deleted by the trader itself if that trader cannot access the offered interface.
If persistence of offers is required, there must be an additional active object that forces the trader
to store the offers in a stable storage. Installation of such an object would mean a change in the
trader’s export action policy. The system structure is suitable for such a change.

8.2.4 Structure and contents of offer space

The offer space contains the essential information of a trading system: the exported service offers.
Offers appear in two forms. One form represents a local offer from the trader’s own trading
domain. The other form, a proxy offer2, is an offer that has been imported from another trading
domain, and exists only temporarily.

2The ODP trading function standard uses the term proxy offer for an object that is used for propagating an import out
from a trader. The proxy offer in DRYAD trader is a cached copy of an offer.

8.2 DRYAD trader 147

%token identifier, string, integer, floating_point_number, REQUIRE, PREFER,
OR, AND, IN, CAT, function_identifier

restriction: clause | restriction ’;’ clause;
clause: disjunction | priority ’:’ disjunction;
priority: integer | REQUIRE | PREFER;
disjunction: conjunction | disjunction OR conjunction;
conjunction: predicate | conjunction AND predicate;
predicate: server_identifier | expression comparison_operator expression

| expression IN ’{’ expression_list ’}’
| expression ’!’ IN ’{’ expression_list ’}’ | ’(’ disjunction ’)’;

comparison_operator: ’<’ | ’<’ ’=’ | ’=’ | ’!’ ’=’
| ’>’ | ’>’ ’=’ | ’~’ | ’!’ ’~’;

expression: term | expression addition_operator term;
addition_operator: ’+’ | ’-’ | CAT;
term: factor | term multiplication_operator factor;
multiplication_operator: ’*’ | ’/’;
factor: primary | function_identifier ’(’ expression_list ’)’ | ’(’ expression ’)’;
primary: attribute_identifier | string | integer | floating_point_number;
expression_list: expression | expression_list ’,’ expression;
attribute_identifier: identifier;
server_identifier: string;

Figure 8.14: Yacc definition of the criteria and policy rule language.

A service offer logically includes

� an identifier (includes service type and trading contract template names),
� methods for evaluating the attribute values, a method per attribute, and
� value cache, where each value is tagged with maximum time-to-live.

The service offer object is created by the offer handler object as a result of an export operation.
The offer is stored until it is deleted by the corresponding withdraw operation.

The proxy offer has the same structure as the real service offer. It is created by the trader
agent when it is executing an import operation. The agent requests a remote trader to immedi-
ately return a set of offers without evaluating any missing values. The values that the remote
trader was able to produce immediately are transformed to the local representation form using
the interceptor knowledge. The results are stored into the proxy offers as static attribute values.
If any attribute values are missing, they are replaced with an evaluation rule, that imports the
value from the remote trader and transforms it in to the local form. If large amounts of dynamic
attributes are used in interworking, this may cause a very slow response and a high load for all
involved traders. It would be possible to combine the remaining attributes to one import request.
However, the current implementation relies on the observation that most requests do not use very
many attributes [244].

New values for dynamic information are always evaluated on the trader’s initiative. The
trader has no means to collect information that is sent to it without request. However, trading
could be used for example for predictive load sharing which requires statistical load information.
To support that kind of information, we can create a separate information server, that automat-
ically collects reports from system sensors and stores them [245]. The trader can then request
for predictions from that information server. The trader performance would not be hindered by
constant information change requests.

For the creation of service offers we aggregate one type description object and a set of policy
objects. This object includes all the necessary information for the creation of service offer objects

148 8 DISCUSSION ON SOME TRADERS

and for management of the import requests. This offer template can be partitioned to a local
partition and a set of federation related partitions, one for each cooperating remote trader.

The local part of the offer template includes

� a service type description object,
� virtual values (evaluation rules for dynamic values or static values as such),
� acceptance policy as lists of allowed servers and clients,
� import action policy object, and
� the federation setting that defines whether the local trader is allowed to show the service

type in question to other traders importing from it.

The federation related parts of the offer template contain

� the remote trader name and the service type name that should be used when importing
from that remote trader, and

� reference to the interceptor object to be used for translations of attribute values between the
local and the remote presentation forms.

8.2.5 Operational behaviour

The trading service interface offers operations for import, export and withdraw. In this section,
we consider only the import and export behaviours.

Import operation behaviour

The import request contains

� service level, which defines what level of detail the importer wants to see the service offers
(e.g., server identities, all attribute values, named attributes only),

� federation mode, which defines whether the importer denies, allows or forces interworking
with other traders,

� federation search method, which defines whether search is done in parallel at all traders,
or sequentially from trader to another until a service offer is found,

� the service type name,
� the matching criteria, the preference criteria and the importer policy rules for selecting ser-

vice offers – all packed to a shared criteria field using the language described in Figure 8.14,
and

� a list of attribute names, if the used service level requires so.

After receiving the request message, the agent checks whether this client can be accepted. If
not, it exits with no response. Otherwise, it continues by retrieving and merging the importer’s
matching criteria, preference criteria and scope criteria, and the trader’s selection policy.

The process of retrieving rules and merging them produces a database query sequence for the
Debbie engine to execute. The query consists of steps with distinct levels of priority: requirements
and a sequence of preferences. The first part of the query sequence handles all requirement level
criteria and it is executed over the service offer space. If a requirement cannot be satisfied by an
offer, that offer can not be visible for the importer under any circumstances. Further steps can be
taken with the preference criteria and executed over the intermediate result set of offers. A step
is committed only when it does not create an empty result. If an offer cannot satisfy preference

8.2 DRYAD trader 149

criteria, it may be shown to the importer, if there is an inadequate number of services that would
fulfil also this preference rule. This interpretation is also used when attribute values cannot be
evaluated for some reason. A requirement cannot be satisfied if the value is not known, whereas
a preference is not violated by a missing value. After the agent has traversed the query sequence,
only those attributes that were used in the selection criteria have been evaluated. If the importer
wished to have a single offer as result, then all but one random offer are deleted. Then the rest of
the attributes required for the response are evaluated. Finally, the response message is sent to the
importer, and the agent exits.

The reply message includes the name of the requested service type, and a set of items where
each item consists of: (i) a joint name for a set of offered servers which together are able to produce
the requested service (set size is currently always one), and (ii) a set of service offer descriptions
which consist of server identity and/or address, a natural language description, and a set of
attribute values, as [name, value, unit] triples. Especially interface locations and signature types
are included in the attributes.

If the import request has a syntax error, a denial report is sent as response. Otherwise, if
there occurs a minor failure during the evaluation of attribute values, the message is only tagged
as ‘qualified’ and all the available information is returned to the importer. At the place of an
attribute value, there may appear a notification of the evaluation failure and also an explanation
of the type and location of failure.

In cases where federation occurs, the remote import operations can be done either concur-
rently with the local processing or after the local trader has failed to find any suitable offers. The
modes are chosen by the administrative federation policy. The policy also states which other
traders to consult. Depending whether the federation is concurrent or sequential, the processing
may split to threads. For concurrent processing, the processing splits after request has been ac-
cepted. For sequential processing, remote imports are invoked after the requirement processing
phase. All concurrent processing joins together before the preferences processing phase can be
started.

Proclaim operation behaviour

Instead of an export operation, the DRYAD trader implementation uses a proclaim operation that
only identifies the offered interface and its address. The reason is simple. The export operation in-
cludes virtual values, i.e, evaluation rules for properties. By the evaluation rules the exporter can
force the trader object to invoke whatever operations the exporter wishes. Currently, no standard
security functions are available. The DRYAD implementation does not include any security con-
siderations except those inherited from the runtime environment. In this situation, the standard
export operation would cause an easily observable way to intrude into the system.

In order to avoid this vulnerability in the DRYAD implementation, we force the trader ad-
ministrator to define for each service type the operations that are allowed to be evaluated. The
suitable evaluation rule is then identified by the server identity at the time of proclaim operation.
As the static properties of the offers are usually similar for each offer within the service type, we
used the same method for the static values also.

150 8 DISCUSSION ON SOME TRADERS

The application-programmer interface for trading

The DRYAD trader’s application-programmer interface has two components, an application-
programmer interface library for importing purposes, and a general exporter object that can be
used together with arbitrary server objects and server object templates [126].

On the importer side, the trading library offers C functions for building up together an import
request, sending it to a selected trader object, and breaking down the reply given by the trader. On
the exporter side, the general exporter object offers exporting and withdrawing facilities under
the control of trader policies. In addition to the trading operation, the interface library also allows
requests about the type system used behind the trader mechanism.

The application programmer interface has been used, for example, to create a graphical
browser, Artemis [113, 19]. Artemis allows users to browse service types known in the system,
currently offered services, and property values of the currently offered services.

The library is also included into the trader agent itself for federation purposes. Therefore, the
library allows connections to multiple traders simultaneously.

8.2.6 Administrative facilities

The trading system administration involves type, policy and trader interworking management.
None of these tasks are supported by the trader object itself, but a separate graphical management
tool is provided [71, 19]. The Nereid management operations interface directly with the Debbie
database engine and allow interactive updates for the contract template components.

The type management operations include addition, registration, and deregistration of types,
and addition of attribute definitions. Also, interceptor descriptors can be added by naming the
federation contract involved and translation rule.

The policy management operations include addition and deletion of rules in named policy
tables.

The trader interworking management operations include addition of name-address pairs for
remote traders, and addition, registration and deregistration of federation contracts.

8.2.7 Exploitation relationship to other services

The DRYAD trader includes a simple type repository service for its internal needs.
The DRYAD trader uses a special Debbie database system for data storage. Debbie is a very

compact database management system that has been developed specially to support software for
distributed systems [130].

Debbie is a relational, memory based system. Besides the usual relational operations (projec-
tion, selection, join) it offers operations for partial and approximate string matching [196], and
recognises basic data types (integers, reals, strings, methods) automatically. The database schema
can be dynamically manipulated. Debbie supports concurrency and optimistic locking, but does
not include heavy logging mechanisms. The applications of Debbie system do not require roll-
back facilities.

8.2.8 Performance aspects

In this section, we study the DRYAD trader performance mainly in terms of import operation
response time. In addition, we compare the load caused by imports and exports, because it effects
the choice of reasonable federation policies, and view examples of memory requirements.

8.2 DRYAD trader 151

We studied the DRYAD trader’s performance by direct measurements of the DRYAD trader
performance [126] and measurements of the Debbie system performance [130]. The measurement
environment consisted of PCs based on 90 MHz Pentium processors running Linux version 1.2.13.
The DRYAD trader or the Debbie server runs on a machine with 32 MBytes memory, and the
clients had 16 Mbytes. The PCs were connected using 10base2 Ethernet. The PCs had no other
load during the measurements, but a background load on the Ethernet was unavoidable.

In trader measurements, the results were obtained by using an instrumented trader client
program which generated the required synthetic workloads. The workloads consisted purely of
import operations. The trader’s offer space contained synthetic offers that had unique identifiers
and either 9 static or 9 dynamic attributes, depending which of the two available service types
they presented. In most tests, the offer space size was 100 offers. Most measurement results
present averages for 100 processed queries, and all measurement series were repeated at least
three times.

The Debbie measurement results were obtained by using an instrumented database client
program which was also modified to generate the required synthetic workloads. The workload
consisted purely of read operations. The database contained synthetic data that had a uniform
key distribution. Also, the key values in the synthetic queries were evenly distributed. All meas-
urement results represent the averages for at least 2000 processed queries, and all measurement
series were repeated at least three times.

Size of offer space

The database search facilities form the basis for import operation performance, and therefore we
started the study of database size effects with measurements on the Debbie query times. Then we
continued by measuring DRYAD trader response times with varied database sizes.

In the Debbie query time measurements, we used a database table that consisted of two
columns, a key and a value, all keys being non-numeric and unique. The number of rows varied
from 100 to 100 000. The query consisted of the selection of one row based on a random existing
key. We used two scenarios. In the first scenario the client and the server were located on the
same host and communicating through UNIX domain sockets. In the second scenario, the client
and the server were located on distinct hosts and communicating over TCP/IP. The measurement
results are shown in Figure 8.15.

In the single host scenario we can see the expected logarithmically increasing behaviour of
the average response time. However, even there we can see a comparatively large constant factor
which is due to the communication overhead. We can achieve response time of less than 0.5 ms
even with rather large tables. That corresponds to a query processing rate of over 2000 queries per
second. The remote communication scenario shows a rather stable behaviour in the 3 ms range.
The change from logarithmic behaviour to an almost constant value is due to the dominating
factor of network delay.

For the measurements of import response times with the DRYAD trader, we varied the num-
ber of exported service offers and monitored the number of Debbie commands called. Import
operations invoke 50-76 Debbie commands. Therefore, we expected import operation response
times to be in the range of 25-38 ms. The trader import behaviour was also expected to repeat the
logarithmic behaviour, with a constant factor of overhead.

The results showed two modes, a low an a high response time, as shown in Figures 8.16
and 8.17. The difference between these response time levels was too large to be explained by

152 8 DISCUSSION ON SOME TRADERS

0

0.5

1

1.5

2

2.5

3

3.5

4

100 1000 10000 100000

R
es

po
ns

e
tim

e
in

 m
ill

is
ec

on
ds

Number of database rows

Local communication with UNIX domain sockets

Remote communication with TCP/IP

Figure 8.15: Response times related to database size.

random fluctuation, although both of the curves independently show random components. In
Figure 8.16 the general level of response time stays around 30 ms. As the offers include only static
properties, the variance is rather low. However, Figure 8.17 shows considerably high response
times. Also the variance of the response times is high. For the importers, the variability in re-
sponse times appears to be random. Technically, the difference is explained by the lazy resource
reservation and indexing scheme used in the trader agent. During the first import operation after
trader initialisation or export operation, a set of indexes is rebuilt. The difference between the two
response time levels represents the overhead of these actions.

For a more robust service, a more aggressive rebuild of indexes should be done both at trader
initialisation time and after a block of export operations. We assume however, that exports are
relatively rare in comparison to the frequency of import operations, and thus the overall import
performance is adequate. Still, in the test environment, an aggressive update of indexes would not
have affected the performance of normal imports, because the server host had plenty of unused
capacity that could be used for the background updates.

Concurrency of clients

For analysing the effect of concurrent queries to the response times, we first arranged a series of
tests for the Debbie database engine where the number of clients were increased from one to ten3.

3The measurements were rerun in May 1998. The hardware used was identical with the original measurements, but
Linux 2.0.32 was used. The enhanced operating system performance improves the results, but does not affect the general
trends.

8.2 DRYAD trader 153

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
in

 m
ill

is
ec

on
ds

Number of offers in offer space

’elapsed average’
’processing average’

Figure 8.16: Response times as function of repository size, normal case.

0

100

200

300

400

500

600

700

800

900

1000

10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
in

 m
ill

is
ec

on
ds

Number of offers in offer space

’elapsed average’
’elapsed times of first imports after export’

’processing times of first imports after export’

Figure 8.17: Response time in milliseconds as function of repository size, first cases after exports.

154 8 DISCUSSION ON SOME TRADERS

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10

Q
ue

rie
s

/ s
ec

on
d

Number of clients

Test #1
Test #2
Test #3

Figure 8.18: Query completion rate vs. number of concurrent clients.

In each test, the clients generated bursty queries as quickly as they could, however, the clients
had to wait for the responses to previous queries before issuing a new burst of 10 queries. A burst
of queries simulates the load generated by a single import request for a trader. The clients were
independent of each other and all communication took place over TCP/IP.

The performance is presented as query completion rate at the server. We expect to see be-
haviour where increasing the number of clients, i.e. increasing the load, causes increase in the
number of completed queries until a saturation level is reached. The measurements presented in
Figure 8.18 confirm this hypothesis. The query completion rate approaches a limit in the range of
2500 queries (in the original measurements, in the range of 1300 queries) per second. The clients
form a negative feedback loop in the system, so that the offered load does not necessarily in-
crease linearly with the number of clients. Due to the somewhat unstable behaviour of the query
completion rates, we considered in this case three individual test runs instead of averages.

As a further study of concurrency effects on the DRYAD trader itself, we varied the number
of clients from one to ten and measured the trader response times. All imports were based on
static properties only and no attributes were included to the responses. In order to minimise the
processing requirements, a randomly selected, identified offer was requested. Each client had to
wait for a reply before sending the next request, but otherwise the requests we issued as fast as
possible. Figure 8.19 illustrates the measurement results.

The results are in some extent unexpected. From the measurements shown for example in Fig-
ures 8.16 and 8.23 we see that the average elapsed time of 33 milliseconds is normal. In the curve
shown in Figure 8.19, measurement points with 1-5 and 7-9 clients are rather much expected: no
remarkable queueing delay can be seen yet. The peaks at 6 and 10 simultaneous clients seem to

8.2 DRYAD trader 155

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
tim

e
in

 m
ill

is
ec

on
ds

Number of simultaneous clients

’elapsed average’
’processing average’

Figure 8.19: Response times as function of concurrency degree.

be caused by memory management problems. The Linux operating system has a good paged
memory management system with LRU algorithm for releasing pages. As the Debbie tables (‘in-
dexes’ and ‘data slots’) grow, the data page working set of the simultaneous clients are driven
out of synchrony. In the peaks the effect of traditional LRU anomaly is experienced. Figure 8.20
shows similar effect on Debbie system only. The behaviour changes dramatically at the point
where the database size exceeds the physical memory size available.

The memory management problem could be diminished or removed using techniques de-
veloped in object database systems. For example, ObjectStore system uses virtual memory ad-
dresses as object identifiers and forces data slots that are used together to the same or adjacent
pages [132]. With improved memory management techniques, the peaks shown in Figure 8.19
could be lowered. The positions of the peaks are inherent to the amount of available memory in
the system during the measurements.

Complexity of queries

Complexity of queries can be expressed in terms of import criteria complexity, computational
complexity and response complexity. To describe the import criteria complexity, we measure the
effect caused by varying the number of static attributes referenced in the import criteria. As a
computational complexity measure, we use the number of dynamic attributes referenced in the
import criteria. For the evaluation of attributes a syntetic evaluator was used to provide equal
evaluation times of 1 second to all attributes. As response complexity measures, we use both the
number of returned attributes and the number of returned offers.

Import criteria complexity effects were measured in a configuration where one client imports

156 8 DISCUSSION ON SOME TRADERS

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

R
es

po
ns

e
tim

e
in

 m
ill

is
ec

on
ds

Number of database rows

Figure 8.20: Trashing behaviour of Debbie: response time as function of database size.

a single offer. The import criteria includes a variable number of static property names. In order to
avoid cache effects in the database system, also the offer identifier is used in the criteria to ensure
that a different offer is returned every time. In the response, no attributes were returned.

The measurement (Figure 8.21) shows no clear increase or decrease in response time when the
number of attributes in import criteria increases.

Effects of computational complexity were measured with a single client importing offers. The
import criteria referred to a varying number of dynamic properties, but the returned offers con-
tained no property values.

In Figure 8.22 there are two curves that reveal the effects of caching and reusing evaluation
results. In the first case the evaluated values (100) all had the same evaluation rules (similar
attributes), in the second case there were 10 different rules (separate attributes) and each rule was
used for 10 values. (The semantic contents of the rules was equal, only the organisation of entries
through the type management interface was different.)

The curve ‘elapsed average with similar attributes’ is very similar to the curve in Figure 8.21
(import complexity). The behaviour is explained by the caching and reusing scheme in Debbie.
Actually, only one value was evaluated and all the other values were picked up from the cache.
In this test case all 100 values were collapsed to one evaluation only.

The upper curve, called ‘elapsed average with separate attributes’, is produced with different
offers. In these offers, the 100 attributes were differentiated in to 10 groups. Instead of letting all
the evaluations collapse in to one, we force at least 10 evaluations to take place. Others were again
obtained from the cache, but also cache timeouts occurred. The caching time was 20 milliseconds,
and there was a maximum of 8 for simultaneous evaluations. These two things together cause the

8.2 DRYAD trader 157

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
tim

e
in

 m
ill

is
ec

on
ds

Number of static attributes in the search criteria

’elapsed average’
’processing average’

Figure 8.21: Response times as function of import complexity.

cyclic behaviour and the peaks in the curve. The simultaneously running evaluations can benefit
from the evaluation results of each other through the shared cache. Also, when the cached values
are invalidated, (in this case) all threads are affected by the re-evaluation.

To describe the response complexity we consider separately the amount of attributes returned
and the number of offers returned. The sizes of offers were equal. Again, the configuration was a
single client importing offers with static properties.

The measurement produced similar curves, as expected. Therefore, we only show the results
of varying the response length, in Figure 8.23. The length of messages is normally expected to af-
fect the communication times. However, the network delay is the dominant factor and no urgent
need for minimising the length of messages between traders is visible.

Improvement techniques for dynamic property evaluation

The management of dynamic values is important in the implementation of a trader. There is
no exact requirement when the virtual values have to be computed, and therefore the database
system can exploit caching techniques. It can store old values and reuse them when responding
to subsequent queries.

We studied the effects of caching and prefetching of dynamic property values with measure-
ments on the Debbie database system response times in scenarios that resemble load generated
by a trader.

First, we measured the average response time as the function of the number of independent
dynamic values in a query. We measured the response time first without and then with a cache,
using a 5, 10 and 20 second timeout. The client and server were located at the same host, in

158 8 DISCUSSION ON SOME TRADERS

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
tim

e
in

 m
ill

is
ec

on
ds

Number of dynamic attributes in the search criteria

’elapsed average with similar attributes’
’elapsed average with separate attributes’

’processing average with similar attributes’
’processing average with separate attributes’

Figure 8.22: Response times as function of computation complexity.

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
tim

e
in

 m
ill

is
ec

on
ds

Number of attributes in the response

’elapsed average’
’processing average’

Figure 8.23: Response times as function of response length.

8.2 DRYAD trader 159

1

10

100

1000

10000

0 5 10 15 20 25 30

Q
ue

ry
 ti

m
e

in
 m

ill
is

ec
on

ds

Number of dynamic values

No cache
Timeout 5

Timeout 10
Timeout 20

Figure 8.24: Effects on query time caused by caching dynamic virtual values.

the same way as a trader would be located at the same host with the database server. We used
a synthetic external process to accomplish the evaluation of the dynamic values. The with 1
second elapsed time imitates the effect of acquiring a parameter over a network. The results are
illustrated in Figure 8.24.

The results without a cache show the expected behaviour where the external evaluation time
dominates. The concurrency of evaluations makes the behaviour sublinear. We can see small steps
in the performance at the multiples of the chosen concurrency limit (in this case, 8 simultaneous
evaluation processes).

With the cache, the majority of the requests are satisfied from the cache. If the virtual value
evaluation time exceeds the caching time, the performance decreases drastically. The choice of an
appropriate cache expiry timeout is of great importance. With a careful selection of this parameter
for each class of data, we can reach a performance of several hundred processed queries per
second.

Second, we studied the effect of prefetching. Prefetching is a well-established technique to
improve performance of memory and disk caches. Prefetching means that the cache tries to pre-
dict what data is needed next and starts a fetch before the values are actually requested. Ideally,
the prefetch should start so that the evaluation always finishes just in time before cache time-
out. We can exploit the same technique for dynamic property values. For the Dryad trader we
use the following prefetch strategy supported by Debbie: We specify a prefetch threshold that is
shorter than the cache expire timeout. The first reference to the value after the threshold returns
the cached values but also invokes pre-evaluation of the values in the background.

In this experiment, we used a 20 second cache timeout and 10, 15 and 18 second prefetch

160 8 DISCUSSION ON SOME TRADERS

1

10

100

1000

10000

0 5 10 15 20 25 30

Q
ue

ry
 ti

m
e

in
 m

ill
is

ec
on

ds

Number of dynamic values

Timeout 20, no prefetch
Timeout 20, prefetch threshold 10
Timeout 20, prefetch threshold 15
Timeout 20, prefetch threshold 18

Figure 8.25: Effects on query time by prefetching dynamic virtual values.

timeouts. The results of the measurements are shown in Figure 8.25.
The measurement results show that prefetching may hamper performance if the difference

of the expire timeout and the prefetching threshold is large compared to the actual evaluation
time. Therefore, the prefetch should start so that the evaluation always finishes just before the
cache timeout. Pre-evaluation is effective in decreasing the unavoidable loss of performance with
a large number of dynamic values.

