
Hierarchical Multilabel Classification Trees for

Gene Function Prediction (Extended Abstract)

Hendrik Blockeel1, Leander Schietgat1, Jan Struyf1,4,
Amanda Clare2, Sašo Džeroski3

1 Dept. of Computer Science, Katholieke Universiteit Leuven,
Celestijnenlaan 200A, 3001 Leuven, Belgium

2 Dept. of Computer Science, University of Wales, Aberystwyth,
SY23 3DB, UK

3 Dept. of Knowledge Technologies, Jožef Stefan Institute,
Jamova 39, 1000 Ljubljana, Slovenia

4 Dept. of Computer Science, University of Wisconsin,
1210 West Dayton, Madison, WI 53706, USA

Abstract

Prediction of gene function is a so-called hierarchical multilabel clas-
sification (HMC) task: a single instance can be labelled with multiple
classes rather than just one (i.e., a gene can have multiple functions), and
these classes are organized in a hierarchy. Many machine learning meth-
ods focus on learning predictive models with a single target variable. One
can then learn to predict all classes separately and combine the predic-
tions afterwards. An alternative is to upgrade these methods towards the
HMC context. In this paper we explore this alternative for classification
trees. A comparison of learning HMC trees with learning normal classi-
fication trees shows that the former has clear advantages with respect to
accuracy, efficiency, and interpretability. It seems worth investigating to
what extent these results carry over to other machine learning methods.

1 Introduction

Gene function prediction is an example of what is known in machine learning as
hierarchical multilabel classification (HMC): in contrast to normal classification,
where a function is learned that maps a data instance to one class (from a pre-
defined set of classes), a function needs to be learned that maps a data instance
to multiple classes (a subset of the entire class set). In addition, the classes
are organized in a hierarchy, imposing the constraint that when an instance is
assigned to some class it should also be assigned to all its superclasses.

1



HMC has received some attention in the machine learning community the
last few years, but still much less than normal classification, and mostly in
the area of text classification [10]. Given that gene function prediction is also
a HMC task, it seems natural to try to use existing HMC methods for gene
function prediction. Only a few authors have taken such an approach [2, 6, 1].
Some of them [2, 6] propose to use classification trees, which have the advantage
of yielding interpretable rules; this is the kind of approach we will study here.
Standard tree learners such as CART [4] or C4.5 [9] assume a single target
variable, but adaptations have been proposed that can handle multiple target
variables [3, 6]. However, it has not yet been studied how these HMC-tree
learners perform when compared with the straightforward approach of learning
a separate tree for each class.

In this work we compare the performance of a single HMC tree, predicting
the membership of 250 classes together, to the performance of a set of 250 single-
classification (SC) trees, each predicting the membership of one single class.
The results are surprising: learning a single HMC tree turns out to outperform
learning a 250 SC trees on all dimensions: efficiency, interpretability, but also
(and this is less expected) accuracy. We conjecture that the latter happens
because different classes are correlated, thus they carry information on each
other, improving the signal-to-noise ratio in the data.

2 Methods

We use Clus, a state-of-the-art decision tree learner based on the principles in [3]
that can also learn HMC trees. A detailed algorithmic description of Clus can
be obtained from the authors upon request; here we explain the basic principles
of the method.

In the normal classification setting, decision tree learners work as follows.
The algorithm considers the whole training set and looks for a “maximally
informative” attribute in the example descriptions. The training set is then
partitioned according to the values of this attribute. A “maximally informative”
attribute means that the created subsets are on average maximally homogeneous
with respect to the classes of the examples they contain. For a subset that is
not entirely homogeneous, the same procedure is repeated: the most informative
attribute for the examples within this subset is sought, the subset is partitioned
according to it, etc. This continues until each subset contains examples of only
one class, or some other stopping criterion is fulfilled (e.g., further partitioning
will be statistically unreliable). The hierarchy of subsets thus created, together
with the attributes defining these subsets, is a decision tree. The tree can be
used for classification by sorting an instance into a leaf of the tree based on
the attributes tested by the tree, and assigning to it the class that occurs most
frequently in that leaf.

In [3] it is explained how a similar procedure can be used when there are
multiple target variables. Informativeness is then measured as reduction of
variance, where variance is defined as the mean squared distance between an

2



1 2

2/1 2/2

3 1 (1) 2 (2)

2/1 (3) 2/2 (4)

3 (5)

(a) (b)

vi = [1,
(1)

1,
(2)

0,
(3)

1,
(4)

0
(5)

]

Figure 1: (a) A toy hierarchy. Class label names reflect the position in the hier-
archy, e.g., ‘2/1’ is a subclass of ‘2’. (b) The set of classes {1,2,2/2}, indicated
in bold in the hierarchy, and represented as a vector.

example and the mean of the subset it belongs to, and the notion of “distance”
is left to be defined by the user. In [2] it is discussed how to instantiate this pro-
cedure for HMC. The multiple target variables then indicate class membership
(variable vi is 1 if an instance belongs to class ci and 0 otherwise; we call the
vector of all vi the class vector). Several distance measures can be used; we here
choose a weighted Euclidean distance between the class vectors, with the weight
decreasing exponentially with the depth of the class in the hierarchy (reflecting
that errors higher up in the hierarchy are considered more costly). Consider
for example the class hierarchy shown in Fig. 1, and two examples (x1, S1) and
(x2, S2) with S1 = {1, 2, 2/2} and S2 = {2}. Using a vector representation with
consecutive components representing membership of class 1, 2, 2/1, 2/2 and 3,
in that order, d(x1, x2) = dEuclidean([1, 1, 0, 1, 0], [0, 1, 0, 0, 0]) =

√
w0 + w2

0, with
wi = w

depth(ci)
0 .