We have good reason to use the simple system for determining cache timeout values and
prefetch threshold values for dynamic properties. We allow the Debbie system to use previ-
ous property value evaluation time as a prefetch threshold value, and double the time for cache
timeout.

Export behaviour

In the above described measurements, we also monitored the number of Debbie commands in-
voked. Each import operation uses 50-76 Debbie commands, while export operations require
about 230 Debbie commands. Also measurements of export response times show that an average
export operation is completed in around 115 ms.

Memory requirements

Both import and export operations use private memory structures of 5000-10000 bytes, the aver-
age size being 7500 bytes. In these test cases, each offer contains about 1000 bytes of information

8.3 Other traders 161

(which is very small). In our test system this means that the maximum number of offers suppor-
ted is around 30 000 offers, when we allow space for the operating system, and parallel threads
of importers.

8.3 Other traders

In this section, we take a brief look at some traders that have introduced interesting features. The
description here is only for pointing out some special features of these traders, not to give any
deep insight in their properties.

8.3.1 ANSA

In the ANSA architecture model, trading is one of the potential ways for application objects to
learn about each other’s properties. ANSA trader can also be seen to extend the naming facilities
of a system. The initial ANSA trader was part of the ANSAware testbench [3] running on various
platforms including UNIX. The ANSA trader is often considered to be a direct predecessor of the
ODP trading function.

Purpose

The ANSA model has several naming systems for object identification. Invocation name system
supports remote operation invocation. An invocation name is either a local name of a memory
address where some executable code resides or an interface reference [243, 183]. Attributive name
system allows object selection by its properties. Finally, administration name system guarantees
uniqueness of a name and exact knowledge about the object’s location. The relationships between
the name systems are shown in Figure 8.26. The task of the trading service is to mediate between
these naming systems, i.e., the goal of ANSA trading is to give an invocation name that matches
a name given in any of the other naming systems [243].

As the ANSA trader always returns invocation names, the trader is obliged to instantiate any
servers that it offers as response to an import request. The trader is also responsible of creating
required proxy interfaces, gateways, and interceptors so that the potentially remote client is able
to contact the server through a standard interface. A successful import operation guarantees that
the importer is able to communicate with the server.

Structure and contents of offer space

The trader repository of offers is organised and subdivided to contexts. Contexts are organised
as a directed graph, so that each context includes a set of service offers and a set of references to
other contexts. Referred contexts can be remote if that is agreed by the remote administration.
Some contexts can have a special role in the cooperation of domains: any exported offers are also
exported to a context in a remote trading domain.

The registration operation carries the following information:

� an interface reference,
� a description of the interface type of the offered service: the names of the operations and

their parameter types and result types (note, parameter names are not included, but para-
meters are identified based on their location instead),

162 8 DISCUSSION ON SOME TRADERS

type naming system

type

names

types

property naming system

property name &

value pairs

administration

names

adminis-

trations

administration naming system

host and

network

names

socket

names

interface

references

invocation

naming system

Figure 8.26: Relationships between naming systems in ANSA [243].

� information on the distinguishing properties of the offered service, such as the different
protocols that are supported by the server or its infrastructure, the type of infrastructure
that supports the service, the location of the service, the use of distribution transparencies,
and quality of service information,

� name of the trader context in which the offer should be registered [44].

The import operation is simpler than the one discussed in Chapter 5. The arguments can only
be originated from the importer, and they do not include any termination rules for the processing.
The scope of the search is totally determined by the configured context relations. The import
arguments include in particular

� a type description that tells the trader what operations the application expects to be able to
invoke,

� constraints on the acceptable values of particular properties, and
� name of the context in which to search.

The criteria language [3] has the same expressive power as the one described in Chapter 5.
The ANSA trader model introduces a monitor concept in order to allow more efficient use

of resources. There may be substantial delay between service export, service import and service
invocation. During this time the service is idle, but according to the ANSA model, it must be
instantiated and thus consumes resources. The role of the monitor is to delay service instantiation.
Instead of exporting a service interface reference to the trader, a monitor reference is provided.
When the service is being imported, the trader invokes the monitor to obtain the actual reference
to the service. The monitor may create the server by demand. The monitor can also act as a trader
for service templates – it receives all import operation arguments, so it can instantiate and return
the most suitable server it is aware of.

8.3 Other traders 163

Cooperation organisation

For trader cooperation the initial ANSA trader provides two mechanisms. The first mechanism is
to bind together the trader contexts of two traders in such a way that for the clients, the combin-
ation looks like one trader. The other mechanism is to add into the context of one trader a proxy
offer to represent the other trader.

Later ANSA trader design reports [76] lists various trading configurations, including sur-
rogate trading and peer trading. In surrogate trading, a trading process manages a trading in-
formation base, providing a way to access the information. Surrogate trading is considered to
be the likely way for most large trading systems, because trading repositories will emerge for
different purposes and this design would allow flexible combination. In peer trading, no trust
exists between the traders. Therefore, the traders, for example, need to authenticate all offered
information. The surrogate and peer trader configurations fulfil the needs of federated trader
constellations.

Exploiting relationship to other services

Type management interface allows addition and deletion of types known by the trader. Initially,
only type names were registered with the trader and the type management was directly handled
by the trader itself. Except the very first versions of the trader, subtype polymorphism is suppor-
ted.

The user explicitly creates a directed acyclic graph (DAG) of the names of related types. At
run-time, a sanity check is performed to ensure that the required operations can actually be per-
formed on the selected subtype.

The ANSA trader has also been extended to mediate multi-media services. The Procrustean
trader [141] proposes service property and type coercions and flexible subtyping to support multi-
media services. The additional components, coercion management and multi-media type man-
agement, actually include the functionality of a type repository service. The concept of type coer-
cion is adopted from type theory [158, 27].

Performance aspects

The import response time has been reported to grow linearly with the size of the trader database
and with the number of clients. The time scale for import operations seem to be very similar to
DRYAD trader, varying from 26-90 ms with light load and only a few service offers containing
static property values [150].

The effect of evaluating dynamic property values, caching and prefetching has also been stud-
ied, assumingly with the same constellation [122]. The basic behaviour appears when the trader
synchronously evaluates each dynamic value during the selection process – a linearly rising graph
is given starting from around 100 ms with a minimum offer space and reaching slightly over 600
ms with a trader base of 20 service offers. The expected reduction of response times is reached by
using asynchronous evaluation and multiple threads.

8.3.2 RHODOS

The RHODOS project is a distributed operating system project at the Deakin University in Aus-
tralia. The goal of RHODOS trader is to support user autonomy and cooperation by allowing

164 8 DISCUSSION ON SOME TRADERS

users themselves to export and import their own objects [65, 166].
It should be noted, that the RHODOS trader mediates objects instead of meta-information

objects. Therefore, a shared object space is created among the cooperating trading domains.

Purpose and environment

The RHODOS system uses the trading service as part of the naming facilities of an operating sys-
tem. It also denotes that there are two classes of sharable objects, those owned by the system and
those owned by the individual users. For the users, an object is known by its attributes. Objects
like files, users, group of users, ports, processors, and software based services are considered.
Within the operating system the objects are known by their system names. The trading service is
required to map user attribute names to corresponding system names.

One of the basic concepts in RHODOS is a domain. The smallest domain is a user domain. The
users have their own domains that contain those objects they wish to retain exclusive access. They
can also export those objects to other users. All system objects form a system domain, that should
be accessible by all users. The domains can be arranged into a hierarchy. For instance, there
can be a set of user domains; there can be a departmental domain that captures a set of objects
accessible for all employees of that department but no other users; and finally, there can be a
company level domain that includes objects available for all company employees. The hierarchy
is used for defining the correct nodes in which service offers are held, potentially as replicas.

To support users in this environment, three different naming services are offered:
� a conventional service which maps evaluable names onto system names,
� an enquiry serve which allows the user to identify objects using imprecise descriptions, and
� a selection service which maps an imprecisely-described object onto a system name or

refers to a suitable mapping service.

Cooperation organisation

In the RHODOS system, the trading service is implemented as a set of distributed traders, each
trader running on a local distributed system. The cooperation between traders takes place when
an import operation is forwarded to another trader because the request cannot be satisfied locally.
As results of earlier imports from other traders, imported remote objects may be found already in
a local search [166].

RHODOS traders exploit long-lived imports (recall Section 5.3.6), which feature is also visible
in the database entries. Each trading database entry has three logical sections. The first section
describes the object itself by listing attributes, access rights, owner domain, and a reference to
a system name. The second section lists to which domains the object is exported and for what
period of time, the cost of usage, and the withdraw conditions. The third section identifies the
domains from where the object is imported. The information held is similar to exported objects.

Exploiting relationship to other services

Also technically, the RHODOS naming and trading facility are interlinked. The name server
provides the conventional name related operations – such as object creation and deletion, and
changing object name – thus maintaining a naming database. The trader provides facilities for
making objects visible and addressable by their attributes. Import operation attaches a visible
object to the importer’s naming database [166].

8.3 Other traders 165

8.3.3 MELODY

MELODY (Management Environment for Large Open Distributed sYstems) is a project at the
University of Stuttgart working on the field of open service market. They develop a market in-
frastructure where the two main components are a trading service and a management service
that consists of configuration, monitoring, and control services for the market and the marketed
services [120].

The MELODY trader is supported by X.500 Directory services, and both DCE and CORBA
platforms. It is implemented in C++ [26, 119].

Structure and contents

The trader consists of a trader user agent that supports importers and exporters, and a trader
server agent. The trader user agents are embedded into user programs. The trader server agent
supports

� the trader’s type system that manages service and interface types and their relationships,
� management module for type system manipulation,
� offer storage as a hierarchy of contexts,
� operation module with export, withdraw, list and import operations, and
� cooperation module that handles forwarding of requests to other traders [26].

The service type system dictates what attributes are present in each service offer. In general,
each offer must include interface identifier, location information, and list of service properties. In
addition, the type can have a special function for defining ordering of values within that type (to
be used when preference criteria includes the notion ‘min’). Furthermore, the special function can
be a reference to an intelligent agent [26].

The static properties are stored in the trader itself, but the dynamic properties are queried
from MELODY management system. Because the property values are retrieved from different
storages, access location objects are used. Instead of the property value itself, the service offer
contains an access location object that can be instantiated to evaluate the value [118].

The offer space is organised to a context hierarchy [118]. The offers are exported to a context
that represents the services of an organisational unit. Imports directed to a high level context
reaches all sub-contexts, but an import started from a sub-context does not proceed to the con-
taining contexts.

Features for trading activities

The MELODY trader is implemented according to an early ISO draft document [87] [26]. This
means that the assumptions on the trading behaviour are wider than discussed in Chapters 5.
For example, the trader is expected to guarantee that a selected offer describes a service that is
actually available, i.e., the offered service has not failed since the offer was issued. In addition, the
context model for organising the offer space was described in the draft. Later working drafts for
the standard included similar cooperation establishment protocols as MELODY trader represents.

An interesting aspect of the trading activities of MELODY trader is the way of acquiring ser-
vice offers. The offer space is build based on the information retrieved from

166 8 DISCUSSION ON SOME TRADERS

� direct export operations,
� static configuration information held in a separate configuration database,
� importing from other traders, and
� active search through configuration management services, resource discovery system or a

web-worm [120].

Also the import operation parameter list shows some differences: The import can be guided
by a strategy parameter (‘best choice’, ‘cyclic choice’, ‘random’, ‘conservative choice’, ‘first choice’
(see Section 8.3.5 for definitions)). Additional information that can be passed to the selected
strategy include (i) the time limit allowed for the import, (ii) number of offers required in the
response, and (iii) the maximum number of offers to be involved in the search. In the matching
criteria, the importer can use predefined criteria names. The named criteria, explicit criteria, are
specified by the trader administrator separately for each service type [120].

Cooperation organisation

For cooperation in a homogeneous group of traders the MELODY trader supports three modes:
light-weight cooperation, simple negotiation, and federation. The light-weight cooperation mode
allows a trader to act as a normal importer towards another trader. The simple negotiation mode
involves long-lived imports of single offers. In this mode, the frequency of import requests is
higher than with light-weight cooperation. Both light-weight and simple cooperation modes re-
quire that the type systems of the involved traders are equal. The federation model involves either
heterogeneity of type systems used by the trader or long-lived imports of large amounts of offers.

The cooperation scheme of the MELODY trader supports also an automated method for
determining the suitable mode of cooperation and transition mechanisms between the modes.
The need for mode changes is determined by comparing measured import frequencies to given
threshold values [26].

Exploiting relationship to other services

The MELODY trader is rather tightly integrated to the MELODY management system. The trader
can, for instance, receive event notifications (failure reports) directly from the management sys-
tem. The trader can also reserve resources for each imported service offer through the manage-
ment system [118].

Administrative facilities

The administrative facilities include the management of the type space, the context hierarchy, and
cooperation contracts between traders.

In addition, the administrator can guide import query processing in the trader by defining
implicit matching criteria and default criteria for each service type. Implicit matching criteria are
used for every import request in addition of those criteria defined by the importer. These criteria
helps the administrator to guide load balancing, resource consumption, etc. Default criteria are
used when the importer defines no matching criteria [120].

8.3 Other traders 167

Performance aspects

Illustrations by Kovacs and Wirag [121] imply that the import response times for the MELODY
trader are within the range of 0.2-8 seconds. The response times were improved to 0.2-4 seconds
by using asynchronous evaluation for dynamic properties or by using parallel processing (3
threads for a query). The measurement with consistency predicates implies that checking prop-
erty value from the management system takes an additional 0.2-4.2 seconds. In each case, the
measurements show nearly a linear increase in response time when the number of offers in offer
space increases from 1 to 6.

8.3.4 TRADE

The COSM (Common Object Service Market) project, at the University of Hamburg, designs and
implements a generic system infrastructure for common object service market [162, 133]. The
COSM project applies trading in the area of electronic commerce, where service providers such
as travel agencies and newspapers offer their services to clients who wish to access information
through a generic interface.

The TRADE (Trading and coordination environment) trader contains as main components
the service offer manager, the service selection manager, the trader interworking manager, and
the type manager. TRADE is implemented on DCE platform [162].

The TRADE type manager supports explicit subtyping [162]. The classification of services can
be based on names and explicitly defined relations between these names. In addition, attributes
can be attached to names for additional details about the type.

The service offer manager is based on the DCE Cell Directory and Global directory services.
The service offers are stored in a special format. The offer schema includes

� the service type of the offer and the corresponding interface types,
� the current values of the static service attributes,
� the interface reference for server binding, and
� optionally, a service type description for programmers [162].

The TRADE project has participated in the IWT project (Interworking of Traders) [246]. The
main goal of IWT project has been to demonstrate a trader interworking scenario between inde-
pendently developed traders.

The interworking scenario was established between Brisbane and Hamburg, each location
supporting a separate trading domain. Both traders were supported by DCE platform, and the
domains were connected via DCE Global Directory Service. Both traders are administered by
a specific, shared GUI-based trader administration tool, that is able to create cooperation links
between the trading domains [161]. According to the classification given in Chapter 5, the IWT
trading scenario is a distributed trading scenario.

8.3.5 Y

The GMD FOKUS in Berlin works actively as a research center and producer of distributed system
services. From their work we study Y in this section and TOI traders in the following section.

The GMD FOKUS has created a distributed service environment based on broadband
ISDN [66]. The project is called BERKOM (Berliner Kommunikationssystem). The environment
includes a set of heterogeneous services, resources, users and organisations. As a platform for

168 8 DISCUSSION ON SOME TRADERS

BERKOM application projects, a system called Y is used [189]. Its services cover trading, binding,
monitoring of quality of service, authentication and authorisation, and transportation services.

The Y trader is one of the early implementations. Therefore, the scope of the trading func-
tionality is wider: The trader in this system offers to its users search, selection, and invocation of
servers.

Features for trading activities

The trader can select the service offers to be returned based on a selection strategy. The following
strategies have been defined [253]:

� First choice strategy accepts the first service offer found.
� Random choice strategy utilises probability measures assigned for each service offer. When

a set of offers are otherwise equally good matches for the request, the offer with highest
probability value is selected.

� Cyclic choice strategy keeps the equally well matching service offers in a list so that the
following offer can be returned for the next similar request.

� Conservative choice strategy returns the same service offer that it returned to the previous
similar request.

� Probing choice strategy first applies the search to a subset of the service offers. This strategy
is designed for better import performance.

� Best choice strategy is used when the importer requires that only very up-to-date informa-
tion is used for the selection process, although the selection takes more time and resources.
Best choice strategy involves for example re-evaluation of dynamic property values.

The Y system introduces a role concept for traders in the process of selecting the most suitable
server. The trader can assume different roles: a dispatcher, a trustee, a consultant, or a coordin-
ator [254] (recall from Chapter 5). The importance of these roles is evident, when trading is used
in a distributed system for load sharing and load balancing. The different roles of a trader are re-
lated to the different sources of matching rules given for an import. If the trader is not allowed to
guide imports, the clients can use a selfish optimisation policy and thus harm the overall system
performance. The roles define which arbitration rule is used between the importer and trader
matching criteria.

Exploiting relationship to other services

The Y trader utilises a combination of type repository and application management repository.
The repository is based on X.500 Directory and includes abstract service specifications. Each
abstract service specification consists of a service name, domains on which the service is offered
to, attributes of the service, and knowledge about the behaviour and invocation of the service [66].

8.3.6 TOI

TOI is a product (of GMD FOKUS) that implements the OMG trading object service [239]. OMG
trading object service specification is technically equivalent with the ODP trading function stand-
ard computational specification. The differences in the specifications are due to the different scope
goals and different representation requirements of the involved organisations. The OMG trading
object service specifies that a trader mediates instances of services of particular types [82].

8.4 Comparison and conclusions 169

TOI version 1.0 supports the Lookup, Register, Admin and Link interfaces (see Section 8.1)
in separate modules. By combining the interface modules, a trader that is conformant to query
trader, simple trader, stand-alone trader or linked trader can be configured [82].

TOI exploits the services of ODP type repository function and WWW-based graphical user
interface. TOI interfaces are specified in CORBA IDL and implemented on CORBA (Orbix2.0)
platform. The offer space is supported by Postgres95 database management system. Implement-
ation language is C++ [82].

During the presentation of TOI in the ICODP conference [239] Volker Tschammer explained
some performance measurements: TOI running with an offer space of 10-10000 offers was giving
a general response time of 200-500 ms. The tested imports used return cardinalities of 1-10 offers,
and import complexity of 1-10 properties. Because of object database support for the offer space
we would expect the increase of response times to be logarithmic when the offer space size grows.

8.3.7 DSTC Object Trader

DSTC (Distributed Systems Technology Centre) of Australia has been actively involved in the
development of ODP trading function standard, and has also submitted a trading object service
implementation to the OMG consortium.

The DSTC object trader [47] conforms to the OMG trading object service specification [173].
The DSTC trader conforms to the level of linked trader and supports dynamic properties.

The trader implementation works on Solaris, and Windows NT platforms, It uses either flat
files or selected object database management systems as storage structures.

Before this commercial trader, DSTC has been involved in a series of trader implementations
reflecting the various versions of the ODP trading function standard. This work has had a ma-
jor role in the standard development. The group studied also cooperation contract negotiation
protocol [8, 7] (see cooperation contracts in Section 5.3.6), and a rule based context structure for
trader offer spaces [9]. However, these features were finally not included to the standard. In ad-
dition, the group produced most of the material [248] for the standard that prescribes how X.500
Directory service is used as a trading repository [100].

8.4 Comparison and conclusions

In the previous sections we have briefly surveyed some trader specifications and implementa-
tions. In this section, we summarise their features.

Functionality

The traders presented differ in their functionality because the overall systems into which they are
embedded have different goals. We can separate two ways of exploiting traders: first, traders are
exploited by open infrastructure software in the late binding process; second, human end-users
exploit traders for finding objects and services they need either in computing related activities
or in social-life activities. We study examples of these exploitation modes in Part IV. Table 8.1
shows the role of each trader in their system environment. The ODP, DRYAD, ANSA, RHODOS,
MELODY and Y traders are clearly focusing on the infrastructure needs, while TRADE focuses
on human browsing needs. Naturally, most traders are suited to both uses. The expected mode
of exploitation is naturally reflected to the results of import operations. From Table 8.1 we may

170 8 DISCUSSION ON SOME TRADERS

notice, that DRYAD trader makes an exception from the generic model by allowing template
mediation in addition to instances. Mediating templates avoids unnecessary resource reservation
for unused services, although service invocation is more expensive.

The traders presented are of different ages, and therefore they have their conformance goals
adjusted to different versions of the ODP trading function standard. As the standard was accepted
late in comparison to the development cycle of the presented traders, their functionalities and
features, like operation signatures, are dissimilar. However, we can generally say that all traders
have some form of query, simple, and stand-alone traders (Table 8.1). The Y trader seems not
to support linked behaviour. The ANSA trader cooperates with other ANSA traders via proxy
offers. Other traders use some form of links, having rather different implementations for them.
For example, DRYAD and MELODY use links that are specific to a certain service type only.

There are also a variety of designs in regard to changing property values in service offers. All
traders, except the two oldest, support dynamic property values. Both MELODY and TRADE
have during their development changed from using modifiable properties to dynamic properties.
In addition to this, Table 8.1. shows also that all presented traders support some form of subtyp-
ing. However, the subtyping concept is very different in each case as explained earlier when each
trader was separately discussed. Here we will only pick up the DRYAD trader that works on an
abstract service type level instead of the engineering types and therefore differs from the others.

Trader cooperation

The cooperation concepts of the traders presented are practically restricted to distributed trader
constellations. Even in cases, where two separate implementations have been connected for in-
terworking, the relationship has been static in nature and strongly based on joint administrative
decisions, on selection of joint type systems and middleware platform [246, 257].

One of the obstacles for federation is that the concept of trading domain is not yet shared
by the trader implementations. In Table 8.2 we have listed the views of trading domain in each
case. The views of ODP, DRYAD, and ANSA are joint, and there seems to be nothing in TOI
and DSTC traders to prohibit similar interpretation. TRADE trader could be included to the
same group by extending its type repository concepts. However, RHODOS, MELODY and Y by
nature are forced to an organisational or an administrative view to a hierarchy of domains. The
hierarchy effectively restricts the potential cooperation relationships of a trader. The relationship
between a trading domain, an administrative domain, and expected infrastructure services is
vaguely agreed. Table 8.2 shows this by viewing the varied level of joint service expectations.

In this dissertation, we have considered the ability of importing to be sufficient for a federa-
tion relationship. However, this view is not necessarily shared by other projects. In most cases,
it is required that also exports are supported, as shown in Table 8.2. An object can however be
bound directly to other traders beside its local trader. Each object can be a member of more than
one trading domain, unless trading is directly involved in resource management as in MELODY,
RHODOS and Y systems. In ANSA architecture the relationship between management and trad-
ing has been solved by using separate naming schemes for resources and offers (see Figure 8.26).

The cooperation of traders is also hindered by the differences in expressing how the import
request should traverse the trading graph. As shown in Table 8.2, only those traders, that were
implemented after the ODP trading function standard was accepted, have the similar graph tra-
versal notion. The import is propagated through a link, if (i) the importer’s import policy, (ii)
the trader’s import policy, and (iii) the link policy suggest so. Either the importer or the trader

8.4 Comparison and conclusions 171

may restrict a search to local offers only (local-only). The link may also be traversed only if no
local offers were found – in this case all three policies must agree on propagation. Finally, if all
three policies require it, an import can be propagated irrespective of the local search result. The
propagated import is further restricted by the local policies in each trader involved, and the hop
count (number of traversed links). In RHODOS and MELODY traders the trading graph traversal
follows always the same strategy: links are followed only when local offers are not found. A local
offer may as well be a previously imported offer. In DRYAD, the import propagation can be forced
by a trader or by an importer, if the other partner does not deny propagation at the same time. In
principle, propagation can be started simultaneously with the local search, and therefore, there
is no counterpart for local-only mode. However, the import can be limited in time. A sequen-
tial search that has no time to traverse the trading graph further is a good approximation for a
local-only mode.

Governing import activities

The trading interfaces supported by the presented traders differ. Table 8.3 captures some aspects
of import operation signature and import operation behaviour.

In the import operation signature, each trader requires that the service type name is present.
However, DRYAD trader uses an abstract service name instead of actual, engineering related
type name. All engineering types under the same abstract type name are interchangeable, but
may require an interceptor. Also matching constraint is required by all traders to specify what
parameter values the importer considers necessary. Older implementations support only match-
ing constraint, but newer implementations have also included preference criteria to do further
selection.

The import operation signature can also include parameters for specifying technical restric-
tions. These include cooperation related restrictions, and cardinalities, as well as restrictions on
using proxy offers, and dynamic or modifiable properties. MELODY and Y traders also allow
the importer to specify what search strategy should be used. Available strategies are listed in
Table 8.3.

The operation signature contains a variable number of criteria that are expressed in a criteria
language. During the development of ODP trading function standard, a sequence of languages
has been suggested. In principle, the expressive power of these languages has continuously been
the same as suggested already in the ANSA trader. However, the syntactic structures have var-
ied and it cannot be expected that two trader implementations could work together without a
language interpreter in-between. The DRYAD trader suggested a priority flagged language that
could be used for matching and preference criteria, and exploited for arbitration as well. The
DRYAD trader uses the criteria language for exploiting the trader in different system roles. This
is achieved by interleaving importer policies with trader policies based on criteria priorities.

Import operation behaviour can be governed by either importer alone, or jointly by the im-
porter and the trader. Again, older implementations differ from the newer in this respect. The
role of traders as controllers of the overall system performance was first introduced in the ANSA
system. The two sources for import criteria, importer and trader, may cause conflict situations.
For resolving the conflicts, an arbitration policy must be specified. The details of the arbitration
policy is private to the trader, and therefore TOI and DSTC traders do not fail even if they have
not published their arbitration policies. The arbitration policy does not create any additional level

172 8 DISCUSSION ON SOME TRADERS

of nondeterminism – the import activity is already so complex and contains so many independent
decision points that it appears nondeterministic to users.

Implementations and performance

Some general facts about the trader implementations have been collected to Table 8.4. The presen-
ted trader implementations are based either on an object-oriented database system, on X.500 Dir-
ectory, or on a special purpose database.

The database solutions provide a normal import response time in some hundreds of mil-
liseconds, while X.500 based solutions are considerably slower. In the database solutions, the
storage technique also guarantees that the response times grow only logarithmically when the
database size increases. Furthermore, the majority of the response delay is used for network
communication.

The techniques used for minimising the search times within the traders and for minimising
the message passing between traders include long-lived imports, caching and prefetching. Cach-
ing and prefetching are also used for dynamic property values. Probing and limited search time
both decrease the search cardinality without explicit request from the importer. In both cases, a
random part of the offer space is not searched. All these techniques offer good results, if same
offers are used frequently enough. However, there are not yet enough practical information about
actual load in any of the environments.

8.4
C

om
parison

and
conclusions

173

Feature ODP DRYAD ANSA RHODOS MELODY TRADE Y TOI DSTC

Role in
system

mediating
interface
references

mediating
meta-
information
objects

mapping
other names
to invoca-
tion names

facilitating
a shared
object space
together
with the
name server

mapping
attribute
names to
interface
references
made avail-
able by
the man-
agement
system

mediating
interface in-
formation at
open service
market

trader con-
trolled,
attribute
based inter-
face binding

repository of
object keys

repository of
object keys

Import
result

references
to interface
instances,
property
values

references
to (com-
putational)
interface
instances
or (com-
putational)
templates,
property
values

references
to (engin-
eering)
interface
instances,
property
values

objects references
to (engin-
eering)
interface
instances

references
to (engin-
eering)
interface
instances,
property
values

references
to reserved
(engin-
eering)
interface
instances,
property
values

references
to (engin-
eering)
interface
instances,
property
values

references
to (engin-
eering)
interface
instances,
property
values

Classification
based on
ODP trader
conform-
ance class

query,
simple,
standalone,
linked,
proxy, full-
service

query,
simple,
standalone,
linked

query,
simple,
standalone,
proxy

query,
simple,
standalone,
linked

query,
simple,
standalone,
linked

query,
simple,
standalone,
linked

query,
simple,
standalone

query,
simple,
standalone,
linked

query,
simple,
standalone,
linked

Additional
policies
(features to
support)

dynamic
properties,
modifiable
properties,
subtyping

dynamic
properties,
substitutab-
ility groups
subtyping

explicit
subtyping

modifiable
properties,
subtyping

dynamic
properties,
modifiable
properties,
subtyping

dynamic
properties,
modifiable
properties,
explicit
subtyping

dynamic
properties,
subtyping

dynamic
properties,
modifiable
properties,
subtyping

dynamic
properties,
modifiable
properties,
subtyping

Table 8.1: Trading purposes and functionality goals.

174
8

D
ISC

U
SSIO

N
O

N
SO

M
E

T
R

A
D

E
R

S

Feature ODP DRYAD ANSA RHODOS MELODY TRADE Y TOI DSTC

Concepts
for multiple
admin-
istrative
domains

<X>
domains

<X> do-
mains,
usually
coincident
borders
because of
practical ad-
ministrative
needs

layer model
of isolated
domains

hierarchy of
domains

hierarchy of
domains

multiple
traders

hierarchy of
domains

multiple
traders

multiple
traders

Expected
shared
support

none on
the selected
abstraction
level of
discussion

transport
protocol

name ser-
vice, type
repository
service,
transport
protocol

name
service,
transport
protocol

MELODY
manage-
ment system

name ser-
vice, type
reposit-
ory ser-
vice, DCE
platform

BERKOM
platform

ORB ORB

Cooperation
establish-
ment

link
interface

link
operations

link op-
erations
for trading
contexts

defined by
domain
hierarchy

link creation link creation defined by
domain
hierarchy

link
interface

link
interface

Cooperation import,
resolve,
export

import, ex-
port denied
by the
model

import,
export

import,
export

simple
imports,
long-lived
import
of single
offer, chan-
nel with
interceptors

import not
discussed

import,
export

import,
export

Traversing
trading
graph

follow
policy on
import re-
quests and
links, hop
count

allow /
deny / force
propagation
on links

proxy offers links fol-
lowed when
no local
offers are
found

links fol-
lowed when
no local
offers are
found

links not
discussed

links and
follow
policy
(local-only,
if-no-local,
always)

links and
follow
policy
(local-only,
if-no-local,
always)

Table 8.2: Trader cooperation mechanisms.

8.4
C

om
parison

and
conclusions

175

Feature ODP DRYAD ANSA RHODOS MELODY TRADE Y TOI DSTC

Logical spe-
cification
parameters

Service
type name,
matching
constraints,
preference
criteria

service type
group name,
criteria

service
type name,
matching
constrains

service
type name,
matching
constrains

service
type name,
matching
constrains

service
type name,
matching
constraints,
preference
criteria

Service
type name,
matching
constraints

service
type name,
matching
constraints,
preference
criteria

service
type name,
matching
constraints,
preference
criteria

Technical
specific-
ation
parameters

search and
return car-
dinalities;
hop count;
use of modi-
fiable and
proxy of-
fers and
dynamic
properties

search time,
request/
deny /allow
federation
in parallel
/sequentially

none none first, ran-
dom, cyclic,
conservat-
ive, best
choice

none first, ran-
dom, cyclic,
conservat-
ive,probing,
best choice

search and
return car-
dinalities;
hop count;
use of modi-
fiable and
proxy of-
fers and
dynamic
properties

search and
return car-
dinalities;
hop count;
use of modi-
fiable and
proxy of-
fers and
dynamic
properties

Languages joint for
matching
and prefer-
ence criteria,
name-value
pairs for
technical
aspects

a single
criteria lan-
guage for all
aspects

similar to
ODP criteria
language

similar to
ODP criteria
language

similar to
ODP criteria
language

similar to
ODP criteria
language

similar to
ODP criteria
language

similar to
ODP criteria
language

similar to
ODP criteria
language

Sources of
specification

importer,
trader

importer,
trader

importer importer importer importer importer,
trader

importer,
trader

importer,
trader

Arbitration policy spe-
cification
required

arbitration
policies and
selectable
roles built
in to the
language
interpretation

unnecessary unnecessary unnecessary unnecessary role se-
lectable
(consultant
etc.)

not spe-
cified (not
required)

not spe-
cified (not
required)

Table 8.3: Governing import activities.

176
8

D
ISC

U
SSIO

N
O

N
SO

M
E

T
R

A
D

E
R

S

Feature ODP DRYAD ANSA RHODOS MELODY TRADE Y TOI DSTC

Normal
import
response
time

specification 30-300 ms 20-600 ms not available 200 - 8000
ms

not available not available 200-500 ms not available

Effect of
increasing
size of offer
space

specification logarithmic linear not available linear not available not available logarithmic not available

Effect of
increasing
number of
importers

specification dependent
on number
of threads
and amount
of memory

not available not available not available not available not available dependent
on number
of threads
and amount
of memory

not available

Facilities
for limit-
ing import
times

search
cardinalities

importer
can limit
the response
time directly

none none long-lived
imports as
a form of
caching

none none search
cardinalities

search
cardinalities

Techniques
for im-
proving
response
times

not
applicable

caching,
prefetching

none long-lived
imports

long-lived
imports,
automatic
cooperation
modes

none probing,
caching

not specified not specified

Implemen-
tation
platform

specification UNIX,
Debbie
database
system

ANSAware
system

RHODOS
and UNIX

DCE,
CORBA,
X.500,
Melody
manage-
ment system

DCE, DCE
directory
service

BERKOM
environ-
ment with
adminis-
trative data
repository

CORBA
(Orbix),
Postgres

Solaris,
Windows
NT, object
database

Table 8.4: Performance aspects.

Part Four

EXPLOITING
TRADING SERVICES

In this part, we study exploitation scenarios of trading service. Trading is commonly considered to suit
two areas, open infrastructure software that supports late binding, and open service market for end-users
browsing for suitable products for purchase or for information specific to a certain topic.

Chapter 9 investigates a federation transparent interoperation between sovereign systems. Many of the
techniques for federation transparent interoperation are equivalent to those required for distribution trans-
parent interworking within a single administration domain. However, fewer assumptions about shared
environment properties can be made in the federated environment. Establishment of a federation trans-
parent communication is based on a federated binding process where trading services have an essential
role. The traders mediate potential contracts and partially implement the negotiation process that results
to binding liaisons.

The federated binding process supports provision of higher level communication primitives that

� support distribution transparencies,
� support multi-party communication patterns,
� are able to mask fluctuation in communication quality of service,
� allow user-initiated changes in quality of service requirements,
� allow heterogeneous communication software and middleware services to be used, and
� support failure recovery.

Chapter 10 reviews how traders can be used in the area of electronic commerce. The exploitation envir-
onment is set by a framework for electronic commerce that is formulated by combining the initial models
of relevant consortia. Within this framework we identify the locations where distribution transparent com-
munication facilities and trading services can be exploited. The study is not detailed, because there is not
yet real shared understanding about where communication networks can reasonably to be exploited for
electronic commerce.

Both Chapter 9 and Chapter 10 bring up contracts as an essential concept. The concepts are clearly
related to each other, although the contracts have very different nature: Chapter 10 discusses commercial
contracts, while Chapter 9 discusses suitable protocols for binding object interfaces.

Chapter 9

Federation transparent interoperation

In this chapter, we construct an interaction model suitable for federated systems. The model sup-
ports computational interface binding and provides federation transparent interoperation among
sovereign application objects. Conceptually, the computational interface binding implements a
service liaison between the communicating objects, in which the objects share an understanding
on the communication structure, semantics, and means. In a federated environment, knowledge
about such properties cannot be inherited, because of the isolated system development.

The system architecture is discussed in Section 9.1. Then binding liaison representation as a
contract object is described in Section 9.2. The requirements for binding liaisons are studied in
Section 9.3 and Section 9.4 focuses on the realisation aspects of the federated binding process,
exploiting the meta-information services discussed in Part III. Section 9.5 compares the presented
model to some related interoperability models. The discussion includes prototypes developed
in DRYAD project. As the federated binding model is a refinement of the ODP binding frame-
work [93, 102], we do not present a separate comparison of these models, but comment their
relationship during the model presentation.

9.1 System model

In federated environments, interoperation must be established at run-time, as part of the interface
binding process.

Broker architecture

The federated architecture is a broker architecture, where server selection is an internal matter of
the infrastructure (Figure 9.1). This approach is usually avoided in ODP related work, because
insufficient trust in other administrative domains in the global information processing network.
Other architectures, like ANSA, exploit a matchmaker model, where the client first uses server
selection tools (trading) and identifies the selected server in service invocation. (The termino-
logy of broker and matchmaker model is adopted from [219].) The unwillingness for adopting a
broker architecture is understandable in systems based on networks like the Internet, where no
requirements on trustworthiness of the service vendors are enforced. However, we ideally ex-
pect a more sophisticated network to evolve, where communication is not only concerned with
technical connectivity, but is governed also with laws and commercial contracts.

180 9 FEDERATION TRANSPARENT INTEROPERATION

client

server

platform

serverserver

client
platform

Figure 9.1: Broker architecture.

In the federated architecture, the matchmaker model is not applicable, because the initiating
object has no direct control over the objects of remote sovereign systems. Furthermore, because
there are no shared resources (like data files or equipment) there is no need to identify objects.
Instead, shared identifiers can be attached to service (behaviour) and information contents. The
aspiration for interoperation of objects in a client-service model, instead of client-server model,
was already proposed by Cygnus architecture [30].

In this kind of environment, designs that integrate trading and system management are pop-
ular (e.g., [127, 114, 121, 191, 192, 240]). However, in this dissertation, we do not address that
area.

Client-service architecture

The federated architecture is also a client-service architecture, where abstract service types can be
used as the basis for the communication between objects. A client may request from its environ-
ment a named service, a behaviour pattern, instead of addressing a server object to perform an
operation. The communication requests within one domain can use client-server style addressing
as well.

In an ODP-based system, instances of objects can appear in the system in two ways, either
through instantiation process or through introduction. For binding purposes, the origin of the
object is not interesting. Figure 9.2 illustrates the situation. Only the object type is interesting. The
objects may however differ in their properties. Therefore, the object that is selected or instantiated
must be further selected based on criteria that specify the service type and also QoS.

For binding purposes, the time of instance creation not is interesting either. Therefore, a guar-
antee of future behaviour of correct type is as good as an already instantiated object. Therefore,
a lazy instantiation process can be used: the object is instantiated from a template only when the
service request is processed, instead at the time when the service is first offered.

The object configurations that participate in the cooperative behaviour can be decided inde-
pendently at each sovereign system.

Binding process overview

The result of the federated binding process is a binding liaison, that ensures that a communication
channel can be created between the federating objects. The information object that captures the
contents of a binding liaison is called a ‘binding contract’ [102]. The binding contract is copied to

9.1 System model 181

instance

instance

pool

coordinator

template

factory

configuration
coordinator

object of type X

template

factory

interceptor

Figure 9.2: Various sources for object instances.

each involved system, in order to allow instantiation of separate sections of the shared channel
(recall Section 2.4.6).

In order to understand the phases of the federated binding process, we need to consider the
different views to the federated system: The architecture is essentially divided into two layers,
application layer and infrastructure layer. For an application programmer, only the application
interface aspects should be visible. The infrastructure layer services enhance these aspects to a
full engineering view.

At the application layer, the federated binding process can be seen as follows (see Figure 9.3).
An object is composed of a set of interface objects and private state information. The object can
be asked to change the encapsulated information by sending it a signal that matches an interface
signature. The signature and behaviour associated to an interface are described by object property
values. The property values can be stored within the object itself and retrieved for example by
property service [176]. In our federated system model we store the property values in a trader,
as service offers. Each service offer is structured according to an abstract service type definition,
that specifies a contract schema. When the binding negotiator in the infrastructure has received a
service request, it requests the trading service for matching service offers. When a suitable set of
offers is found, a binding liaison is formed. The liaison establishment phases are further studied
in Section 9.4. As a result of a successful binding process, the application object can be expected
to have a communication channel to its peers.

At the infrastructure layer, the federated binding process is more complicated, as shown in
Figure 9.4. The negotiation task is split to two parts, by separating service liaisons and infrastruc-
ture liaisons (recall Figure 2.1 in Section 2.4). A service liaison captures the application interface
involved and an infrastructure liaison captures the facilities of the platforms. Consequently, a
binding liaison between application objects consists of two parts, the application specific part,
and the infrastructure specific part. The first guarantees application interoperability, the latter
guarantees interworking properties of the platform.

Federations between sovereign systems do not form a single static network of nodes. Instead,
the systems are able to join various communities at run-time, depending on their needs. Separate
federations emerge for different types of application services. The scope of the federation network
is restricted by the interworking capabilities of the platform services. The relationship between
the service liaisons and infrastructure liaisons is separately determined at each sovereign system.

182 9 FEDERATION TRANSPARENT INTEROPERATION

Interface
information values

Object

Signature Behaviour

changes

described

Potential
contract

Potential
contract

Contract

is negotiated

Interface

Object

is realized
as

Infrastructure

Abstract
service type
definition

represents

represents contents
structure

BindingMessages or flows

Private state Property

are

in

determines

Figure 9.3: Object structure, interface references and binding.

The two-layer model of federated systems gives us reason to define two levels of interface
references: a computational interface reference that only carries application related information,
and an engineering interface reference that expresses the full binding contract with all platform
details. A computational interface reference is indirect in the sense that it refers to an interface
template and an interface factory, together with some limitations for the interface properties. An
engineering interface reference refers an existing interface and denotes the actual properties of
that interface.

The computational interface reference captures the information that is determined by the ap-
plication objects; the additional information captured by the engineering interface reference is
inherent to the platform environment that supports the application object.

9.2 Binding liaison representation

The binding liaison can technically have two states: a binding state, that is a state where no
communication resources are reserved, and a channel state, that is a state where resources are in
use.

The binding liaison is implemented by a channel controller, that includes the binding contract
object, and depending on the liaison state, potentially also some of the channel components. The
channel controller is able to modify the binding liaison between binding and channel states. The
state is not necessarily always consistent, because of its distributed nature. Even the channel
controller is a federated object.

The binding contract information is replicated to each of the object interfaces involved in the
liaison. Because the interfaces can reside at separate domains, the data representing the contract
information may have different local formats and coding. Each object can use the local copy of

9.3 Requirements for channels 183

infrastructure

view

potential

contract

of

platform

object

potential
contract
of
application

object

potential

contract

of a service

potential

contract

of

platform

object

potential
contract
of
application

object

potential

contract

of a service

view
programmer
application

trader negotiator

"service

liaison"

part of

contract

"infra-

structure

liaison"

part of

contract

contract
binding

Figure 9.4: Infrastructure view to the federated binding process.

the binding contract as policy information or parameters to its internal activities. This mechanism
can be used to provisioning of the binding contract as part of the object behaviour (see [151] for
an example).

The binding contract supports the following information and interfaces:

� abstract service type identifier, that allows each administrative domain to access the related
parts of the local type system,

� collectively selected behaviour as a behaviour pattern name and choices made from the
associated policy framework,

� technical descriptions for interface signatures, which can be differently selected at each
administrative domain,

� communication protocol,
� channel class that expresses the type of channel to be instantiated, allowing each adminis-

trative domain to access local details for stub, binder and interceptor objects,
� service type specific QoS agreement,
� failure detection and recovery protocols, failure defined as not being able to meet the QoS

agreement,
� remuneration protocol, and
� channel control interface reference separately for each administrative domain.

9.3 Requirements for channels

In order to specify further details of the binding contract contents, we need to analyse the re-
quirements for channel structure. In the following, we study federation transparency, a set of

184 9 FEDERATION TRANSPARENT INTEROPERATION

distribution transparencies and quality of service management. The dynamic nature of the liais-
ons causes additional requirements for channel structures.

9.3.1 Federation transparency

The requirements for a channel in a federated environment include support for federation trans-
parency that hides heterogeneity and asynchrony of system evolution caused by sovereign sys-
tems. This involves management of service and interface types, selection of servers, translation
of message contents, etc. However, the channels in federated environments contain the same
components as expected in traditional distributed systems, i.e. the selective transparencies iden-
tified in RM-ODP. Naturally, achieving these transparencies has become more difficult, and even
in some cases restricted by federation transparencies. Furthermore, federation transparent in-
teroperation must be applicable to all modern communication needs, for instance, multi-media
applications and mobile systems. An interesting aspect for these areas is quality of service man-
agement.

Federation transparency differs from the transparencies identified in RM-ODP because it is
not selective. Instead of parametrising communication operations for selected transparency ser-
vices, a more primitive set of communication operations must be used if federation transparency
is not exploited. We have used the term interworking for the communication primitives where
the cooperation partners themselves manage problems caused by evolution and heterogeneity.
Federation transparency masks the problems caused by sovereign administrations from the com-
municating partners.

9.3.2 Selective transparencies

The general interoperability requirements for distribution transparent communication include

� support for server replication (replication transparency),
� support for multiple representation syntaxes for data (component for access transparency),
� support for object migration (migration and relocation transparencies),
� support for failure recovery (failure and persistence transparencies),
� support for multiple transport protocols (component for access transparency),
� support for multiple platform architectures (component for access transparency),
� support for other distribution transparencies, like transaction transparency,
� secure communication, and
� multi-point communication.

Interoperability requires a group of simultaneous interworking liaisons formed by the chan-
nel components. The interface references must support the information requirements for these
interworking liaisons. The interworking issues that reflect the above list of distribution trans-
parent communication include: functionality representation and information transfer, migration,
group communication, security, quality of service predictability, and failure recovery.

Functionality representation and information transfer are successful only if the communicat-
ing objects are able to interpret the same description language. Because the communicating part-
ners cannot trust in inherited knowledge about these things, they need an explicit representation
for the negotiation and conformance checking. The task is rather simple, if only one representa-
tion language is allowed. For example, IDLs are commonly used for this purpose. Marshalling
stubs can be directly generated from the information structuring rules for several platforms [63].

9.3 Requirements for channels 185

Migration of objects generally invalidates interface location information. Several migration
protocols are available. For instance, the migrated object may leave a proxy interface behind to
relay any messages, or the migrated object may trust all senders to relocate it via a re-locator ser-
vice when communication otherwise fails [48]. The method used by an interface must be recorded
to interface references pointing to it, so that the user of the interface reference can use the same
protocol. Migration of objects may also change the object’s communication domain. This means
that the protocols in use and the address format will change. Of course, the quality of service in-
formation must also change, because for example communication delays are relative to distances
and protocols.

Group communication services require that the membership in the liaison is dynamic, that the
members may join and leave at will. Groups have several ways of organising themselves, depend-
ing on their purpose. For instance redundancy groups, backup groups and cooperation groups
have different protocols for communication. The multi-point communication services have sev-
eral alternative methods for distributing the end-point information - ranging from notifications to
polling. In some cases it is essential that only one of the objects receives messages, while in some
other cases the communication fails if not everybody receives all the messages in the same order.
The failure recovery protocols differ between group organisations [36].

For secure communication we must choose between several alternative protocols. Most se-
curity protocols are available at transport level [55, 5]. Application level authentication can be
supported by Kerberos style solutions [165].

Quality of service predictability and timeliness of service are fundamental to modern applica-
tions. There are several monitoring protocols for communication services and also several recov-
ery protocols for situations where the service fails to reach its promises. Most of failure recovery
techniques are defined in multi-media application environment. Common choices are to neglect
the failure and continue, terminate the application or to cut down some of the communication
lines for releasing the resources for other, more important communication lines within the same
application [38].

Failure detection and recovery protocols are often dependent on the transport protocol in
use. However, many choices can be made at application level. For interoperability, it is essential
that each communicating partner knows the recovery mechanism. Different methods have been
studied, for instance in [36].

9.3.3 Quality of service management

In modern applications, like multi-media services, the capability of controlling quality of service
aspects is essential. The capability has two modes: static and dynamic [20]. In the static mode,
the service invocation is parametrised with QoS requirements, in order to derive the required
resources for the service. In the dynamic mode, the QoS requirements can be modified during the
service execution. For example, in a video-phone application, the rate of picture frames can be
modified depending on the available bandwidth. Overload at the network connection affects all
applications that require bandwidth, unless a reservation protocol is exploited.

Current work on quality of service concepts for ODP reference model [103] aspires definitions
of more powerful failure and recovery models for QoS aspects. The model defines a QoS negoti-
ation method that uses conditional expressions. For example, a quality of service level is reached
on the condition that the server receives acceptable level of service from other components. In
such a case, the interpretation of the QoS offer requires access to some system status information,
which cannot be available across sovereign system boundaries.

186 9 FEDERATION TRANSPARENT INTEROPERATION

In federated environment, the expressions used for QoS attributes in the liaison negotiation
phase must be self-explaining. For example, an expression that a service is available at a given
probability is acceptable. The system status can be monitored and captured in suitable, probabil-
istic statements in the QoS offers.

9.3.4 Dynamicity of channels

A binding liaison is implemented by a channel controller, that also supports a management in-
terface, that allows changes to the liaison during its life-time. Additional requirements for modi-
fications in the channel structures are caused by failures of channel components. Even the traffic
load on the channel can cause changes: the channel resources can be released for periods with no
traffic.

With careful design, applications can be prepared for changes in their liaisons. Liaisons are
not necessarily affected by changes in group membership and migration within agreed commu-
nication domains. Members that join or leave the liaison are allowed to do so as long the group
organisation is not violated and the new members are able to meet the requirements of the adop-
ted liaison agreements. Furthermore, we have already defined, that liaisons have two modes: a
plain liaison without resources and an established channel. Changes between these two modes
can occur without having any effect on the liaison itself. The mode change is activated by the
channel section automatically, based on a guiding policy. Re-instantiation of a channel can also
be a consequence of transport failure recovery or violation of quality of service agreements.

Liaison can also be negotiated to cover, for instance, several alternative transport protocols. If
a protocol change is later required, any agreed protocol is available without liaison re-negotiation,
and can be done on channel reconfiguration. At application level, this kind of design would be
visible as different communication modes, for example, as fixed network LAN communication
mode and mobile network communication mode.

Re-negotiation of a liaison allow the original liaison to stay in effect while potential for a
new, replacing liaison is tested. The new liaison is established, if the requirements for transpar-
ency support, communication domain, quality of service, timeliness, or communication domain
should be changed. Such a need may arise, for example, in mobile systems (migration between
communication domains and dramatic change of transport delays) or in multi-media applications
(transport load varies and non-availability of resources causes violations for quality of service
promises). If the re-negotiation is successful, the interface references are replaced with new ones
and the channels are re-configured. If the re-negotiation fails, the interface references must stay
as they were before the re-negotiation. It is up to the initiator of the re-negotiation if it wants to
terminate the liaison or to continue it as it is.

To support these changes in channel structure and interface references as well as liaison
changes the channel sections must support services like

� query of liaison properties (items in interface references),
� initiation of the liaison re-negotiation,
� initiation of the channel instantiation,
� destruction of the channel,
� initiation of the channel reconfiguration, i.e., destroyal of the old channel and initiation of

new instantiation,
� monitoring the channel status and notifications of failures,
� monitoring of transport integrity or security and notifications of violations,

9.4 Federated binding process 187

� re-evaluation of the peer location, and
� joining or deleting a member of the liaison.

These services should be offered at the generic service-management interface of all federable sys-
tems.

9.4 Federated binding process

In this section, we can finally study the federated binding process from the middleware point of
view. Especially, we review the sources of information during the binding liaison negotiation.

A binding contract identifies three levels of types: identifiers for abstract service type, de-
scriptions for interface signatures and behaviour names, and channel class name (references to
template and configuration instructions). These information items are collected from

� service invocation request,
� federated type repository,
� application service offers via federated trading, and
� platform service offers.

9.4.1 Creation of a potential contract

The negotiation process is invoked when an object initiates an explicit binding action or an oper-
ation invocation. In the programmer view, the initiating request contains

� expression of the client view to the exploited interface,
� potential set of behaviours, expressed within a standardised policy framework,
� QoS requirements for the platform, such as selected transparencies (transparencies for ac-

cess and location, relocation, replication and failure, persistence, migration, transaction)
and timeliness,

� service type specific QoS requirements for the server, such as presentation of video stream
in colours instead of black and white, expressed as a set of acceptable values, and

� failure detection and recovery protocols, failure defined as not being able to meet the QoS
agreement.

This request forms a stem for the application level part of a service request.
In the programming environment, the above interaction parameters may partially be pre-

defined by the programming tools. For example, inheritance of binding properties is reasonable
within a programming language environment. At the same time, the liaison is restricted by the
facilities available in the supporting platform.

The service request stem is supplemented with an abstract service type name. This can be
retrieved from the local type repository. The abstract service type is required for the federated
trading action that follows. In addition, the potential contract captures the platform service offer.

188 9 FEDERATION TRANSPARENT INTEROPERATION

QoS

colour,

frame frequency,

syncronisation

QoS

colour,

frame frequency,

syncronisation

monitoring,

failure recovery

monitoring,

failure recovery

protocol for

changes
contract value

protocol for

changes
contract value

APPLICATIONAPPLICATION

BINDING CONTRACT

OBJECT OBJECT

SERVICE

LIAISON

INFRASTRUCTURE

LIAISON

PROTOCOL

FOR

IMPLEMENTING

BINDING CONTRACT

DISTRIBUTED

OBJECT

Figure 9.5: Example of federating a binding contract.

9.4.2 Contract negotiation

The second step is the search for suitable servers. This is performed by traders. Each component
of the potential contract of the client can be mapped onto a service offer property.

Each reachable trader that supports the requested abstract service may be queried. In the
communication between traders, the property values and import criteria are transformed by in-
terceptors when needed. The interceptor information can be retrieved from the local type repos-
itory.

When the selection is done, the negotiation service creates a binding contract object that in-
cludes such values that are acceptable for all communicating partners. All potential contracts
involved – that of the client and those represented by the selected service offers – include a range
of acceptable property values. The binding contract is structured according to the service offer
structure (equals with contract schema) and the property values are inserted. For each value, a
range is selected so that the values are present in the potential contracts of client and server.

9.4.3 Contract establishment

Finally, the binding contract information is replicated for each of the applications in the federa-
tion. Because the interfaces can reside at separate domains, the replicas may have different data
representation formats and coding. The conversions required for the binding contract items are
supported by type repositories. However, the transformation is performed by the binding factor-
ies receiving the copies.

Figure 9.5 shows with an example, how a binding contract can be supported in a federated
environment. The binding contract structure includes first the service liaison and the infrastruc-
ture liaison related aspects, then agreements related to the maintenance of the binding contract
itself.

9.5 Discussion on some binding models 189

Also internal event may cause channel management actions to occur. For example, if a breach
of the binding liaison occurs, the channel may be reconfigured. It should be noticed that the
breach may be related either to the federated application or to the virtual platform supporting the
application federation. In the latter case, the application federation can be retained and reconfig-
ure only the lower service layer. This means that the channel type is retained but the instances for
it are replaced.

9.4.4 Binding factories

Each domain has a separate factory for channel sections. Each of these factories receives a copy
of the binding contract and tailors it, for example, by including a channel template.

The binding factories exploit type repositories at various abstraction levels. The concepts
exploited are binding types, channel types and channel templates (Figure 9.6):

� Binding types are used when negotiating the abstract purpose of the channel. Binding type
expresses the rules for the liaison in regard to interface types and roles of the communicat-
ing objects, and the interface type of the binding control interface.

� The factories retrieve channel type definitions, when they have to interpret, what is the
expected channel functionality (distribution transparency and QoS requirements, security
support) and required behaviour in case of channel failures. Channel types represent the
type descriptions available at each type domain.

� Channel templates specify the required configuration of stubs, binders, protocol objects,
and interceptors for the instantiation of a channel section. The required configuration may
be different on each platform or on each channel administration domain.

The terms of binding type, channel type and channel template are adopted from the binding
framework of the ODP reference model [102].

Finally, based on the channel template information, each binding factory separately instan-
tiates a section of communication channel defined to locate at their domain [127, 102]. For local
bindings, separate channel factories can be optimised.

A channel section can be constructed, for example, as illustrated in Figure 9.7. The actual
channel structure varies depending on which distribution transparencies are selected by the pro-
grammer, and which communication protocols are in use. The actual channel structure varies also
depending on the platform architecture and administrative rules on the systems that support the
partial channel. Also, several stubs can be active concurrently, using the same protocol link. For
instance, the stubs can participate in protocols for group management, or QoS management. In
a general case, the stubs are not self-sufficient, but require services from management functions
like authentication services.

9.5 Discussion on some binding models

In this section, we discuss some related binding models. We have chosen to study binding in the
ANSA models, because the model has affected the ODP binding model, and distributed binding
factories in Sumo, because they deal with stream interfaces. In addition, we briefly discuss the
operation invocation model with which the DRYAD project experimented.

190 9 FEDERATION TRANSPARENT INTEROPERATION

TYPE

SYSTEM

BOUNDARY

binder object templates

stub object templates

protocol object templates

CHANNEL TEMPLATE

BINDING TYPE

set of roles and

cobehaviour type

service type to

"client"

distribution transparency

QoS attributes

security attributes

CHANNEL TYPE

CHANNEL

CONTROLLER

TEMPLATE

BINDING TYPE

set of roles and

cobehaviour type

service type to

"client"

distribution transparency

QoS attributes

security attributes

CHANNEL TYPE

CHANNEL

CONTROLLER

TEMPLATE

binder object templates

stub object templates

protocol object templates

CHANNEL TEMPLATE

name
transformation

information
interceptor

Figure 9.6: View to a federated type system.

The federated binding model presented above differs from the related models in one essential
feature: it introduces a negotiation step to a point where other models trust in shared architec-
tural assumptions. As a consequence, the binding types exploited also have to manage the more
complicated contract management scheme.

9.5.1 ANSA model for cross-domain interactions

In the ANSA model (recall Section 4.3), domains are related to organisational boundaries. There-
fore, managing inter-domain interactions is focused interaction management in regard to security,
authentication and tractability, instead of the existence and location of suitable communication fa-
cilities [77].

Domains are autonomous in regard to control of interaction, allocation of their resource, and
selection of platform architecture. In this respect, the ANSA model and the above federation
model are equal.

The difference of the models is in the liaison negotiation process. In the ANSA model, the do-
main authorities negotiate shared policies, that are enforced on domain administrators separately
at each domain. The shared properties are further inherited by the service provision and ser-
vice consumption relationships. The situation is illustrated in Figure 9.8. In the above described
federation model, the liaison negotiation takes place only within the service liaison.

In the ANSA model, inter-domain interactions are implemented using gateways that ensure
that the communication is managed according to the contract agreed among the domain author-
ities.

9.5 Discussion on some binding models 191

membership
controller

type repository

security

system

(Kerberos)

signature
interface

type description

platform
functions

interface

reference

location

marshalling
stub

multicast

stub

security

interceptor

type
interceptor

binder

protocol

interceptor

protocol
object

monitor
QoS

failure

detection

Figure 9.7: Channel section.

To achieve such a configuration, the trader gateways must detect interface references to pass
through and insert gateways in the invocation path of the potential link before or when it is
actually used. In order to manage interaction between domains, gateways have access to the
policies that constraint acceptable interactions. Gateways also have the ability to infer message
types and recipients.

The design suggests, that gateways should be located at object stubs. For performance reas-
ons, it would be preferable to use generic gateways, or at least to colocate several gateways to the
same stub object. As an implementation tool for gateway stubs, CORBA DII (Dynamic Invocation
Interface) is mentioned.

9.5.2 Sumo model for stream interface bindings

Sumo project (collaborated by CNET, France Telecom and Lancaster University) has two imple-
mentations (Sumo-CORE and Sumo-ORB) for a microkernel-based, ODP compliant platform sup-
porting distributed multi-media applications [20]. The major concern in the system model is on
stream interfaces, stream bindings and flow protocols.

The communication system design is based on the engineering model of RM-ODP (recall
Chapter 3). The corresponding computational view shows binding object as an intermediate ob-
ject between two or more computational objects. This modelling technique is recursively repeated
between the binding object components: there are no separate engineering level and no separate
protocol objects. This differs from our model where binding object is only a property of the com-
putational binding, and a set of object configurations at the engineering view.

192 9 FEDERATION TRANSPARENT INTEROPERATION

Client server. . . .

Domain

authority

Policy

relationship

Domain

Admin

Management

relationship

Domain A

mgt i/f

Client server. . . .

Administrative

and Procedural

Relationship

Domain

authority

Policy

relationship

Domain

Admin

Management

relationship

mgt i/f

Domain B

Agreement /

Contractual

relationship

Service

Provision /

Consumption

Relationship

Figure 9.8: Relationships between domains and their agents in the ANSA model [77].

System model

The Sumo system exploits a matchmaking model: the communication partners are identified and
located before the binding process is started. The binding process is parametrised with the inter-
face references of the objects to be bound. Because there is no separation between computational
and engineering aspects of the binding, there is also only one kind of interface references, i.e.,
only the engineering interface references are present.

The binding object is an active object. This means, that the binding object is not a passive
repository of messages from which the receiver must pull the messages to be received. Instead,
the active binding object is allowed to invoke the receive action by an up-call on the receiving
objects.

The binding object is governed by a QoS contract, either static or dynamic. For static QoS
management the QoS contract is negotiated before the binding is established and the agreed QoS
values are used as parameters for the binding process. For static QoS management, a controlling
object with a management interface is created. The controlling object can monitor the fulfilment of
the QoS contract and offer renegotiation of the contract if the binding is not able to act according
to the contract.

Binding factories

Because bindings are considered as normal objects in the system, the binding process is simply a
normal instantiation process, expressed in detail by an abstract binding protocol.

Each binding factory supports the creation of bindings with a given functionality and a given
quality of service. A generic behaviour pattern of binding factories is described below. The con-
crete implementation is supported by functions provided by the micro-ORB (interface reference
management and local binding) and the appropriate binding library (stub and protocol channel

9.5 Discussion on some binding models 193

creation). The implementation of a binding factory in Sumo-ORB is normally distributed. In par-
ticular, a particular binding factory normally consists of a number of cooperating local binding
factories.

Operation interfaces are bound by a binding factory that uses the IIOP (Internet Inter-ORB
Protocol specification) implementation of the RPC protocol. Continuous media traffic is sup-
ported by a connection-oriented, real-time transport service that offers fragmentation and flow
control.

Abstract binding protocol

The abstract binding protocol relies on the existence of one or more binding factories that create
particular classes of binding object. The speciality of these factories is that they generate dis-
tributed objects that span multiple nodes. To support this process, binding factories themselves
probably are distributed objects with representatives on each node.

The abstract binding protocol requires that each node supports a primitive binding operation
for linking two interfaces. The primitive binding operation, ‘localBind’, binds the communicating
objects to the interfaces of the binding object. The ‘localBind’ operation is supported by a stub
object and parameterised with a reference to the interface to which a primitive binding should be
established. The local bindings make delivered information instantly visible to both participants
of the local binding, and information cannot be lost or corrupted. Thus, the semantics is similar
to local message exchange via shared memory.

The abstract binding protocol consists of four steps:
1. Client C requests a binding object to be created by invoking the binding factory for appro-

priate binding type. The invocation is parametrised with the set of references to interfaces,
QoS annotations, and potentially other management related items depending on the fact-
ory interface.

2. The binding factory instantiates the binding object with type conformant binding interfaces
at the right nodes. In order to do so, the binding factory has to do two things. First, the
binding factory resolves the precise locations of the application object interfaces. Second,
stub objects of the appropriate type are created for each interface. The stubs are in turn
bound together by a recursive call of this protocol, unless the stubs are in the same node, in
which case no further recursion cycles are needed. This step fails if required types or QoS
cannot be achieved.

3. If the previous step was successful, the binding factory establishes a primitive binding
between the application object interface and the corresponding binding object interface
supported by the newly created stub.

4. If all the previous steps have been successful, the binding factory returns an interface ref-
erence to the control interface of the created binding object.

Conclusion

In Sumo, the ANSA binding model applies, but it is refined for QoS negotiation and distributed
factories. For each channel class there is a separate, distributed factory. However, the protocol
within the distributed binding factory is not open.

The abstraction level of the federated binding process above and the Sumo binding factory are
different. The Sumo binding factory performs actions that are not visible in the federated model,
but are considered as internal to the selected protocol layer.

194 9 FEDERATION TRANSPARENT INTEROPERATION

9.5.3 DRYAD prototype for operation invocations

DRYAD project developed, in addition to the trader prototype, also some experimental tools for
computational operation invocations.

The experiments aimed to a service type based binding factory that exploits trading. The
Naiad prototype is described below. In contrast to the Sumo approach, the resulting binding
factory is independent of the channel type. In a federated system, there are no commonly accepted
channel types that would form a well-established and inherited set of services. Instead, type
repository must store the known types.

One of the goals in the DRYAD project was to identify a smooth propagation path from current
networked systems to the future federated systems [129]. For this purpose, a special purpose
interceptor, Daphne, was created. Also Daphne is briefly illustrated below.

Naiad

The Naiad package offers programming interface that supports interrogations (and announce-
ments as a special case) as a method of invoking operations at remote objects. Characteristic to
the supported operation invocations is that

� communicating objects are connected by late, dynamic binding,
� instead of direct addresses or names of the target objects, the required behaviour can be

named,
� failures are considered as normal behaviour in the distributed system and therefore retries,

recovery and replication have no special position – their existence and occurrence is usually
not even visible to the application programmer,

� each communication action is associated with an explicit task-performing semantics that
describes potential terminations, cancellations, delays, protocols, etc., and

� each communication action is associated with an explicit environment contract that de-
scribes how the object communicates with the underlying infrastructure services when re-
questing interrogations through it.

The Naiad package is implemented as a library for C programmers [68, 126].
The Naiad package functionality is supported by a service invocation controller (i.e., a bind-

ing factory). The service invocation controller uses the services of the trader, the type repository
and the policy repository, and when a server object or a server template is selected, it starts the
binding establishment. In the binding establishment, the first task is to create a channel controller.
The channel controller is then instructed to instantiate binder objects at both client and server ob-
jects. If the trader selects a server template instead of a server instance, the invocation controller
instantiates the server. Under the binder objects, RPC is used as a protocol layer. Operations at
this level include message exchange, connection status testing and opening, closing, suspending
and resuming a connection. The only properties that are required from the RPC system are mes-
sage transport without loss of packets and delivery of messages in the correct order at the correct
port. Figure 9.9 illustrates the system.

Clients and servers are represented by stub objects. A client stub uses the invocation controller
to set up a channel (binder to binder) and then transmits the input data required for the operation.
The request for the invocation controller includes

9.5 Discussion on some binding models 195

client

stub

binder

channel

controller

server

stub

trading
system

invocation

controller

binder

1

2

3 4

5
67 7

8 8

9

10

11

12 13

14

15

16

17

Numbering refers to sequence of messaging.

Object creation is not shown.

Figure 9.9: The Naiad system structure.

� abstract service type,
� operation signature type,
� operation signature, i.e., the actual operation parameter values,
� federation mode and method,
� import criteria (to be used when trading the service), and
� QoS attributes (i.e., the environment and service liaisons).

The QoS attributes define the environment and service liaisons of the client. The environment
contract includes client’s reservation to cancel the operation later (rollback features required, not
full support for transactions), and virtual execution environment (does the operation change the
client’s environment or the server’s environment). The service access contract includes indicators
for communication synchrony, resource consumption limits, and failure recovery protocol [124].
The attributes that are actually supported by the current implementation are

� implication of interrogation or announcement,
� request for synchronous or asynchronous execution of the service, and
� time-out value for the request.

The concept of communication synchrony is differentiated from the separation between an-
nouncements and interrogations. Synchrony between application objects means that the client is
going to wait until the server has completed its task. However, announcement does not return
any data. After release from a synchronous announcement the client knows that the service has
been accomplished if no failure report is given.

The Naiad system allows the client and infrastructure to communicate either synchronously
or asynchronously. Asynchronous announcement from the client to the infrastructure does not
give any guarantee on the service invocation. In contrast, synchronous announcement to the

196 9 FEDERATION TRANSPARENT INTEROPERATION

infrastructure guarantees that the target computing system has received the request and promises
to invoke the service there. For announcements, no guarantee is given about completing the
service.

In the student project [68] that implemented the Naiad component, we used the ODP con-
cepts and viewpoint languages as a specification guideline. The concepts were considered useful
and the resulting implementation was far more compact than it would have been without this
approach.

The Daphne virtual server interface support

Daphne is an interceptor, that allows legacy software to transparently access the DRYAD infra-
structure services. Figure 9.10 shows how two architectures can coexist in the same system: In a
legacy system, a client refers to a server object by its name in order to invoke an operation. We
can replace such server objects by a virtual object controlled by Daphne. The virtual objects play
as proxy clients for the invocation controller of the Naiad system.

As objects are mostly represented as files in their operating system environments (like UNIX
program files), we chose to implement Daphne as a special file system. Each virtual object is
associated with personalisable criteria that are automatically used as import criteria in trading.
At the implementation, these criteria are stored to the Daphne system files.

Because of the technology selections done in the implementation of Daphne, it is possible to
offer virtual server interfaces to personal computers that are able to run NFS protocol.

invocation

controller

trader

binding

controller

representative

of a service type

virtual

is

server

serverclient

client

supported

by Daphne

Figure 9.10: Coexistence of two architectures in the same system.

9.6 Conclusion 197

9.6 Conclusion

The presented federation architecture minimises the shared assumptions required in the construc-
tion of middleware platforms. Although several questions arise on the feasibility of this model
the benefits are fundamental. In the following, we first study the feasibility questions on issues
like performance, management, techniques for expressing contract details like managed object
properties (‘policies’), and security. After that we consider the benefits of federation capabilities.

Feasibility

In comparison to interoperation that takes place within a community with a shared administra-
tion, the federated model surely causes overhead at run-time. However, comparison of the two
models based on run-time performance is actually not fair: The flexibility and evolution support
of the federated model effectively decrease the system maintenance effort required for arranging
interworking facilities between systems. Both the system engineering time and the run-time per-
formance time should be evaluated. Eventually, our belief is that the overhead of the federated
model at run-time is bearable. This requires three restrictions. First, federations must be estab-
lished on large application package interfaces instead on process ports for scalability reasons.
Second, propagation of trading requests should be restricted to a small number of hops (1-3) be-
cause network delay is the dominant factor in trader response times. Finally, type conformance
should in most cases be based on assertions, because in a generic form the problem is too hard to
be solved [126].

Languages for expressing contract items form a problem if an elaborated facility is expected.
However, as an initial phase, identifiers and names, number values with standardised semantics,
and IDL specifications are sufficient. Object management does not create a need for expressing
detailed policies in the contracts. The federated architecture model divides management aspects
to traditional management activities, such as resource control, and federated behaviour control
that is based on a policy framework [127].

Security of a federated architecture is our greatest concern. Within OMG, security studies are
in progress [171], and it has also been suggested, that the recommendation should be adapted as
part of the ODP set of standards as well. However, the secure ORB design does not give sufficient
answers to the questions arising from system sovereignity.

Benefits

The described federation model allows sovereignity of systems and thus tolerates a high level of
heterogeneity. The founding principle for the design is to deny direct control of remote objects. In-
stead, each domain is managed by a private controller and this controller makes all management
related decisions. The federated management methods must feed these controllers with contract
and monitor information in order to persuade them to make suitable management decisions. The
federation model also supports controlled access to otherwise closed systems.

The federation architecture and the programming-in-the-large approach of megaprograms
have shared goals. Both approaches attach system size, persistence of the systems over evolution
steps in system components, and diversity of various aspects, like software production concepts
and tools, communication facilities, and interfaces. An application in a federated environment
can be seen as a megaprogram [251]. However, the evolution of megacomponents is not con-
trolled by the megaprogram programmer, but the federation mechanism is used for creating a

temporary commitment between the components. The megaprogramming tools trust in a com-
ponent database and a shared ontology. In the federated environment, the database is replaced
by traders, and the shared ontology is selected at run-time, instead of compilation time.

Traders can be used as trusted entities to guarantee a fair scheduling of tasks among users of
a large network. An analytical study for a generic trading environment has been published [255].
The study concentrates on the effects of accessing a service when the service provider is found by
trading. The study points out that the delay in server state information acquisition is significant
in comparison to service time. Example services in the environment under study included trad-
ing and name servers. Rather good results were achieved by combining the use of actual state
information with random selection. The study also shows that if clients can optimise the selection
based on their own needs only, the overall system level performance suffers. The study suggests,
that the traders should be used as trusted entities to prevent too selfish optimisations.

The federation model can be exploited by programming environments in multiple ways. First,
the type repository service can serve as a single point for inserting new services and new service
versions. This facility saves from recompilations or re-implementing of the client programs, even
if exploited in a single domain environment. Second, the federated binding model elaborates
the traditional client-server model by supporting multi-partner communication, and distribution
transparencies. Especially, failure transparency of communication can be build on the liaison
concepts. The channel controller within the federated binding introduces tools for implementing
self-healing channels. Such a channel is able to reconfigure itself whenever a channel component
fails.

Chapter 10

Trading at open markets

In this chapter, we discuss commercial systems among people and organisations, supported
by computer networks. Traditional solutions for exploiting computer networks for commercial
needs are based on EDI [85] (electronic document interchange). These solutions are closed net-
works: the clients and service providers have to negotiate and sign a valid legal contract before
starting document interchange in electronic form. Open markets differ from this design, by deny-
ing the need of preceding contracts. The goal is to allow as many people as possible to gain access
to information facilities connected to the Internet. These solutions trust in dynamic loading of
software over a shared language platform (e.g. Java RMI [217]) or shared access tools for equally
structured data (WWW browsers).

The area of electronic commerce is only now starting to consider using distributed system
platforms. Naturally, the progress plans show high expectations on the distributed platform (or
standardisation) abilities in respect to security and interoperability.

Currently, ideas of EDI and object oriented programming frameworks lead the design of com-
mercial network services, because the focus of design, standardisation and research is on suitable
user interfaces. However, a major design requirement has emerged from the application area:
three tier configurations match the commercial world model better than client-server models. Be-
sides product or service consumers and producers the three tier architecture always introduces
some form of broker, merchant, trader or agency. A vast number of broker cantered business
models are currently evolving (a few examples: [258, 2]).

The current state of actual electronic commerce software is limited to cataloguing and pay-
ment facilities. By cataloguing we mean facilities required for advertising products and services
to potential clients. The market is supported either by brokers that mediate information about
available products or by commercial traders that mediate products. The market needs also sup-
port of banks for money exchange and notaries for registering contracts.

Section 10.1 sketches an electronic commerce framework, while Section 10.2 discusses evolu-
tion strategy for electronic commerce software as agreed by consortia on the field. Section 10.3
describes a realisation approach for the electronic commerce framework governed by the strategy.
Section 10.4 considers the open problems of the approach, and Section 10.5 suggests some solu-
tions. The overall solution strategy is followed by examples on exploiting traders in the construc-
tion of individual software components: a component can be build around a trader, or trading
can be used in the production process of a component.

200 10 TRADING AT OPEN MARKETS

10.1 Electronic commerce framework

Electronic commerce frameworks try to capture the essential commercial processes and formu-
late – even modify – them in such a way that computers and networks can be exploited. The
commercial processes are illustrated in Figure 10.1 and discussed below.

payment

trader

broker

for advertisements
browsing

media

clients service

funds

catalogues

negotiation

contracting

delivery

invoicing

catalogues

negotiation

contracting

delivery

settlement

advertising

providersmerchant

counter-proposal

proposal

commit

register

CONTRACTING

notary

A
B

bank

funds

delivery

Figure 10.1: Commercial processes.

Basically, commerce is about buying and selling products of various kinds, both physical entit-
ies (like books, network cards, and disk drives) and information related services (like addresses of
book shops, files containing the book text, authority to exploit disk space at someone’s computer).
A producer creates an entity, either a concrete artifact or a piece of information, that is interesting
enough for some clients to pay in order to obtain or access it. In order to get the product sold,
the producer must make the product and its availability known via advertising in some media.
Besides the traditional advertising in newspapers, TV and such media, also the network facilities
are now available, for example WWW.

If dealing with advertising and negotiation about prices is too cumbersome, the provider can
out-source these activities to a broker. A broker makes a living by buying cheap bulks from a
number of providers and selling with raised prices to the clients. A value-added provider buys
products of other providers and combines them to another, more interesting product. From the
point of view of a client, even a broker is a value-added provider: the broker has a variety of
similar products to choose from. Search engines and link collections in WWW can be considered
as non-commercial brokers.

In case of simple products, the purchase is a simple process. The client selects a product, pays
for it, and takes the artifact or accesses the information. However, the process can be complic-
ated by involving invoicing, settlement, and separate delivery of products. Electronic commerce
systems currently are involved only in invoicing and payment tools. A developing system is,
for example, the secure electronic transaction (SET) specification [145]. Delivery systems are not
commonly considered as part of the electronic commerce area, although the products often are
information based. Still, delivery management systems should be integrated.

In case of complex services, the interaction of interest here is contract negotiation and estab-
lishment. After the contract is established, the performance of the service (writing a book, shovel-

10.2 Evolution aspects 201

ling snow, cleaning the house every week) is not an electronically controllable process. However,
the contracts can be electronically maintained in a notary service for later use. In addition, mon-
itoring of the service can create electronic reports on the quality of the service. These reports can
be compared to the contract itself, and corrective actions can be taken depending on the contract
contents. In principle, all interactions between the provider and the client are governed by a
contract. In simple cases the notary is omitted or replaced by a register.

10.2 Evolution aspects

The EDI standards still have a surprisingly strong standing as the primary solution on the elec-
tronic markets, in spite of their aged technology. The EDI standards view electronic commerce
as exchange of documents. At each commercial process, a different set of documents is required.
Each document set is standardised separately and there is no enforced relation across the various
documents. Three distinct areas have their separate standard sets: the semantic information con-
tents of a document, the data representation format of information, and finally, the data transfer
protocols. The EDI networks are by necessity closed, and the establishment of a connection re-
quires the negotiation of messages, formats and protocols. The messages have been separately
standardised or agreed for each type of merchandise. It is often the case that the same format of
data is not used if the transfer protocol changes.

The modern electronic commerce designs still include the three aspects: documents, informa-
tion representation and transfer protocols. However, the techniques for these areas are changing.
Furthermore, the closed EDI networks are expected to be replaced by open networks where cli-
ents, providers and brokers can join without a preceding off-line negotiation. The open market
model also discards the bilateral EDI contracts and replaces them with multi-party interactions.
The openness of the market is assured by public interface specifications for documents.

Currently, major vendors independently offer electronic commerce platforms. For instance,
the following platforms are available: IBM Commerce Point, Microsoft Internet Commerce
Framework, Netscape ONE (Open Network Environment), Oracle NCA (Network Comput-
ing Architecture) and Sun/Javasoft JECF (Java Electronic Commerce Framework) [234]. These
vendors are also members of CommerceNet consortium, that intends to exploit CORBA as an
interoperability support and shared object bus for economical objects [234]. CommerceNet also
wants to agree on a minimum set of standard business messages in a Common Business Lan-
guage, CBL [69]. The purpose of CBL is to replace text based EDI messages by object-oriented
CBL information exchange.

10.3 Realisation strategy

The realisation of electronic commerce software is suggested to be built around an object-oriented
programming framework. (A programming framework is almost complete application that the
programmer can customise for particular use.) The framework should include set of shared ser-
vices from which applications can be assembled [234, 147, 146]:

� exchange of semantic, economical objects (profiles and catalogues) between the open mar-
ket participants;

� selection and negotiation of the contract associated to a product;

202 10 TRADING AT OPEN MARKETS

� certification services (authorisation, non-repudiation, certified record, anonymity) for cli-
ents, providers, or brokers in commercial transaction; and

� payment services.

A profile object describes a service or a product offered or requested in a format that can be
interpreted correctly by all basic services at the electronic commerce platform (object browsers,
catalogue services, brokers). A profile object must therefore contain contract and related service
description.

The contract structure must follow the information content of real commercial contracts [147].
Essentially, a contract involves a life-cycle starting from contract creation, followed by steps of
client and server responsibilities, and terminating with the total fulfilment of the contract from
both sides. This life-cycle is expressed as a service description. It refers to (names) commercial
services, like payment, purchase delivery, or advertising. In addition to commercial aspects, the
profile object may also contain technical contract information related to the computing network
processes involved.

A catalogue is a container of profile objects, and it allows profiles to be sorted for different
views and modification of individual profiles.

The common desktop facilities (for example, object browser, inspection and shopping parts)
are expected to be portable and inter-operable in the desktop environment of different electronic
commerce systems. The interoperability is ensured by using OMA architecture and openness and
connectivity by using Internet [234, 146]. The object framework would serve as a unifying mid-
dleware layer that creates an illusion of a homogeneous system with services like authentication,
invoicing and payment, and catalogues. The use of a framework also allows exploitation of in-
heritance hierarchy for maintaining relationships between service requests and business objects
and for evolution of new business objects.

In order to make the potentials of the reference model more concrete, we view an example
system developed in the COSM project [148].

The design of COSM is organised around trading service that serves as a catalogue server.
From the trader the users can obtain catalogues of services, like list of travel agencies or lists of
holiday packages. The catalogue browser is a generic client agent that allows a user to browse
the catalogue with a graphical user interface. This can be done, because the catalogue structure
is the same at each site. When a profile is selected from the catalogue for closer inspection, the
agent must be specialised for the corresponding server interface. When a selection is done, the
generic client requests for the server interface details. Using the detailed interface information,
the generic client is able to load the required user-interface program code. The loading operation
turns the generic client to a specialised client, that is able to fully communicate with the server.
The design trusts in an object framework that gives the features of the service, but still requires
customisation. This customisation is normally done by programmers, but in this case at run-time.
For example, button texts for a graphical user interface can be loaded this way.

The loading phase requires that the service interface specific code is represented in a portable
way. Therefore a service presentation language has been developed. A service representation in-
cludes: operation signatures, specification for user interface components (dialog boxes, buttons),
server address and invocation specific information like parameter values. The loading phase is
implemented with the help of CORBA dynamic invocation interface.

10.4 Problems in EC framework evolution 203

10.4 Problems in EC framework evolution

The object framework for electronic commerce does not yet give solutions for the problems of
administering contract and service information in the open markets. The consortia also assume,
that a shared platform architecture will emerge in such extent that all electronic commerce can
safely be expected to adopt the object framework based on OMA and Internet. Furthermore,
portability of software is assumed to be a primary goal with no drawbacks. We will discuss these
three assumptions below.

Agreements on services

The current plan is to create a standardised, hierarchical taxonomy of service types [234]. The
standardised tags would then be used in profiles to denote what services are requested, offered
or contracted.

The taxonomy would be fixed and very slow to evolve, therefore, use of such taxonomy
hinders the development of new service types. The service types should be easily defined in
an on-line repository.

It would be very difficult to agree on a global taxonomy of services, because the grouping
of service items are traditionally different in different cultures. For example, ‘normal insurance
package’ of a family is very different in different countries, because of underlying differences
of social security systems in each country. Therefore, some kind of domain structure should be
reflected by the service taxonomy as well. The taxonomy should also capture natural relationships
(inheritance or containment) of services.

Finally, the service tags are not able to explicitly denote the contract structures involved. It is
not practical to trust users or user interface agents to enforce that all such contract related inform-
ation is available that is necessary for a given service type. That would require that either users
or agents are aware of the commercial rules related to the merchandise, making the evolution of
new product types difficult. The contract rules should be explicitly available on-line, so that also
they can be easily evolved and exploited. Furthermore, especially the contract structures vary
from domain to domain (national laws).

Distributed system platforms

The current plan is to trust OMA and Internet architectures, together with a shared object frame-
work, to solve interoperability problems. The OMA architecture is considered as the de-facto
standard of distributed systems and therefore guarantee a reasonable coverage in future years.

However, OMA has some restrictions in regard to federation capabilities [128], that should be
overcome by the commercial reference model. These restrictions deal with heterogeneity of server
interfaces, service type repositories, and management of interactions between sovereign domains.
Fortunately, the CORBA products and OMA architecture are still evolving towards ideas repres-
ented for example in RM-ODP. Therefore, commitment to OMA leads to proper designs provided
that its shortcomings are identified.

204 10 TRADING AT OPEN MARKETS

Software architecture

Object-oriented programming frameworks are popular because they offer full portability of soft-
ware, with an ability to customise important features of the service. In the previous section, we
saw that even the customisations can be done at run-time, in a portable way.

However, if this run-time customisation is not sensitive to localisation aspects, an essential as-
pect for global open markets is lost. At each (geographical, national, legislative) domain, different
languages, customs, and laws regulate the special requirements for the user interface. The pro-
grammers or users of commercial applications should not be forced to face concepts outside the
context of the user community in which the application belongs. For example, a user purchasing
a book should not be bothered with tax regulations in a foreign country, although the book may
eventually be mailed from a distance. This means, that the representation of merchandises and
representation of market interfaces must be specialised for each domain.

10.5 Open solution strategies

For the management of merchandises and commercial actions on the electronic markets, we need
three levels of concepts: contract structures, service type descriptions, and representations for
individual services. Each of these concept categories must be supported by a separate repository
service, in order to allow independent development cycle for each category. Figure 10.2 illustrates
how contract repositories, service type repositories, and server repositories can utilise each others
services.

trader IItrader I

contract
plane

contract
repository A

contract
repository B

contract X deal X’

repository 1

service type
repository 3

service type
repository 2

if (y, x)ifacex(y)if (x, y)

service type

object interface

server server

server server
service provision
plane

service type
plane

Figure 10.2: Constellation of repositories.

As a general rule, each repository service supports a domain structure, in order to allow fed-
eration between autonomously administered domains. The domain structures involved in com-
merce include

� legal domains, where commerce is regulated by the same law, and
� market domains, where commerce is regulated by the laws of demand and supply.

In addition, the repositories are realised within an open distributed computing environment. The
domain structures involved in distributed computing include

10.5 Open solution strategies 205

� organisational domains, where the owner of the computing system regulates the operation
policies, and

� technology domains, where for example the selected programming environments and com-
munication protocols regulate the operation.

These domains do not necessarily share their boundaries. Instead, a legal domain would, for
example, exploit several technology domains, but each of these technology domains might as
well span multiple legal domains.

10.5.1 Contract repositories

Contract repository (suggested by [155, 156]) provides a common understanding of contract types
and contents. A common business language, CBL [234], could be used for defining the required
concepts.

A contract includes (slightly modified from [157]):

� identifier and validity domain of the contract (validity domain refers to the legal or profes-
sional domain under which contract enforcement can take place);

� roles of contractors;
� period of contract expressed either as times or as defined termination clauses;
� services or products exchanged, and for each exchange the quality and quantity of services

or products, including delivery time and cost.

The contract repositories support operation for creating, modifying and deleting contract
types. In addition, relationships can be asserted between contracts in order to allow choices of
contract forms.

The contract repositories can be independently constructed at domains that are governed by
joint jurisdiction. Services can be either more locally known, or even known to a wider domain.
The contract repositories can create relationships and mappings between contract types. Only
asserted relationships can be used, but otherwise the mechanism resembles the type repository
function mechanism.

The services or products the contract involves may be concrete and therefore outside of the
computer supported system, or they may be computer supported, in which case the situation is
more complicated. In both cases, services and quality of service aspects are managed in further
detail by service type management.

10.5.2 Service type repositories

Service types are essential in the electronic commerce framework: The actual merchandises are
naturally grouped by their type, and furthermore, the contract structures related to each service
should naturally match the merchandises.

The purpose of service type repository is to identify whether the proposed and required ser-
vices are actually similar enough to be used in a contract. In the case of electronic commerce,
the service type repository may carry types for both information processing services and physical
merchandises.

For interoperation, a logical similarity of abstract service types is necessary. At the technical
level, interoperation requires similarity of interfaces. Major factor for the measure of required
similarity is that the information flows received through the bound interface are sufficient to fulfil

206 10 TRADING AT OPEN MARKETS

the expectations of each communicating partner. The data and message structures involved may
be converted in some cases with an interceptor.

The service type repository function mediates service type information at run-time among
the interoperating systems. Each member system may use a separate type system, each of which
expresses a set of logical, abstract type concepts and corresponding technical, platform dependent
templates. Type is defined as a predicate that characterises a collection of objects. For instance,
a type can be used for expressing the similarity of services, interfaces, or behaviours. Template
is defined as a set of features expressed in sufficient detail for instantiation. Clearly, the concept
of template is dependent on the instantiation facilities, i.e., dependent on the assumed platform.
Therefore, a set of features can be a template at one platform, but not necessarily at other platforms
with different architecture.

We recall that a type repository contains a set of service type descriptor. A service type
descriptor includes a set of type definitions in different type languages. The service type
descriptors include abstract service type name, interface signature, and attribute definitions (i.e.,
attribute name, and attribute value data type). In this structure, the type concept is represented
only by the abstract service type name and the related attributes. Other parts are related to tem-
plates. The attributes can carry QoS information required by the contract that governs the domain
of service type. The attributes can be stored also in the contract repository and inherited to the
type descriptor. Additional attributes can also be defined for expressing service specific aspects,
such as jitter of voice transmission or migration transparency support.

In addition to type descriptors, the type repositories may include type relationships, even to
type descriptors managed by remote type repositories. The relationships carry also information
for technical level transformations on the service interfaces. Via these transformations, the dis-
tributed computing environment is able to hide from its clients the technical differences present
at individual technology domains. Similarly, more user oriented aspects can be transformed. For
example, property names can be presented in the native language of the user.

10.5.3 Traders as server repositories

In the electronic commerce framework, the trading function naturally supports various brokerage
and mediation tasks.

Trading, as a standardised mechanism advertising and discovery of service offers, can be
used for manipulating individual profiles. The profiles can be represented by service offers, as
both are basically structured in name-value pairs. Providers can export their offers to a trader, and
clients can browse the offers or request the trader to select a set of offers that match the explicated
requirements.

An offer should represent information covering contracts, service types, and service repres-
entations, and furthermore quality of service aspects. Although the service offers give a flat se-
quence of information items, each of the items must be interpreted through the appropriate re-
pository. The repository hierarchy cannot be collapsed to a flat structure, because the domain
boundaries of each repository are independent of each other. Furthermore, the evolution cycles
of the concepts represented in the repositories are independent from each other: there is no reason
to change interface signatures of a printer server because a monetary union is established.

Also a catalogue service can be implemented by a trading function. A broker could join to-
gether several catalogues by creating a network of traders, for example exploiting proxy offers or
links. The broker could also act as the trader administrator of a provider.

10.5 Open solution strategies 207

10.5.4 Trader supported merchandises

The open market is naturally involved in computer supported or computing related merchand-
ises. These merchandises can exploit trading functionality either as an embedded component, or
as a tool in the production sequence.

Information repositories

Various information repositories will be popular services at the open markets. Examples include
listing of publications, recommended movies, and catalogues of experts at different areas like
dentists, car repair, and computer scientists.

The information repositories may support three different usage models. The first model, is a
normal database that is made openly accessible via a network (Internet) for information retrieval.
The second model, is also a localised database, but it can be freely updated by any interested user.
The third model supports a federated database system. All three models can exploit traders as
implementation components.

In the first model, the only benefit gained is the use of a standardised interface. None of the
special features of trading functionality is actually used: The database is local, and collected by
ad-hoc methods. In most cases, the user interface requires that a full search is performed. The
service could as well be supported by any database management system.

In the second model, individual users can act as exporters. The trader forms a directory
service that is freely updatable. However, there is no protection mechanism for the service offers
intrinsic for the trading functionality. Nevertheless, the trader storage mechanism may impose a
security mechanism, as it has to be done in X.500 implementations [101]. The information service
constructed in this way can exploit the standardised interfaces for importing and exporting.

Finally, the information repositories may be linked together in order to distribute the amount
of offers, or the responsibility of database administration and update. The benefit of this design
over federated database systems is the embedded failure transparency of communication between
traders, provided that the ODP communication model is also adopted.

An essential feature for trading functionality is the separation of type system management
from the matching mechanism. Traders derive the structure of the manipulated information
items, offers, separately for each import and export request. Consequently, the evolution of in-
formation structures is strongly supported. In addition, the type systems may express arbitrary
subtyping rules, and thus the similarity requirements for the stored and compared information
objects, offers, are extremely weak.

Trading has also a simple benefit over search engines currently so popular in Internet. Search
engines, like AltaVista [46], support world-wide searches of WWW pages, based on key words.
Traders use structured information instead and thus allow more optimised selection to take place.
Furthermore, WWW search engines expect the pages themselves to contain necessary meta-
information that describes the information content, update time, and page administrator. In con-
trast, traders allow meta-information to originate from a separate source. In respect to scaling
problems in large environments, e.g. the Internet, the trading and the search engine approaches
have no essential difference.

Information repositories available through Internet include Fast [84], COBRA [51], Kas-
bah [31], just to mention a few.

208 10 TRADING AT OPEN MARKETS

Tailorable software

The merchandises of the open markets also include computer software. Currently, software is
very often object-based: programmed with object-oriented languages, or associated with an IDL
specification for publication.

The software components are encouraged to be reused within companies or software engin-
eering projects. The reuse is usually supported by component libraries and by inheritance hier-
archies. These mechanisms restrict reuse to rather small group of exploiters.

Traders appear a tempting tool for organising reuse of software components in a wider envir-
onment. Descriptions of the components are exported to a trader and classified by their intended
behaviour. The problem is however, that no commonly acceptable method of expressing object
behaviour is yet available. The repository should therefore be a browsable collection of informal,
descriptive texts about the components. This arrangement does not encourage to very large scale
cooperation. Still, the design would serve as a CSCW tool.

An object component trader requires a working environment where the roles of objects are
agreed. Such conditions would appear, for example, within a company, or within a large software
project. Examples of this kind exist: A company selects component versions for custom tailored
software deliveries from an object storage via a trader [24].

10.6 Conclusion

We suggest that the electronic commerce reference model under development considers tools
available in ODP reference model.

The problem of defining a global type system for services can be solved by allowing a dy-
namic repository to support commerce software. The solution is flexible: new types can be added
whenever needed, and if different solutions are accidentally imposed, a mapping can be created
between them. New types can be easily adopted by end-users and programmers.

The electronic commerce reference model should also consider the problems of isolated con-
tract domains and federations between them. A contract repository is already suggested else-
where, but we feel that it complements our approach.

The federation problem arises at other areas as well, type systems and distributed system plat-
forms. The federation problems between distributed systems should not concern the developers
of electronic commerce software too much, as the platform designers work towards distribution
and federation transparent communication. In this work, services like federated type repositories
and ODP trading function have a key role.

Although type repositories and trading are designed to support distributed transparent ODP
platforms, they have further applications. The electronic commerce software requires classifica-
tion tools and browsing tools for services other than computer based information services. These
can be supported by type repository and trading mechanisms, provided that a federation mech-
anism is included.

Part Five

CONCLUSION

In this dissertation, we have inspected aspects of openness in world-wide information-processing networks
and the role of trading functionality in open systems. In the design, we have aspired to solutions for the
topical problems of interoperation: communication across fixed and mobile communication networks, QoS
management, and multi-point communication. However, it is not possible to discuss all of these problems
in detail in this dissertation. Chapter 11 summarises the results of this dissertation and discusses the con-
sequences of the results for further work on distributed and federated systems. Chapter 12 briefly comments
on the future prospects on the needs of modern distributed and federated systems. As this dissertation is
just a single representative of the huge number of projects in the area, the commentary takes a broad view
on the needs of standardisation and consortia recommendations.

Chapter 11

Conclusions and consequences

This dissertation presents results on the characteristics of trading functionality, and on the open
system architecture design. These results are being used as contributions to the family of ODP
standards. We consider the ODP model to be a practical route to provoke parallel changes in the
commercial platform architectures, like OMG/CORBA.

In the following, we first summarise the trading characteristics presented. Then, we sum-
marise separately the architecture related results on the federated system architecture, and on the
use of ODP object concepts. Finally, we discuss the consequences the presented ideas have on
software engineering processes and software architectures.

Trading

We introduced trading as a special kind of global information repository, where a large set of
exporters can update the repository and where importers can retrieve information by resource-
restricted, non-exhaustive queries. We also investigated separately the realisation of trading ser-
vice in a distributed and in a federated environment.

We studied the principles for establishing trading domains. Substantial aspects for domain
division include autonomy of organisations to evolve their computing systems independently,
standardisation of service interfaces and behaviour, trading scalability, and variety of platform ar-
chitectures involved. We concluded that trading domains should be divided according to service
type domains and platform architecture domains, whenever appropriate. This principle helps to
keep the load at each trader as low as possible. In practice, the amount of interoperability among
federating systems is based on the number of applicable offers in the trading domains and the
ratio on which those offers are selected.

The exploitation methods of trading cause different needs. Traders can be used for browsing
services by end-users, in which case, the response times can be rather long and a rather thorough
search through the trading graph is expected. However, the primary exploitation scenario in this
dissertation was federated binding protocol, where an agent plays the importer role. In this case,
the trading graph must be rather shallow, limited to 1-3 hops over the network. The dominant
factor in import operation times is the network delay.

The offer repositories of traders can be efficiently supported by current database systems or
object database systems. Moreover, caching and prefetching techniques – analogous to virtual
memory management or web caches – are applicable.

212 11 CONCLUSIONS AND CONSEQUENCES

Trader federation or trader interoperation is supported by a policy framework. The trader in-
terface signatures have been standardised, and even the de-jure and de-facto standards are equal.
The trader behaviour has also been standardised, de-jure. However, within the trading behaviour,
some alternative behaviour patterns are accepted. Such alternative behaviour patterns are con-
trolled by a trading policy framework that expresses the trader assumptions as trader property
assignments and the importer assumptions as policy parameters of the import operation. The
trading policy framework is explicitly manipulated and controlled by the trader objects them-
selves. Application federations exploit similar concepts in interoperability negotiation, although
the negotiation is done on their behalf by meta-information services during the federated binding
process.

The use of separate type repository is an essential feature for the trading functionality. Con-
tract schemata and semantics can be inserted to systems via type repositories without disturbing
the system operation.

Openness and federation

We have chosen to study the characteristics of trading in a federated system environment. Al-
though the traditional distributed systems benefit from the use of trading functionality, such an
environment does not exploit or even require all features.

We consider the federated system as a next evolution phase at the area of distributed com-
puting. Essential change that is required is the adaptation to multi-organisational environments
and asynchronous evolution of software at independent domains. The federated system architec-
ture presented in this dissertation fully trusts sovereign systems and their dynamic negotiation
facilities, which differentiates the approach from related work.

The essential properties of a federable system include

� capability of joining relevant, service type specific federations at run-time,
� support for federation transparent interoperability,
� support for distribution transparent, multi-partner communication, and
� support for contract based binding management that provides both run-time QoS manage-

ment and negotiation of communication system properties.

The fundamental concepts in a federable system are those of contract schema and liaison.
Contract schema is specified and standardised separately for each service type domain. Liaison
negotiation requires mediation of potential contracts to a matching process that resolves all com-
munication related aspects concurrently. The negotiation process can not be recursive as in dis-
tributed systems. In distributed systems, the decisions made at application and platform levels do
not exclude each other, because only the application level and transport protocol level decisions
need to be made. In contrast to this, a recursive decision mechanism in a federated environment
would constantly lead to situations where already made decisions would make all further altern-
atives non-exploitable.

In the presented federation architecture, we collect all interface level information to a potential
contract that describes the properties of an interface. This information we consider computational
interface reference, because it only indicates the limits of engineering techniques acceptable. The
potential contract information can be mediated via traders during the binding process between
computational interfaces. In practice, the binding process results to an engineering level bind-
ing between engineering level interfaces. The engineering interface references include detailed
information about the selected technology for message passing between communicating objects.

213

We consider that the presented federated system architecture is feasible. We base this opinion
on the experiences on trader behaviour and the design of federation transparent interoperation
that in most parts collects together individually tested mechanisms. Large scale experiments are
still missing, because an interoperation experiment with federated architecture should be estab-
lished across geographical and architectural distance.

Object model

In the design of federated system architecture, we have trusted the object concepts of ODP ref-
erence model. This object model addresses concepts that are inadequately considered in object-
oriented programming languages and object design methodologies. The ODP reference model
offers a model that essentially differentiates between types and templates, separation of views to
interfaces, and causalities of interfaces. The ODP object model is better suited for architectural
discussions, system design, and programming tasks in large systems than traditional program-
ming and modelling techniques.

However, even within the ODP object model, consequences of the federated architecture can
be identified. As an example, we can mention the concept of a computational interface: A com-
putational interface should be regarded as an engineering object with polymorphic features (in-
terceptors), instead of a data-type independent abstraction of engineering object methods. The
interpretation allows interceptors to be used for transforming both representation and behaviour.

Federated software engineering model

The federated system architecture also leads to a federated software engineering model that can
be founded on a federated application architecture.

Traditionally, a distributed application has been designed in a single software engineering
process (in which we include also maintenance cycles). The implementation may be divided
to multiple production groups, but nevertheless, the components are integral parts of the final
product. The federated system model promotes a distributed model of application construction.
Independent application objects can be designed, implemented, made available in the network,
and maintained independently by several software groups. Figure 11.1 illustrates the change:
The traditional process requires a single control of the production, while the distributed process
allows isolated production lines. The products of the isolated software groups are expected to
interoperate, because the meta-information services are used during the software development.

application
object

application
object

application
object

application
object

application
object

platform platformplatform platform platform

p r o g r a m m e r p r o g r a m m e r p r o g r a m m e r

middleware auxiliaryauxiliary

FEDERATED ENVIRONMENTDISTRIBUTED ENVIRONMENTS

Figure 11.1: Scenarios of the software engineering processes in open distributed environments.

The new application architecture presents a set of application component objects each of
which has an independent life-cycle of their own. Each object has its own choice of technology
and can evolve independent of the application it is used as part. Applications are built by re-
using this kind of resources. The architecture allows combination of different technologies for
processing, operating systems, middleware, and communication. For instance, it allows cooper-
ation between a fixed network and a mobile network. In Figure 11.2, we see a typical distributed
application architecture on the left side: Each application object has been distributed to several
nodes, and when one node fails to support the functionality, the whole application object is ob-
solete. At the right side of the illustration, we can see the federated application architecture: each
object represents a full functionality of an application, and when distributed execution is neces-
sary, the application object can request services from its counterpart in a remote node. If that node
fails to support the application, the requesting application object is not deprived of the service –
the same service can be requested from somewhere else.

client

process

client

process

object
application

WITH DISTRIBUTED OBJECTS

application

node node

application
object

application

process

application
object

node

WITH FEDERATED OBJECTS

object
application

object

object

node

client
process

process
serverserver

process

process
server process

Figure 11.2: Application architecture scenarios for open distributed environments.

The federative application architecture moves responsibilities from applications to platforms.
As the interface binding process becomes more demanding, that process is handed over to the
infrastructure. As the infrastructure becomes an active player in the communication process, it is
natural to exploit it in other functionalities as well. For example, the responsibility of translating
data-representations is trusted to the infrastructure.

The distributed software engineering process presents a set of projects each developing a
single, independent object that can be effectively reused in several applications. In this model, the
application objects are self-contained and can create liaisons with their environment. Therefore,
the development process of the objects can be more independent. For example, a teleconferen-
cing service may exploit audio and video recording and replay services (independently) at each
conference location, and use several underlying data transmission services between the locations.
The teleconferencing packages at each location can be differently structured. For example, one
package may include a single object whereas the other separates audio and video. It is by no
means necessary to introduce autonomy for each location. Instead, centrally controlled distrib-
uted services are encouraged by the architecture (for example, data transport services).

Chapter 12

Further prospects

Three development areas need to be progressed before the open distributed system architectures
or even the trading functionality can be efficiently exploited. These areas are related to

� the provision of meta-information services in general,
� evolution of software engineering processes,

and more specifically, to

� the trading function itself.

First, the open distributed system architectures require designs and implementations of stand-
ardised meta-information services. Introduction of these services into various commercial plat-
form architectures is intrinsic for their exploitation.

Currently, major distributed platforms do not support the functionalities required for federa-
tion or dynamic establishment of distribution transparent interoperation.

Although a trading function has been implemented by some vendors, the type systems sup-
porting the trading activities are still static. The reluctance to implement type repositories is
connected to the strong position of inheritance-based interworking model supported by object-
oriented programming languages and design methodologies.

The transition from traditional object-languages to an ODP-style object environment can
be organised by exploiting reflective object model [21]. The idea is also present in meta-
programming systems (e.g., [115]). In these models, the interpretation of a message (operation
invocation) can be adapted or modified within the system during the system operation. An ana-
logous situation arises, when an application program is compiled with two compilers that have
different semantic rationale for a programming language operator.

Besides type repositories, also federation of name services is desirable. Type repositories and
traders create, in fact, specialised naming domains for properties used in trading and in type
definitions. We also consider interface references and addresses within communication protocol
domains as names, which creates a need for mappings between these naming systems.

Second, the ODP-style object model has impact on the software engineering processes and
requirements for programming environments. The designers of modern network programming
tools should consider, whether single administration assumptions and inheritance based inter-
working solutions are sufficient in the long term.

The federated system model and the ODP-style object concepts allow division of software en-
gineering process to multiple, independently working projects, as discussed above in Chapter 11.

The model also efficiently supports reuse of interfaces and object implementations, not only
within a single organisation but also in a more global perspective. The meta-information facilities
can be exploited as project management tools. Type repositories can be exploited as a source of
reusable interfaces, and traders can be used as a source of reusable object code. Type repositories
and traders can even be used as the compiler information base for megaprogramming based
systems.

Third, trading services require further conceptual support, especially service type taxonomies.
The work on standardising suitable service types is going to continue. The business models for
CORBA and TINA both produce specifications for business objects, including banking services,
and brokerage services for various merchandises. Similarly, application areas like CSCW should
have a set of common services, like co-authoring tools, and video-conferencing systems. Finally,
the trading functionality and the channel structure should be supported by a federable security
system.

References

[1] ALANKO, T., KESKINEN, J., KUTVONEN, P., MUTKA, M., AND TIENARI, M. The AHTO
Project: Software Technology for Open Distributed Processing. Tech. rep., Department of
Computer Science, University of Helsinki, 1989. Report A-1989-4.

[2] ALZON, P., TOTHESAN, P., HUBERT, M., ATHANASSIOU, E., AND HOANG VAN, A. ABS
(Architecture for Information Brokerage Service) Broker Business Model. ACTS AC206, 1996.
http://b5www.deteberkom.de/ABS/D23.htm.

[3] ARCHITECTURE PROJECTS MANAGEMENT LIMITED. ANSAware 3.0. Implementation Manual,
Feb. 1991. APM Document RM.097.01.

[4] ARCHITECTURE PROJECTS MANAGEMENT LIMITED. ANSA Phase III 1992-1996, Feb. 1992.
[5] ATKINSON, R. Security Architecture for the Internet Protocol. Tech. rep., Internet Engin-

eering Task Force, Aug. 1995. RFC1825.
[6] BARR, W., BOYD, T., AND INOUE, Y. The TINA Initiative. IEEE Communications Magazine

(Mar. 1993), 70 – 76.
[7] BEARMAN, M. ODP-Trader. In Open Distributed Processing (Berlin, Germany, 1993), J. de

Meer, B. Mahr, and O. Spaniol, Eds., North-Holland, pp. 37 – 51.
[8] BEARMAN, M., AND RAYMOND, K. Federating Traders: An ODP Adventure. In Interna-

tional IFIP Workshop on Open Distributed Processing (Oct. 1991), North-Holland, pp. 125 – 141.
[9] BEARMAN, M., AND RAYMOND, K. Contexts, Views and Rules: An Integrated Approach to

Trader Contexts. In Open Distributed Processing (Berlin, Germany, 1993), J. de Meer, B. Mahr,
and O. Spaniol, Eds., North-Holland, pp. 181 – 191.

[10] BEASLEY, M., CAMERON, J., GIRLING, G., HOFFNER, Y., VAN LINDEN, R., AND THOMAS,
G. Establishing co-operation in federated systems, Oct. 1994. APM.1128.02.

[11] BEITZ, A., AND BEARMAN, M. An ODP Trading Service for DCE. In First International
Workshop on Services in Distributed and Networked Environments (SDNE) (Prague, Czech Re-
public, June 1994), IEEE Computer Society Press, pp. 42 – 49.

[12] BEITZ, A., KING, P., AND RAYMOND, K. Is DCE a Support Environment for ODP? In Open
Distributed Processing, II (1994), J. de Meer, B. Mahr, and S. Storp, Eds., North-Holland,
pp. 217 – 231.

[13] BELLCORE. Asynchronous Transfer Mode (ATM) and ATM Adaptation Layer (AAL) Protocols
Generic Requirements, 1992. Technical Advisory TA-NWT-0001113, Issue 1.

[14] BENFORD, S., AND LEE, O.-K. Collaborative Naming in Distributed Systems. Distributed
Systems Engineering Journal 1, 2 (Dec. 1993), 67 – 74.

[15] BERNSHAD, B. N., ZEKAUSKAS, M. J., AND SAWDON, W. A. The Midway Shared Memory
System. In IEEE COMPCON Conference (1993), pp. 528 – 537.

218 REFERENCES

[16] BERNSTEIN, P. A. Middleware: A Model for Distributed System Services. Communications
of the ACM 39, 2 (Jan. 1996), 86 – 98.

[17] BIRMAN, K. P., AND JOSEPH, T. A. Reliable Communication in the Presence of Failures.
ACM Trans. Comput. Syst. 5, 1 (Feb. 1987), 47 – 76.

[18] BIRRELL, A. D., AND NELSON, G. J. Implementing Remote Procedure Calls. ACM Trans-
actions on Computer Systems 2, 1 (Feb. 1984), 39 – 59.

[19] BJÖRKLUND, T. Integration and Maintenance of DRYAD Trading Software. Software project
exercise C-1995-58, University of Helsinki, Department of Computer Science, 1995.

[20] BLAIR, G., AND STEFANI, J.-B. Open Distributed Processing and Multimedia. Addison-Wesley
Publishing Company, 1997.

[21] BLAIR, G. S., AND PAPATHOMAS, M. The Case for Reflective Middleware.
In 3rd Cabernet Plenary Workshop (Rennes, France, Apr. 1997). Available at
http://www.twente.research.ec.org/cabernet/workshops/3rd-plenary.html.

[22] BOWMAN, H., DERRICK, J., LININGTON, P., AND STEEN, M. Cross-viewpoint consistency
in Open Distributed Processing. Software Engineering Journal 11, 1 (Jan. 1996), 44 – 57. Special
issue on Viewpoints in Requirements Engineering.

[23] BROOKES, W., INDULSKA, J., BOND, A., AND YANG, Z. Interoperability of Distributed
Platforms: a Compatibility Perspective. In The Third International Conference on Open Dis-
tributed Processing – Experiences with distributed environments (Brisbane, Australia, Feb. 1995),
K. Raymond and L. Armstrong, Eds., Chapmann & Hall, pp. 67 – 78.

[24] BRUNT, R. F. An introduction to OPENframework. ICL Technical Journal 8, 3 (1993).
[25] BULL, J., AND REES, O. A Framework for Federating Secure Systems. Tech.

rep., APM, Jan. 1994. APM.1006.01. Also http://www.ansa.co.uk/phase3-doc-
root/approved/APM.1006.01.html.

[26] BURGER, C. Cooperation policies for traders. In The Third International Conference on Open
Distributed Processing – Experiences with distributed environments (Brisbane, Australia, Feb.
1995), K. Raymond and L. Armstrong, Eds., Chapmann & Hall, pp. 208 – 218.

[27] CARDELLI, L., AND WEGNER, P. On Understanding Types, Data Abstraction, and Poly-
morphism. Computing Surveys 17, 4 (Dec. 1985), 471 – 522.

[28] CASTAGNA, G. Covariance and contravariance: conflict without cause. ACM Transactions
on Programming Languages and Systems 17, 3 (1995), 431 – 447.

[29] CATTELL, R. G. G., Ed. Object Database Standard: ODMG-93. Morgan Kaufmann Publishers,
1994.

[30] CHANG, R. N., AND RAVISHANKAR, C. V. A Service Acquisition Mechanism for the Client-
Service Model in Cygnus. In The 11th International Conference on Distributed Computer Sys-
tems (Arlington, Texas, USA, May 1991), pp. 90 – 97.

[31] CHAVEZ, A., AND MAES, P. Kasbah: An agent marketplace for buying and
selling goods. In First International Conference on the Practical Application of Intelli-
gent Agents and Multi Agent Technology (London, UK, Apr. 1996). Also available as
http://agents.www.media.mit.edu/groups/agents/publications/kasbah-paam96.ps.gz.

[32] CHENG, W. C. H., AND JIA, X. A Reliable Trading Service in Open Distributed Systems.
In First International Workshop on Services in Distributed and Networked Environments (SDNE)
(Prague, Czech Republic, June 1994), IEEE Computer Society Press, pp. 122 – 129.

[33] CHIN, R. S., AND CHANSON, T. Distributed Object-Based Programming Systems. ACM
Computing Surveys 23, 1 (Mar. 1991), 91 – 124.

REFERENCES 219

[34] CORKILL, D. D. Countdown to Success: Dynamic Objects, GBB, and RADARSAT-1. Com-
munications of the ACM 40, 5 (May 1997), 49 – 58.

[35] COULOURIS, G. F., DOLLIMORE, J., AND KINDBERG, T. Distributed Systems, Concepts and
Design, 2nd ed. Addison-Wesley Publishing Company, 1994.

[36] CRISTIAN, F. Reaching Agreement on Processor Group Membership in Synchronous Dis-
tributed Systems. Distributed Computing 4, 4 (1991).

[37] DANG TRAN, F., PERBASKINE, V., AND STEFANI, J.-B. Binding and streams: the ReTINA
approach. In TINA’96 Conference: The Convergence of Telecommunications and Distributed Com-
puting Technologies (Heidelberg, Germany, Sept. 1996), VDE, pp. 101 – 113.

[38] DANTHINE, A., AND BONAVENTURE, O. From best effort to enhanced QoS. Tech. rep., Uni-
versity of Liege, 1993. CEC Deliverable No. R2060/ULg/CIO/DS/P/004/b1, also ISO/IEC
JTC1/SC6/WG4/N827.

[39] DANZIG, P. B., OBRACZKA, K., AND KUMAR, A. An Analysis of Wide-Area Name Server
Traffic: A Study of the Internet Domain Name System. In ACM SIGCOMM Conference (Aug.
1992), pp. 281 – 292.

[40] DASGUPTA, P. Resource location in Very Large Networks. In First International Workshop
on Services in Distributed and Networked Environments (SDNE) (Prague, Czech Republic, June
1994), IEEE Computer Society Press, pp. 156 – 163.

[41] DASGUPTA, P., LEBLANC, R. J., AHAMAD, M., AND RAMACHANDRAN, U. The Clouds
Distributed Operating System. IEEE Computer 24, 11 (Nov. 1991), 34 – 44.

[42] DE PAULA LIMA, L. A., AND MADEIRA, E. R. M. A Model for a Federated Trader. In
The Third International Conference on Open Distributed Processing – Experiences with distributed
environments (Brisbane, Australia, 1995), K. Raymond and L. Armstrong, Eds., Chapmann
& Hall, pp. 173 – 184.

[43] DENNING, P. J. The Working Set Model for Program Behaviour. Communications of the ACM
11, 5 (May 1968), 323 – 333.

[44] DESCHREVEL, J.-P. The ANSA Model for Trading and Federation. Tech.
Rep. APM.1005.01, APM, July 1993. Also http://www.ansa.co.uk/phase3-doc-
root/approved/APM.1005.01.html.

[45] DETOLEDO, M. B. F., AND BLAIR, G. S. Transaction Support for an ANSA-Based Plat-
form. In The 14th International Conference on Distributed Computing Systems (Potznan, Poland,
1994), pp. 209 – 216.

[46] DIGITAL EQUIPMENT CORPORATION. AltaVista Search Service.
http://www.altavista.digital.com/.

[47] DISTRIBUTED SYSTEMS TECHNOLOGY CENTRE. DSTC Trading Ob-
ject Service – An OMG Conformant Trading Service Implementation, 1996.
http://www.dstc.edu.au/AU/projects/corba-trader/fact_sheet.html.

[48] DOUGLIS, F., AND OUSTERHOUT, J. Transparent Process Migration: Design Alternatives
and the Sprite Implementation. Software-Practice & Experience 21, 8 (Aug. 1991), 757 – 785.

[49] DUSKA, B. M., MARWOOD, D., AND FEELEY, M. J. The Measured Access Characteristics of
World-Wede-Web Client Proxy Caches. In USENIX Symposium on Internet Technologies and
Systems (Dec. 1997). Also available as ftp://ftp.cs.ubc.ca/pub/local/techreports/1997/TR-
97-16.ps.gz.

[50] EDWARDS, N. An ANSA Analysis of Open Dependable Distributed Computing.
Tech. Rep. APM.1149.03, APM, Oct. 1994. Also http://www.ansa.co.uk/phase3-doc-
root/approved/APM.1149.03.html.

220 REFERENCES

[51] EUROPEAN UNION ACTS PROJECT (ONYX INTERNET, COUNTY DURHAM TEC, NEW-
CASTLE UNIVERSITY, CEDCAMERA, HELSINKI TELEPHONE CORPORATION). Project CO-
BRA: Common Open Brokerage System. http://zeus.gmd.de/hci/projects/cobra/.

[52] FAROOQUI, K., LOGRIPPO, L., AND DE MEER, J. The ISO Reference Model for Open Dis-
tributed Processing – An Introduction. Journal of Computer Networks and ISDN Systems 27, 8
(July 1995), 1215 – 1229.

[53] FAYAD, M. E., AND SCHMIDT, D. Object-Oriented Application Frameworks. Communica-
tions of the ACM 40, 10 (Oct. 1997), 32 – 38.

[54] FINKELSTEIN, D., ACTON, D., COATTA, T., HUTCHINGSON, N., AND NEUFELD, G. Ob-
ject properties in Raven System. In First International Workshop on Services in Distributed
and Networked Environments (1994), IEEE Technical Committee on Distributed Processing,
pp. 502 – 509.

[55] FREIER, A. O., KARLTON, P., AND KOCHER, P. C. The SSL Protocol Version 3.0. Tech. rep.,
Internet Engineering Task Force, 1996. Internet Draft, Expires September 1996.

[56] FRIDAY, A., BLAIR, G. S., CHEVERST, K. W. J., AND DAVIES, N. Extensions to ANSAware
for advanced mobile applications. In IFIP/IEEE International Conference on Distributed Plat-
forms (Feb. 1996), Chapman & Hall, pp. 29 – 43.

[57] GAMMA, E., AND ET.AL. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Publishing Company, 1995.

[58] GARCÍA, F., HUTCHISON, D., MAUTHE, A., AND YEADON, N. QoS support for distributed
multimedia communications. In IFIP/IEEE International Conference on Distributed Platforms
(Dresden, Germany, Feb. 1996), Chapman & Hall, pp. 463 – 477.

[59] GARRAHAN, J., RUSSO, P., KITAMI, K., AND KUNG, R. Intelligent Network Overview.
IEEE Communications Magazine 31, 3 (Mar. 1993), 30 – 36.

[60] GAY, V., LEYDEKKERS, P., AND HUIS IN ’T VELD, R. Specification of Multiparty Audio
and Video Interaction. Journal of Computer Networks and ISDN Systems 27, 8 (July 1995),
1247 – 1262.

[61] GEIHS, K., AND FARSI, R. Service Trading in Electronic Markets. International Journal in
Electronic Markets 7, 3 (1997), 25 – 28.

[62] GELERNTER, G. Generative Communication in Linda. ACM Transactions on Programming
Languages and Systems 7, 1 (Jan. 1985), 80 – 112.

[63] GIBBONS, P. B. A stub generator for multilanguage RPC in heterogeneous environments.
IEEE Transactions on Software Engineering 13, 1 (Jan. 1987), 77 – 87.

[64] GOSCHINSKI, A. Distributed Operating Systems: The Logical Design. Addison-Wesley Pub-
lishing Company, 1991.

[65] GOSCINSKI, A. Supporting User Autonomy and Object Sharing in Distributed Systems:
The RHODOS Trading Service. In The First International Symposium on Autonomous Decent-
ralized Systems (Kawasaki, Japan, 1993).

[66] HALL, J., AND TSCHICHHOLZ, M. Management in a heterogeneous broadband environ-
ment. In Integrated Network Management (1991), I. Krishnan and W. Zimmer, Eds., vol. II,
Elsevier Science Publisher.

[67] HAMBERG, M. ODP-viitemallin näkökulmakuvaukset – näkökulmat avoimen järjestelmän
mallinnusmenetelmänä (ODP viewpoint specifications as a methodology). Master’s thesis,
University of Helsinki, Department of Computer Science, Feb. 1997. C-1997-30. In Finnish.

REFERENCES 221

[68] HAMBERG, M., JOKINEN, M., SIVONEN, T., AND YIN, H. Service invocation function. Soft-
ware project exercise C-1995-38, University of Helsinki, Department of Computer Science,
1995.

[69] HAMILTON, S. E-Commerce for the 21st Century. IEEE Computer 31, 2 (May 1997), 44 – 47.
[70] HARRISON, W., AND OSSHER, H. Subject-Oriented Programming (A Critique of Pure Ob-

jects). In Eight Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA 1993) (Washington, DC, USA, Oct. 1993), A. Paepcke, Ed., pp. 411 –
426. ACM SIGPLAN Notices 28(10).

[71] HATAKKA, J., HYVÄTTI, J., KOSKINEN, I., LILJEBERG, M., MOILANEN, M., AND YLITALO,
J. Nereid – DRYAD-meklarin ylläpitosovellus (Nereid – A graphical management interface
to DRYAD Trader). Software project exercise C-1993-69, University of Helsinki, Department
of Computer Science, 1993. In Finnish.

[72] HAYER, R., AND SCHLICHTING, R. D. Facilitating mixed language programming in dis-
tributed systems. IEEE Transactions on Software Engineering 13, 12 (Dec. 1987), 1254 – 1264.

[73] HELM, R., HOLLAND, I., AND GANGOPADHYAY, D. Contracts: Specifying Behavioral
Compositions in Object-Oriented Systems. In Conference on Object-Oriented Programming:
Systems, Languages, and Applications (Vancouver, Oct. 1990), ACM, pp. 169 – 180.

[74] HERBERT, A. An Overview of ANSA. IEEE Network 8, 1 (Jan. 1994), 18 – 23.
[75] HERBERT, A. Distributing Objects. Technical Report APM.1009.01, APM, May 1994.
[76] HOFFNER, Y. A designers’ introduction to trading. Technical Report APM.1387.01, APM,

Dec. 1994.
[77] HOFFNER, Y. Interoperability and Distributed Platform Design. In IFIP/IEEE Interna-

tional Conference on Distributed Platforms (Dresden, Germany, Feb. 1996), Chapman & Hall,
pp. 342 – 356.

[78] HOFFNER, Y., AND CRAWFORD, B. Federation and Interoperability. Tech. Rep.
APM.1514.01, ANSA, APM, Oct. 1995. Also http://www.ansa.co.uk/phase3-doc-
root/approved/APM.1514.01.html.

[79] HOFFNER, Y., AND CRAWFORD, B. Using Interception to Create Domains in Distributed
Systems. In IFIP/IEEE International Conference on Open Distributed Processing and Distributed
Platforms (Toronto, Canada, May 1997), J. Rolia, J. Slonim, and J. Botsford, Eds., Chapmann
& Hall, pp. 251 – 263.

[80] IBM CORPORATION. User’s Guide to OS/2 Warp, 1994. Part No. 19H5128.
[81] IBM CORPORATION. IBM Open Blueprint. WWW information page,

http://www.software.ibm.com/openblue/openftp.htm, Oct. 1997.
[82] IKV++ GMBH INFORMATIONS- UND KOMMUNIKATIONSTECHNOLOGIE. TOI – OMG Trad-

ing Object Service Implementation, Mar. 1997. http://www.ikv.de/products/ftoi.html/.
[83] INDULSKA, J., BEARMAN, M., AND RAYMOND, K. A Type Management System for an

ODP Trader. In Open Distributed Processing (Berlin, Germany, 1993), J. de Meer, B. Mahr,
and O. Spaniol, Eds., North-Holland, pp. 169 – 180.

[84] INFORMATION SCIENCES INSTITUTE, UNIVERSITY OF SOUTHERN CALIFORNIA. FAST Elec-
tronic Broker. http://www.FASTXchange.com/.

[85] ISO/IEC JTC1. Electronic data interchange for administration, commerce and transport (EDI-
FACT) – Application level syntax rules. International Standard IS9375, 1987.

[86] ISO/IEC JTC1. Information Processing Systems – Open Systems Interconnection, Systems Man-
agement Overview, 1992. IS10040 | X.701.

222 REFERENCES

[87] ISO/IEC JTC1. Information Technology – Open Systems Interconnection, Data Management and
Open Distributed Processing. Reference Model of Open Distributed Processing. ODP Trader, May
1992. Working document ISO/IEC JTC1/SC21 WG7 N7074.

[88] ISO/IEC JTC1. A formalised computational Model of the ODP Trader using SDL’92, July 1994.
DIN Input Contribution SC21 WG7 N924.

[89] ISO/IEC JTC1. Information Technology – Abstract Syntax Notation One (ASN.1): Specification
of basic notation, 1995. IS8824-1.

[90] ISO/IEC JTC1. Information Technology – Open Systems Interconnection – Systems manage-
ment – Open Distributed Management Architecture, 1996. DIS13244.

[91] ISO/IEC JTC1. Information Technology – Open Systems Interconnection, Data Management and
Open Distributed Processing. Reference Model of Open Distributed Processing, 1996. IS10746.

[92] ISO/IEC JTC1. Information Technology – Open Systems Interconnection, Data Management
and Open Distributed Processing. Reference Model of Open Distributed Processing. Part 2: Found-
ations, 1996. IS10746-2.

[93] ISO/IEC JTC1. Information Technology – Open Systems Interconnection, Data Management and
Open Distributed Processing. Reference Model of Open Distributed Processing. Part 3: Architec-
ture, 1996. IS10746-3.

[94] ISO/IEC JTC1. Information Technology – Open Systems Interconnection, Data Management and
Open Distributed Processing. Reference Model of Open Distributed Processing. Part 1: Overview,
1996. IS10746-1.

[95] ISO/IEC JTC1. Information Technology – Open Systems Interconnection, Data Management and
Open Distributed Processing. Reference Model of Open Distributed Processing. Part 4: Architec-
tural Semantics, 1996. IS10746-4.

[96] ISO/IEC JTC1. Information Technology – Open Systems Interconnection, Data Management
and Open Distributed Processing. Reference Model of Open Distributed Processing. ODP Trading
function. Part 1: Specification, 1997. IS13235-1.

[97] ISO/IEC JTC1. Information Technology – Open Systems Interconnection, Data Management
and Open Distributed Processing. Reference Model of Open Distributed Processing. ODP Type
repository function, 1997. CD14746.

[98] ISO/IEC JTC1. Information Technology – Open Systems Interconnection, Data Management and
Open Distributed Processing – ODP Naming framework, Jan. 1997. DIS14771.

[99] ISO/IEC JTC1. Information Technology – Open Systems Interconnection, Data Management
and Open Distributed Processing – Protocol Support for Computational Interactions, July 1997.
Working draft.

[100] ISO/IEC JTC1. Information Technology – Open Systems Interconnection, Data Management
and Open Distributed Processing. Reference Model of Open Distributed Processing. ODP Trading
function. Part 3: Provision of Trading Function using OSI Directory Service, 1997. IS13235-3.

[101] ISO/IEC JTC1. Information Technology – Open Systems Interconnection, Data Management and
Open Distributed Processing. Reference Model of Open Distributed Processing. ODP Trading func-
tion. Part 2: Implementation conformance statements and test cases, 1997. Project to be cancelled.

[102] ISO/IEC JTC1. Information Technology – Open Systems Interconnection, Data Management
and Open Distributed Processing – ODP Interface References and Binding, Jan. 1998. FCD14753,
editor draft for DIS.

[103] ISO/IEC JTC1. Working draft for Quality of Service in ODP, Jan. 1998. SC21/WG7 N10979.
[104] ISWG/AISG OSE EXPERT GROUP. NATO Open system environment: glossary of terms, June

1996. Version 3. Available at http://www.nacisa.nato.int/nose/gloss1.htm.

REFERENCES 223

[105] ITU-T. Rec. X.500 Information Processing – Open Systems Interconnection – The Directory. 1992.
[106] ITU-T. Rec. M.3010: Principles for a Telecommunications Management Network, 1992.
[107] ITU-T. Information Technology – Open Systems Interconnection, Data Management and Open

Distributed Processing. Reference Model of Open Distributed Processing, 1996. Recommenda-
tions X.901 - X.904.

[108] ITU-T. Information Technology – Open Systems Interconnection, Data Management and Open
Distributed Processing. Reference Model of Open Distributed Processing. ODP Trading function.
Part 1: Specification, 1996. Recommendation X.950.

[109] JONES, A. K. The Object Model: The Conceptual Tool for Structuring Software. In Operating
Systems – An Advanced Course, Lecture Notes in Computer Science. Springer Verlag, 1978,
pp. 8 – 16.

[110] KÄHKIPURO, P., KUTVONEN, L., AND MARTTINEN, L. Federated naming in an ODP envir-
onment. In IFIP/IEEE International Conference on Open Distributed Processing and Distributed
Platforms (Toronto, Canada, May 1997), J. Rolia, J. Slonim, and J. Botsford, Eds., Chapmann
& Hall, pp. 314 – 326.

[111] KÄHKIPURO, P., MARTTINEN, L., AND KUTVONEN, L. Reaching Interoperability through
ODP type framework. In TINA’96 Conference: The Convergence of Telecommunications and Dis-
tributed Computing Technologies (Aug. 1996), VDE Verlag, pp. 283 – 284. Extended abstract.

[112] KÄHKIPURO, P., MARTTINEN, L., AND KUTVONEN, L. Reaching Interoperability through
ODP type framework. Tech. Rep. C-1996-96, Department of Computer Science, University
of Helsinki, 1996.

[113] KEKKONEN, S., KORKIAKOSKI, J., PARTANEN, R., SIIVOLA, V., AND VEPSÄLÄINEN, H.
Arttu – DRYAD-meklarin käyttöliittymä (Artemis – A graphical user interface to DRYAD
Trader). Software project exercise C-1993-43, University of Helsinki, Department of Com-
puter Science, 1993. In Finnish.

[114] KELLER, L. Trading of Complex Services in Distributed Systems. In The Fifth IFIP/IEEE
International Workshop on Distributed Systems: Operations & Management (Toulouse, 1994).

[115] KICZALES, G., AND PAEPCKE, A. Open Implementations and Metaobject Protocols, 1996.
[116] KITSON, B. Intercessory Objects within Channels. In The Third International Conference on

Open Distributed Processing – Experiences with distributed environments (Brisbane, Australia,
1995), K. Raymond and L. Armstrong, Eds., Chapmann & Hall, pp. 233 – 244.

[117] KONO, K., KATO, K., AND MASUDA, T. Smart Remote Procedure Calls: Transparent treat-
ment of remote pointers. In The 14th International Conference on Distributed Computing Sys-
tems (Poznan, Poland, June 1994), IEEE Computer Society, pp. 142 – 151.

[118] KOVACS, E. Trading and Management of Distributed Applications: Main Tasks for fu-
ture Distributed Systems. In Aachen Workshop New Concepts for Open Distributed Processing
(Aachen, Germany, 1994). In German.

[119] KOVACS, E. Advanced Trading Services Through Mobile Agents. In International Workshop
on Trends in Distributed Systems (Aachen, Germany, 1996), Springer Verlag. In German.

[120] KOVACS, E., AND BURGER, C. Project description MELODY – Management environment
for Large Open Distributed Systems. Tech. Rep. Technical report 8/95, University of Stut-
tgart, 1995. In German.

[121] KOVACS, E., AND WIRAG, S. Trading and Distributed Application Management: An In-
tegrated Approach. In The Fifth IFIP/IEEE International Workshop on Distributed Systems:
Operations & Management (DSOM’94) (Toulouse, France, 1994).

224 REFERENCES

[122] KUEPPER, A., POPIEN, C., AND MEYER, B. Service Management using up-to-date qual-
ity properties. In IFIP/IEEE International Conference on Distributed Platforms (Dresden, Ger-
many, Feb. 1996), A. Schill, C. Mittasch, O. Spaniol, and C. Popien, Eds., Chapmann & Hall,
pp. 342 – 356.

[123] KUTVONEN, L. Achieving interoperability through ODP trading function. In The second
international symposium on Autonomous Decentralized Systems (Phoenix, Arizona, 1995), IEEE
Computer Society Press, pp. 63 – 69.

[124] KUTVONEN, L. Supporting transition to open, heterogeneous computing environment.
In TINA’95: International Telecommunications and Distributed Computing – from Concepts to
Reality (Melbourne, Australia, 1995), pp. 55 – 66.

[125] KUTVONEN, L. Overview of the DRYAD trading system implementation. In IFIP/IEEE
International Conference on Distributed Platforms (Dresden, Germany, Feb. 1996), Chapman &
Hall, pp. 314 – 326.

[126] KUTVONEN, L. The Role of Trading function in Open Distributed Processing Environment. De-
partment of Computer Science, University of Helsinki, 1996. Licentiate thesis. C-1996-84.

[127] KUTVONEN, L. Management of Application Federations. In International IFIP Working
Conference on Distributed Applications and Interoperable Systems (DAIS’97) (Cottbus, Germany,
Sept. 1997), H. Konig, K. Geihs, and T. Preuss, Eds., Chapmann & Hall, pp. 33 – 46.

[128] KUTVONEN, L. Why CORBA systems cannot federate? In OMA/ODP Workshop (Cam-
bridge, UK, Nov. 1997).

[129] KUTVONEN, L., AND KUTVONEN, P. Broadening the User Environment with Implicit Trad-
ing. In Open Distributed Processing (Berlin, Germany, 1993), J. de Meer, B. Mahr, and O. Spa-
niol, Eds., North-Holland, pp. 157 – 168.

[130] KUTVONEN, P., AND KUTVONEN, L. Measured Performance of a Special-purpose Database
Engine for Distributed System Software. Computer Communications Journal (Jan. 1996), 22 –
29. Special Number on High Speed Networks and Open Distributed Platforms Workshop.

[131] LADDAGA, R., AND VEITCH, J. Dynamic Object Technology. Communications of the ACM
40, 5 (May 1997), 37 – 38.

[132] LAMB, C., LANDIS, G., ORENSTEIN, J., AND WEINREB, D. The ObjectStore database sys-
tem. Communications of the ACM 34, 10 (Oct. 1991), 50 – 63.

[133] LAMERSDORF, W., MERZ, M., AND MÜLLER-JONES, K. Middleware Support for Open Dis-
tributed Applications. In High Speed Networks and Open Distributed Platforms (St. Petersburg,
Russia, June 1995).

[134] LAMPORT, L. Time, Clocks and the Ordering of Events in a Distributed System. Communic-
ations of the ACM 21, 7 (1978), 558 – 565.

[135] LAMPSON, B. W. Designing a Global Name Service. In Fifth Annual ACM Symposium on
Principles of Distributed Computing (Calgary, Canada, Aug. 1986), pp. 1 – 10.

[136] LEPREAU, J., HIBLER, M., FORD, B., AND LAW, J. In-kernel
servers on Mach 3.0: Implementation and performance. In Third
USENIX Mach Symposium (USA, Apr. 1993), pp. 39 – 55. Also
http://www.usenix.org/publications/library/proceedings/mach3/lepreau.html.

[137] LI, G. An Overview of Real-Time ANSAware 1.0. Tech. Rep. APM.1285.01,
ANSA, APM, Mar. 1995. For Distributed Systems Engineering Journal. Also
http://www.ansa.co.uk/phase3-doc-root/approved/APM.1285.01.html.

[138] LI, K. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis, Yale University,
1986.

REFERENCES 225

[139] LI, K., AND HUDAK, P. Memory Coherence in Shared Virtual Memory Systems. ACM
Transactions on Computer Systems 7, 1 (Nov. 1989), 321 – 359.

[140] LININGTON, P. RM-ODP: The architecture. In The Third International Conference on Open
Distributed Processing – Experiences with distributed environments (Brisbane, Australia, 1995),
K. Raymond and L. Armstrong, Eds., Chapmann & Hall, pp. 15 – 33.

[141] MACARTNEY, A. J., AND BLAIR, G. S. Flexible trading in distributed systems. Computer
Networks and ISDN Systems 25, 15 (1992), 145 – 157.

[142] MAES, P., AND MARDI, D., Eds. Meta-Level Architectures and Reflection. North-Holland,
1988.

[143] MÄKELÄ, J. Paperclip stopped trains in Finland. The Risks Digest: Forum
on Risks to the Public in Computers and Related Systems 19, 10 (Apr. 1997).
http://catless.ncl.ac.uk/Risks/19.10.html#subj1.

[144] MANOLA, F., HEILER, S., AND GEORGAKOPOULOUS, D. Distributed Object Management.
International Journal of Intelligent and Cooperative Information Systems 1, 1 (June 1992), 5 – 42.

[145] MASTERCARD AND VISA. SET Secure Electronic Transaction Specification, Book 1: Business
Description, May 1997. http://www.visa.com/nt/ecomm/set/set_bk1.pdf.

[146] MCCONNEL, S. The OMG/CommerceNet Joint Electronic Commerce Whitepaper. Tech.
rep., OMG and CommerceNet, July 1997. OMG/EC/97-06-09.

[147] MCCONNELL, S., MERZ, M., MAESANO, L., AND WITTHAUT, M. An Open Architecture
for Electronic Commerce. Tech. rep., OMG and CommerceNet, Feb. 1997.

[148] MERZ, M. Elektronishe Märkte im Internet. Thomson Publishing, 1996.
[149] MERZ, M., MÜLLER, K., AND LAMERSDORF, W. Service Trading and Mediation in Dis-

tributed Computing Systems. In The 14th International Conference on Distributed Computing
Systems (ICDCS ’94) (Poznan, Poland, 1994), IEEE Computer Society Press, pp. 440 – 457.

[150] MEYER, B., HEINEKEN, M., AND POPIEN, C. Performance Analysis of Distributed Applic-
ations with ANSAmon. In The Third International Conference on Open Distributed Processing –
Experiences with distributed environments (Brisbane, Australia, Feb. 1995), K. Raymond and
L. Armstrong, Eds., Chapmann & Hall, pp. 307 – 319.

[151] MEYER, B., AND POPIEN, C. Flexible management of ANSAware applications. In The Third
International Conference on Open Distributed Processing – Experiences with distributed environ-
ments (Brisbane, Australia, 1995), K. Raymond and L. Armstrong, Eds., Chapmann & Hall,
pp. 271 – 282.

[152] MICROSOFT CORPORATION. Microsoft Windows User’s Guide, 1992. Document No. PC21669-
0492.

[153] MICROSOFT CORPORATION. Microsoft Windows NT Server System Guide, 1994. Document
No. 58005-0794.

[154] MICROSOFT CORPORATION. The Distributed Component Object Model. A business overview.
USA, 1996.

[155] MILOSEVIC, Z. Enterprise Aspects of Open Distributed Systems. PhD thesis, Department of
Computer Science, University of Queensland, Oct. 1995.

[156] MILOSEVIC, Z., ARNOLD, D., AND O’CONNOR, L. Inter-enterprise Contract Architecture
for Open Distributed Systems: Security Requirements. In WET ICE’96 Workshop on Enter-
prise Security (Stanford, USA, June 1996).

226 REFERENCES

[157] MILOSEVIC, Z., BERRY, A., BOND, A., AND RAYMOND, K. Supporting Business Contracts
in Open Distributed Systems. In Second International Workshop on Services in Distributed and
Networked Environments (SDNE’95) (Whistler, Canada, June 1995), IEEE Computer Society
Press, pp. 60 – 67.

[158] MITCHELL, J. C. Coersion and type inference. In The 11th ACM Symposium on Principles of
Programming Languages (Salt Lake City, USA, Jan. 1984), pp. 175 – 185.

[159] MOCKAPETRIS, P. Domain names - concepts and facilities. Tech. rep., Internet Engineering
Task Force, Nov. 1987. RFC1034.

[160] MOCKAPETRIS, P. Domain names - implementation and specification. Tech. rep., Internet
Engineering Task Force, Nov. 1987. RFC1035.

[161] MÜLLER, S., MÜLLER-JONES, K., LAMERSDORF, W., AND TU, T. Global Trader Cooper-
ation in Open Service Markets. In International Workshop on Trends in Distributed Systems
(Aachen, Germany, Oct. 1996), Springer Verlag.

[162] MÜLLER-JONES, K., MERZ, M., AND LAMERSDORF, W. The TRADEr: Integrating Trad-
ing Into DCE. In The Third International Conference on Open Distributed Processing – Experi-
ences with distributed environments (Brisbane, Australia, Feb. 1995), K. Raymond and L. Arm-
strong, Eds., Chapmann & Hall, pp. 476 – 487.

[163] NAJM, E., AND STEFANI, J. A formal semantics for the ODP computational model. Journal
of Computer Networks and ISDN Systems 27, 8 (July 1995), 1305 – 1329.

[164] NEEDHAM, R. M. Names. In Distributed Systems, S. Müllender, Ed. ACM Press, Frontier
Series, 1989, ch. 5.

[165] NEUMAN, B. C., AND TS’O, T. Kerberos: An Authentication Service for Computer Net-
works. IEEE Communications 32, 9 (Sept. 1994), 33 – 38.

[166] NI, Y., AND GOSCINSKI, A. Trader cooperation to enable object sharing among users of
homogeneous systems. Computer Communications 17, 3 (Mar. 1994), 218 – 229.

[167] OBJECT MANAGEMENT GROUP. OMG White Paper on Security, Apr. 1994. Document 94-04-
16. Also http://www.omg.org/docs/1994/94-04-16.ps.

[168] OBJECT MANAGEMENT GROUP. CORBA Security, Dec. 1995. Document 95-12-1. Also
http://www.omg.org/docs/1995/95-12-01.ps.

[169] OBJECT MANAGEMENT GROUP. Object Services RPF 5, July 1995. OMG TC Document 95-6-
18.

[170] OBJECT MANAGEMENT GROUP. OMG Business Application Architecture, Mar. 1995.
http://www.tiac.net/users/jsuth/oopsla/bowp2.html.

[171] OBJECT MANAGEMENT GROUP. Common Secure Interoperablity, July 1996. Document
orbos/96-06-20. Also http://www.omg.org/docs/orbos/96-06-20.ps.

[172] OBJECT MANAGEMENT GROUP. Multiple Interfaces and Composition Request for Proposals,
Jan. 1996. Document ORB/96-01-04.

[173] OBJECT MANAGEMENT GROUP. OMG RFP5 Submission: Trading Object Service, May 1996.
OMG Document orbos/96-05-06. Also http://www.omg.org/docs/orbos/96-05-06.ps.

[174] OBJECT MANAGEMENT GROUP. Common Facilities RFP-5: Meta-Object Facility, 1997. OMG
TC Document cf/96-05-02.

[175] OBJECT MANAGEMENT GROUP. UML Semantics, Sept. 1997. OMG Document No. ad/97-
08-04 (Revision 1.1.). Also http://www.omg.org/pub/docs/ad/97-08-04.ps.

[176] OBJECT MANAGEMENT GROUP AND X/OPEN. The Common Object Request Broker: Ar-
chitecture and Specification, Nov. 1993. OMG Document No. 91.12.1. (Revision 1.1.). Also
http://www.omg.org/docs/1991/91-12-01.ps.

REFERENCES 227

[177] OBJECT MANAGEMENT GROUP AND X/OPEN. The Common Object Request Broker: Ar-
chitecture and Specification, May 1996. OMG Document No. 91.12.1. (Revision 2.1.). Also
http://www.omg.org/docs/interop/96-05-01.ps.

[178] OINONEN, S. Co-operation of Independent Trader Implementations. Master’s thesis, Uni-
versity of Helsinki, Department of Computer Science, Aug. 1996. C-1996-73.

[179] OPEN SOFTWARE FOUNDATION. An Analysis of the OSF/1 Operating System and UNIX System
V Release 4, Jan. 1992. White paper.

[180] OPEN SOFTWARE FOUNDATION. OSF DCE User’s Guide and Reference, 1994.
[181] OSKIEWICZ, E., AND EDWARDS, N. A Model for Interface Groups. Tech.

Rep. APM.1002.01, APM, May 1994. Also http://www.ansa.co.uk/phase3-doc-
root/approved/APM.1002.01.html.

[182] OTWAY, D. Streams and Signals. Tech. Rep. APM.1393.02, ANSA, APM, Jan. 1995. Also
http://www.ansa.co.uk/phase3-doc-root/approved/APM.1393.02.html.

[183] OTWAY, D. The ANSA binding model. Tech. Rep. APM.1392.01, ANSA, APM, Jan. 1995.
Also http://www.ansa.co.uk/phase3-doc-root/approved/APM.1392.01.html.

[184] ÖZSU, M. T., DAYAL, U., AND VALDURIEZ, P. An introduction to distributed object man-
agement. In Distributed Object Management (1994), M. T. Özsu and P. Dayal, U. Valduriez,
Eds., Morgan Kaufmann Publishers, pp. 1 – 25.

[185] PARHAR, A., AND RUMSEWICZ, M. A preliminary investigation of performance issues as-
sociated with Freephone service in a TINA consistent network. In TINA’95: International
Telecommunications and Distributed Computing – from Concepts to Reality (Melbourne, Aus-
tralia, Feb. 1995), pp. 431 – 444.

[186] PARNAS, D. On the Criteria to be used in Decomposing Systems into Modules. Communic-
ations of the ACM 15 (Dec. 1972), 1053 – 1058.

[187] PIERCE, B. C. Bounded quantificaiton is undecidable. Information and Computation 112, 1
(July 1994), 131 – 165.

[188] PLUMMER, D. The Ethernet address resolution protocol. Tech. rep., Internet Engineering
Task Force, Nov. 1982. RFC-826.

[189] POPESCU-ZELETIN, R., TSCHAMMER, V., AND TSCHICHHOLZ, M. ’Y’ Distributed Applic-
ation Platform. Computer Communication 13, 6 (1991), 366 – 375.

[190] POPIEN, C., SCHÜRMANN, G., AND WEISS, K.-H. Verteilte Verarbeitung in Offenen Systemen:
das ODP-referenzenmodell, vol. 1 of Thomson’s Aktuelle Tutorien. Thomson Publishing, 1994.
In German.

[191] PRATTEN, A. W., HONG, J. W., BAUER, M. A., BENNETT, J. M., AND LUTFIYYA, H. A
Resource Management System Based on the ODP Trader Concepts and X.500. In The Fourth
International Symposium on Integrated Network Management (Santa Barbara, USA, May 1995),
pp. 118 – 130.

[192] PRATTEN, A. W., HONG, J. W., BENNETT, J. M., BAUER, M. A., AND LUTFIYYA, H. Design
and Implementation of a Trader-Based Resource Management System. In The 1994 CAS
Conference (Toronto, Canada, Oct. 1994), pp. 130 – 141.

[193] PRESSMAN, R. S. Software Engineering – A Practioner’s Approach, 3rd ed. McGraw-Hill, 1992.
[194] PUDER, A., MATKWITZ, S., GUDERMANN, F., AND GEIHS, K. AI-based Trading in Open

Distributed Environments. In The Third International Conference on Open Distributed Pro-
cessing – Experiences with distributed environments (Brisbane, Australia, Feb. 1995), K. Ray-
mond and L. Armstrong, Eds., Chapmann & Hall, pp. 157 – 170.

228 REFERENCES

[195] RASHID, R., JULIN, D., ORR, D., SANZI, R., BARON, R., FORIN, A., GOLUB, D., AND

JONES, M. Mach: A System Software Kernel. In The 34th Computer Society International
Conference COMPCON 89 (Feb. 1989).

[196] RATCLIFF, J. Pattern Matching by Gestalt. Doctor Dobb’s Journal, 181 (1988).
[197] RAYMOND, K. Reference Model of Open Distributed Processing (RM-ODP): Introduction.

In The Third International Conference on Open Distributed Processing – Experiences with distrib-
uted environments (Brisbane, Australia, 1995), K. Raymond and L. Armstrong, Eds., Chap-
mann & Hall, pp. 3 – 14.

[198] REES, O. The ANSA Computational Model. Technical Report APM.1001.01, APM, Jan.
1995.

[199] REES, O., EDWARDS, N., MADSEN, M., BEASLEY, M., AND MCCLENAGHAN, A. A Web of
Distributed Objects. In Fourth International World Wide Web Conference (Boston, Dec. 1995).

[200] RICHARDSON, J., AND SCHWARZ, P. Aspects: Extending Objects to Support Multiple Inde-
pendent Roles. In The 1991 ACM SIGMOD Conference (Denver CO, May 1991), pp. 298 – 307.

[201] RITCHIE, D., AND THOMPSON, K. The UNIX Time Sharing System. Bell Systems Technical
Journal 57, 6 (July 1978).

[202] RUDIN, S. Templates, types and classes in open distributed processing. British Telecom
Technology Journal 11, 3.

[203] RUMBAUGH, J., BLAHA, M., PREMERLANI, W., EDDY, F., AND LORENSEN, W. Object-
Oriented Modeling and Design. Prentice Hall, 1991.

[204] RYMER, J. R. The Muddle in the Middle. Byte (Apr. 1996).
[205] SALAMON, A. DNS Resources Directory, 1996. http://www.dns.net/dnsrd/.
[206] SCHWARTZ, M. F. Resource Discovery in the Global Internet. Tech. rep., Department of

Computer Science, University of Colorado, Boulder, Nov. 1991. CU-CS-555-91.
[207] SHILLING, J., AND SWEENEY, P. Three steps to views: Extending the object-oriented

paradigm. In Conference on Object-Oriented Programming: Systems, Languages, and Applica-
tions (New Orleans, Oct. 1989), pp. 353 – 361.

[208] SINNOTT, R. An Architecture Based Approach to Specifying Distributed Systmes in LOTOS and
Z. PhD thesis, University of Stirling, 1997.

[209] SLOMAN, M., MAGEE, J., TWIDLE, K., AND KRAMER, J. An Architecture for Managing
Distributed Systems. In Fourth IEEE Workshop on Future Trends of Distributed Computing
Systems (Lisbon, Portugal, Sept. 1993), IEEE Computer Society Press, pp. 40 – 46.

[210] SOLEY, R. Overview of OMG. In The Third International Conference on Open Distributed Pro-
cessing – Experiences with distributed environments (Brisbane, Australia, Feb. 1995). Tutorial.

[211] SOLEY, R., AND STONE, C. M., Eds. Object Management Architecture Guide. John Wiley &
Sons, Inc., June 1995. Revision 3.0.

[212] SPECTOR, A. Z., AND KAZAR, M. L. Wide Area Field Service and the AFS Experimental
System. Unix review 7, 3 (Mar. 1989).

[213] SPEIRS-BRIDGE, A., RAMESH, S., ROSSITER, P., MEEHAN, A., MUGDAN, C., AND SILMAN,
J. MSP – Practical Experiences in the Application of TINA. In TINA’95: International Tele-
communications and Distributed Computing – from Concepts to Reality (Melbourne, Australia,
Feb. 1995), pp. 685 – 702.

[214] SUN MICROSYSTEMS, INC. RPC: Remote Procedure Call Protocol specification: Version 2, 1988.
RFC1057.

REFERENCES 229

[215] SUN MICROSYSTEMS, INC. NFS: Network File System Protocol specification: Version 2.
Tech. rep., Internet Engineering Task Force, 1989. RFC1094.

[216] SUN MICROSYSTEMS, INC. Solaris 2.5 System Administration Guide, 1995.
[217] SUN MICROSYSTEMS, INC. Remote Method Invocation Specification, Dec. 1996.

http://java.sun.com/products/JDK/1.1/docs/guide/rmi/spec/rmiTOC.doc.html.
[218] SVOBODOVA, L. File Servers for network-based Distributed Systems. ACM Computing

Surveys 16, 4 (1984), 353 – 398.
[219] SYCARA, K., DECKER, K., AND WILLIAMSON, M. Matchmaking and Brokering. In Second

International Conference on Multi-Agent Systems (ICMAS-96) (Dec. 1996).
[220] TANENBAUM, A. S. Modern Operating Systems. Prentice Hall, 1992.
[221] TANENBAUM, A. S. Distributed Operating Systems. Prentice Hall, 1995.
[222] TANENBAUM, A. S., AND VAN RENESSE, R. Distributed Operating Systems. ACM Comput-

ing Surveys 17, 4 (Dec. 1985), 419 – 470.
[223] TANENBAUM, A. S., VAN RENESSE, R., VAN STAVEREN, H., SHARP, G. J., MULLENDER,

S. J., JANSEN, A. J., AND VAN ROSSUM, G. Experiences with the Amoeba Distributed
Operating System. Communications of the ACM 33, 12 (Dec. 1990), 46 – 63.

[224] TELECOMMUNICATIONS INFORMATION NETWORKING ARCHITECTURE CONSORITUM

(TINA-C). Engineering Modelling Concepts (DPE Architecture), Dec. 1994. Document TB-
NS.005-2.0-94. Also http://www.tinac.com/95/dpe/emc94-public.ps.

[225] TELECOMMUNICATIONS INFORMATION NETWORKING ARCHITECTURE CONSORITUM

(TINA-C). Engineering Modelling Concepts (DPE Kernel Specifications), Dec. 1994.
[226] TELECOMMUNICATIONS INFORMATION NETWORKING ARCHITECTURE CONSORITUM

(TINA-C). TINA Management Architecture, 1994. TB_GN.010_2.0_94.
[227] TELECOMMUNICATIONS INFORMATION NETWORKING ARCHITECTURE CONSORITUM

(TINA-C). TINA Network Resource Information Model Specification, 1994. TB_LR.011_2.0_94.
[228] TELECOMMUNICATIONS INFORMATION NETWORKING ARCHITECTURE CONSORITUM

(TINA-C). Computational Modelling Concepts, Feb. 1995. Document TB-A2.HC.012-1.2-94.
Also Also http://www.tinac.com/95/dpe/cmc94-public.ps.

[229] TELECOMMUNICATIONS INFORMATION NETWORKING ARCHITECTURE CONSORITUM

(TINA-C). Deployment Scenarios for Interworking, Feb. 1995.
[230] TELECOMMUNICATIONS INFORMATION NETWORKING ARCHITECTURE CONSORITUM

(TINA-C). Domain types and basic Reference Points in TINA, May 1995.
[231] TELECOMMUNICATIONS INFORMATION NETWORKING ARCHITECTURE CONSORITUM

(TINA-C). Overall concepts and principles of TINA, Feb. 1995. Document TB-MDC.018-1.0-94.
Also http://www.tinac.com/95/overall/public/Overall/overall.ps.

[232] TELECOMMUNICATIONS INFORMATION NETWORKING ARCHITECTURE CON-
SORITUM (TINA-C). Requirements upon TINA-C architecture, Feb. 1995. Also
http://www.tinac.com/95/overall/public/Requirement/requirements.ps.

[233] TELECOMMUNICATIONS INFORMATION NETWORKING ARCHITECTURE CONSORITUM

(TINA-C). TINA object definition language manual. Version 2.3, July 1996. Document
TR_NM.002_2.2_96. Also http://www.tinac.com/96/odl96_public.ps.

[234] TENENBAUM, J. M., CHOWDHRY, T. S., AND HUGHES, K. Eco System: An Internet Com-
merce Architecture. IEEE Computer (May 1997), 48 – 55.

[235] TIENARI, M. Avoin hajautettu tietojenkäsittely (Open distributed computing). Department of
Computer Science, University of Helsinki, 1997. Seminar. In Finnish.

230 REFERENCES

[236] TIETOVIIKKO. Klemmari pysäytti junat (Paperclip stops trains). Tietoviikko, 14 (Apr. 1997),
3.

[237] TIETOVIIKKO. Nesteestä ja Meritasta tehtiin pornopalveluja: Hyökkäys nimipalvelimeen
sotki yhtiöiden kotisivut pornokuvilla (Attack to name server replaced the contents of
Nokia and Merita WWW-pages with pornographical material). Tietoviikko, 33 (Oct. 1997),
1, 5.

[238] TORVALDS, L. Linux: a Portable Operating System. Master’s thesis, Department of Com-
puter Science, University of Helsinki, Jan. 1997. Report C-1997-12.

[239] TSCHAMMER, V., HERZOG, H., AGHOUTANE, N., AND ERCAN, G. Implementing the
OMG Trading Object Service – the TOI Product. In IFIP/IEEE International Conference on
Open Distributed Processing and Distributed Platforms (Toronto, Canada, May 1997), J. Rolia,
J. Slonim, and J. Botsford, Eds., Chapmann & Hall, pp. 303 – 313.

[240] TSCHICHHOLZ, M., TSCHAMMER, V., AND DITTRICH, A. Integrated Approach to Open
Distributed Management. Computer Communications 19, 1 (Jan. 1996), 76 – 87.

[241] VAN HALTEREN, A., LEYDEKKERS, P., AND KORTE, H. Specification and Realisation of
Stream interfaces for the TINA-DPE. In TINA’95: Integrating Telecommunications and Distrib-
uted Computing – from Concepts to Reality (Melbourne, Australia, Feb. 1995), pp. 299 – 313.

[242] VAN LINDEN, R. An Overview of ANSA. Tech. Rep. APM.1000.01, APM, July 1993.
[243] VAN LINDEN, R. The ANSA Naming Model. Tech. Rep. APM.1003.01, ANSA, APM, July

1993. Also http://www.ansa.co.uk/phase3-doc-root/approved/APM.1003.01.html.
[244] VENETJOKI, T. Meklareiden yhteistoiminta ja sen toteutus DRYAD-projektissa (Coopera-

tion of traders in DRYAD). Master’s thesis, University of Helsinki, Department of Com-
puter Science, Apr. 1994. C-1994-25. In Finnish.

[245] VIDMAN, K. Kuorman hajauttamisen liittäminen meklariin ja meklarin tietopalvelija
hajautetussa ympäristössä (Load sharing and trading). Master’s thesis, University of Hel-
sinki, Department of Computer Science, June 1994. C-1995-55. In Finnish.

[246] VOGEL, A., BEARMAN, M., AND BEITZ, A. Enabling Interworking of Traders. In The Third
International Conference on Open Distributed Processing – Experiences with distributed environ-
ments (Brisbane, Australia, Feb. 1995), K. Raymond and L. Armstrong, Eds., Chapmann &
Hall, pp. 185 – 196.

[247] VOGEL, A., KERHERVÉ, B., VON BOCHMANN, G., AND GECSEI, J. Distributed Multimedia
Application and Quality of Service – A Survey. IEEE Multimedia 2, 2 (Summer 1995), 10 – 19.

[248] WAUGH, A., AND BEARMAN, M. Designing an ODP Trader Implementation using X.500. In
The Third International Conference on Open Distributed Processing – Experiences with distributed
environments (Brisbane, Australia, 1995), K. Raymond and L. Armstrong, Eds., Chapmann
& Hall, pp. 133 – 144.

[249] WEGNER, P. Why Integration is more powerful than Algorithms. Communications of the
ACM 40, 5 (May 1997), 81 – 91.

[250] WESSELS, D. ICP and the Squid Web Cache. Tech. rep., National Laboratory for Applied
Network Research, Aug. 1997. http://www.nlanr.net/~wessels/Papers/.

[251] WIEDERHOLD, G., WEGNER, P., AND CERI, S. Towards Megaprogramming. Communica-
tions of the ACM 33, 11 (Nov. 1992), 89 – 99.

[252] WOLFF, T., AND LÖHR, K.-P. Transparently programming heterogeneous distributed sys-
tems. In IFIP/IEEE International Conference on Distributed Platforms (Dresden, Germany, Feb.
1996), Chapman & Hall, pp. 399 – 411.

REFERENCES 231

[253] WOLISZ, A., AND TSCHAMMER, V. Service Provider Selection in an Open Services Envir-
onment. In Second IEEE Workshop on Future Trends of Distributed Computing Systems (Cairo,
Egypt, 1990), pp. 229 – 235.

[254] WOLISZ, A., AND TSCHAMMER, V. Dynamic Binding of Service Users and Service Pro-
viders in an Open Services Environment. In International Computer Networks Conference
(Wroclaw, Poland, June 1991), pp. 91 – 105.

[255] WOLISZ, A., AND TSCHAMMER, V. Performance aspects of trading in open distributed
systems. Computer Communications 16, 5 (May 1993), 277 – 287.

[256] X3H7. X3H7 Object Model Features Matrix. GTE Laboratories Incorporated, Feb. 1995.
[257] YANG, Z., AND VOGEL, A. Achieving Interoperability between CORBA and DCE Applica-

tions Using Bridges. In IFIP/IEEE International Conference on Distributed Platforms (Dresden,
Germany, Feb. 1996), Chapman & Hall, pp. 144 – 155.

[258] YATES, M., TAKITA, W., DEMOUDEM, L., JANSSON, R., AND MULDER, H. TINA Busi-
ness Model and Reference Points. Telecommunications Information Networking Architecture
Consoritum (TINA-C), May 1997. Version 4.0. Also http://www.tinac.com/97/bm_rp.ps.

[259] YRJÄNÄINEN, V. M. Portieri DRYAD-meklarin toteutuksessa (Using Concierge in the rep-
lication of the DRYAD trader). Master’s thesis, University of Helsinki, Department of Com-
puter Science, Apr. 1994. C-1994-22, In Finnish.

[260] ZIMMERMANN, P. The Official PGP User’s Guide. MIT Press, 1995.

APPENDICIES

Appendix A

English-Finnish ODP Dictionary

A
access transparency saantituntumattomuus
action toiminto, tapahtuma
activity toiminnallisuus, aktiviteetti
announcement ilmoitus
arbitration sovittelu
attribute attribuutti

B
basic engineering object toteutusobjekti
behaviour käyttäytyminen
binder sidosobjekti
binding sidos, sitominen

C
capsule kapseli
causality information suuntatieto
channel kanava
class luokka
client asiakas
cluster klusteri, rypäs
cluster manager klusterin hallitsija
compatibility (behavioural
compatibility)

yhteensopivuus

communication kommunikointi, viestintä

2 ENGLISH-FINNISH ODP DICTIONARY

C
community yhteisö
compliance to a standard standardinmukaisuus
composite object rakenteinen objekti
computational viewpoint toimintonäkökulma
compound binding koosteinen sidonta
configuration konfiguraatio
conformance yhteensopivuus
contract sopimus
contractual context (yhteinen) sopimustila
cooperation yhteistoiminta (yleiskielen käsite), vrt.

interworking, interoperation
creation luonti

D
data data, informaation esitysmuoto
deactivation passivointi
decomposition osiin jakaminen, yksityiskohtaisemman

rakenteen esittäminen
derived class johdettu luokka
distribution transparency hajautustuntumattomuus
domain alue, hallintoalue
dynamic schema dynaaminen skeema

E
enabled behaviour mahdollistettu käyttäytyminen
engineering viewpoint toteutusnäkökulma, rakennenäkökulma
engineering interface sidospiste
enterprise viewpoint tavoitenäkökulma
entity entiteetti, (reaalimaailman) olio
environment ympäristö
environment contract ympäristösopimus
epoch (ajan)jakso, vaihe
error virhe
establishing behaviour aloitus
event (erityis)tapahtuma
export (palvelun) tarjoaminen
exporter tarjoaja

ENGLISH-FINNISH ODP DICTIONARY 3

F
failure epäonnistuminen, vikaantuminen,

sopimusrikko
failure transparency vikatuntumattomuus
fault häiriö
federation federaatio
flow virta

I
identifier (yksikäsitteinen) tunniste
import palvelukysely
importer (palvelun) kysyjä
information informaatio, data-esityksen semanttinen

merkitys
information viewpoint informaationäkökulma
instance instanssi, ilmentymä
instantiation instantiointi
interaction vuorovaikutus
interceptor interseptori, muunnin, valvontaobjekti
interchange reference point siirrettävyyden testauspiste
interface rajapinta
interface reference rajapintaviite
interface signature rajapinnan rakenne
internal action yksityinen tapahtuma, sisäinen

tapahtuma
interoperation keskinäistoiminta (termi, vrt.

cooperation, interworking)
interrogation kysely
interworking keskinäinen yhteistyö (termi)
interworking reference point kommunikoinnin testauspiste
introduction esittely
invariant schema invariantti skeema
invocation käynnistys, aloitus

L
liaison suhde
location transparency sijoitustuntumattomuus,

paikkatuntumattomuus

4 ENGLISH-FINNISH ODP DICTIONARY

M
matching sovittaminen
migration transparency siirtymistuntumattomuus

N
name nimi (tunniste, jolta ei vaadita

yksikäsitteisyyttä)
name space nimijoukko
naming context nimentäkonteksti
node solmu, solmukone
notification tiedonanto
nucleus ydin

O
object objekti, olio
oblication velvoite
open distributed processing avoin hajautettu tietojenkäsittely
operation operaatio

P
perceptual reference point ulkoisten vaikutusten testauspiste
permission lupa
persistence jatkuvuus
persistence transparency keskeytystuntumattomuus
policy politiikka
portability siirrettävyys
primitive binding yksinkertainen sidonta
programmatic reference point ohjelmallinen testauspiste
prohibition kielto
property ominaisuus
proposition väittämä

Q

quality of service palvelun ominaisuus, palvelun laatu

ENGLISH-FINNISH ODP DICTIONARY 5

R
reactivation uudelleenaktivointi
reference point testauspiste
refinement yksityiskohtaisempi kuvaus, tarkennus
relation suhdejoukko, relaatio
relationship suhde
relocation transparency uudelleensijoitustuntumattomuus
replication transparency toisinnustuntumattomuus
role rooli

S
server palvelija, palvelun tuottaja
service palvelu
service offer palvelutarjous
signal signaali
static schema staattinen skeema
stub töpö, tynkä
stream vuo
subclass aliluokka
subdomain osa-alue, osahallintoalue
subtype alityyppi
superclass yliluokka
supertype ylityyppi
system järjestelmä

6 ENGLISH-FINNISH ODP DICTIONARY

T
target concept ylikäsite
technology viewpoint teknologianäkökulma,

tekniikkanäkökulma
template kaavain
template class kaavainluokka
template type kaavaintyyppi
term termi
terminating behaviour lopetus, lopetus-
termination lopetus, päätös
thread säie
trace polku
trader meklari
trading meklaus
transaction transparency transaktiotuntumattomuus
type tyyppi
type definition tyyppimäärittely (sisältää

tyyppikuvauksia)
type description tyyppikuvaus
type repository tyyppitietovarasto
type repository function tyyppienhallintapalvelu

U
unbinding sidonnan purku

V
viewpoint näkökulma
viewpoint language näkökulmakieli
withdraw palvelutarjouksen poistaminen

ENGLISH-FINNISH ODP DICTIONARY 7

ISSN 1238-8645
ISBN 941-45-8223-3

Helsinki 1998
Helsinki University Printing House

	Abstract
	Acknowledgements
	Contents
	Part I: INTRODUCTION
	1 Introduction
	1.1 World-wide information services
	1.2 Federated computing
	1.3 Overview of the dissertation
	1.4 Research history

	Part II: OPEN DISTRIBUTED COMPUTING ENVIRONMENTS
	2 Design of non-centralised systems
	2.1 Overview
	2.2 Networked systems
	2.3 Traditional distributed systems
	2.4 Federated systems

	3 The ODP reference model
	3.1 Overview
	3.2 The ODP concepts
	3.3 ODP viewpoints
	3.4 ODP infrastructure

	4 Related work: Some distributed platform architectures
	4.1 Relationship of open architectures
	4.2 TINA
	4.3 ANSA
	4.4 CORBA
	4.5 Comparison

	Part III: TRADING
	5 Trading mechanism
	5.1 Characteristics of trading
	5.2 Trading concepts
	5.3 Cooperation of traders

	6 Support for trading mechanism
	6.1 Naming
	6.2 Type repository services
	6.3 Storage
	6.4 Operation invocation
	6.5 Security and trading service availability

	7 Realising trading functionality
	7.1 Interworking model
	7.2 Federated model
	7.3 Channels between traders
	7.4 Performance considerations
	7.5 Global trading system organisation

	8 Discussion on some traders
	8.1 ODP trader
	8.2 DRYAD trader
	8.3 Other traders
	8.4 Comparison and conclusions

	Part IV: EXPLOITING TRADING SERVICES
	9 Federation transparent interoperation
	9.1 System model
	9.2 Binding liaison representation
	9.3 Requirements for channels
	9.4 Federated binding process
	9.5 Discussion on some binding models
	9.6 Conclusion

	10 Trading at open markets
	10.1 Electronic commerce framework
	10.2 Evolution aspects
	10.3 Realisation strategy
	10.4 Problems in EC framework evolution
	10.5 Open solution strategies
	10.6 Conclusion

	Part V: CONCLUSION
	11 Conclusions and consequences
	12 Further prospects

	References
	English-Finnish ODP Dictionary