The heuristic is a first point of difference of Clus as compared to standard
tree learners. A second point is deciding, once an instance has been sorted into
a leaf, what classes to assign to it. The standard procedure is to assign the
class that is most frequent in a leaf, but in our case we may have to assign
multiple classes. It is then reasonable to predict that an instance belongs to
some class ci if the proportion of ci-examples in the leaf, call this pi, exceeds
some threshold ti. Clus does not fix ti in advance, but stores the proportions
pi in the trees that it learns, leaving the tresholds to be determined afterwards
(see also experiments).

Finally, Clus uses a stopping criterion inspired by that of normal tree learn-
ers: it uses a parameter mincases that specifies the minimal number of instances
that a leaf needs to contain, and a statistical F -test that checks whether the re-
duction of variance obtained with a split is “significant” at a certain significance
level (which is also a parameter of the system).

In the following, Clus-HMC refers to Clus used as a hierarchical multilabel
classification system, learning trees that predict all 250 classes at once with the
weighted Euclidean distance mentioned before. Clus-SC refers to the approach
of learning a single classification tree for each class separately; this version
reduces roughly to the CART decision tree learner.

3



1 METABOLISM
1/1 amino acid metabolism
1/2 nitrogen and sulfurmetabolism
...
2 ENERGY
2/1 glycolysis and gluconeogenesis
...

Figure 2: A small part of the hierarchical FunCat classification scheme.

3 Data and experimental setup

We use 12 datasets from http://www.aber.ac.uk/compsci/Research/bio/
dss/yeastdata/ [5]. The different datasets describe different aspects of the
genes in the genome of Saccharomyces cerevisiae. Five types of bioinformatic
data are considered: sequence statistics (D1), phenotype (D2), predicted sec-
ondary structure (D3), homology (D4), and expression as measured with mi-
croarray chips (D5 – D12). The biologists’ motivation for this is that different
sources of data should highlight different aspects of gene function.

The number of examples in each dataset ranges from 1592 to 3932, the
number of attributes from 27 to 47034. Each gene in the datasets is annotated
with one or more classes selected from the FunCat hierarchical classification
scheme from the Munich Information Center for Protein Sequences (MIPS) as
available on 4/24/2002. The hierarchy has 250 classes distributed over 4 levels.
A small part of it is shown in Fig. 2.

Each of the 12 datasets was split in 2/3 training data and 1/3 test data;
Clus-HMC and Clus-SC were trained on the training data and evaluated on
the test data. Both were used with default parameters except for a parameter
f (the significance level for the statistical F -test), which affects the size and
accuracy of the trees that are learned; f was optimized in both cases in exactly
the same way, using a validation set internal to the training set.

We compared the size of the trees, the time to learn them, and their pre-
dictive performance. The latter was evaluated using precision-recall curves [7],
as the classical accuracy measure is not very suitable for strongly skewed class
distributions. Precision is the probability that a positive prediction is correct,
and recall the probability that a positive instance is predicted positive. An
instance-class couple is (predicted) positive if the instance has (is predicted to
have) that class. We use a common threshold t for all classes. When decreas-
ing t from 1 to 0, an increasing number of instance-class couples is predicted,
yielding a curve in the precision-recall space. The higher this curve, the better
the predictive performance.

4 Results

Averaged over all 250 classes, the HMC curve was almost consistently above the
SC curve for all 12 datasets. Figure 3 shows some representative precision-recall
curves. Moreover, HMC trees contained on average 24 nodes, SC trees 33. This

4



Figure 3: Representative PR-curves for Clus-SC and Clus-HMC.

combination is particularly surprising: the model predicting 250 classes (a more
difficult task) is simpler and yet more accurate than models tuned specifically
for one class. Further investigation revealed that trying to predict all classes
together actually helps to avoid overfitting.

The following is an example of a rule returned by Clus-HMC:

IF Nitrogen_Depletion_8_h <= -2.74 AND Nitrogen_Depletion_2_h > -1.94 AND

1point5_mM_diamide_5_min > -0.03 AND 1M_sorbitol___45_min_ > -0.36 AND

37C_to_25C_shock___60_min > 1.28

THEN 40, 40/3, 5, 5/1

The rule identifies conditions when a gene has classes 40/3 and 5/1 (and
hence also their superclasses). This rule has a precision/recall of 0.97/0.15 for
class 40/3 and 0.94/0.37 for class 5/1.

Finally, learning a HMC tree was on average 37 times faster than learning
250 SC trees.

5 Conclusions and further work

Our experiments show that HMC trees are a useful tool for gene function pre-
diction. Compared to learning normal classification trees for each of the classes,
learning a HMC tree is much faster (and applying it as well), the resulting tree
is not bigger, the tree identifies the attributes relevant for all classes together
(instead of those relevant for one specific class), and its predictive performance
does not suffer.

We intend to continue this work with a comparison of our approach with
other HMC methods, which do not learn decision trees [10, 1] or use a different
approach to construct the trees [6]. We also plan to evaluate the method on other
datasets from functional genomics, and to map our data onto Gene Ontology [8]:
for the current data, GO provides thousands of classes on 19 levels. It will be
interesting to see how well the algorithm scales to this more advanced ontology.
Moreover, using a widely-known ontology will make it easier to compare the
results with other methods.

5



Acknowledgements

Hendrik Blockeel and Jan Struyf are post-doctoral fellows of the Fund for Scien-
tific Research of Flanders (FWO-Vlaanderen). Leander Schietgat is supported
by a PhD grant of the Institute for the Promotion of Innovation through Science
and Technology in Flanders (IWT-Vlaanderen). The authors thank Maurice
Bruynooghe for valuable suggestions.

References

[1] Zafer Barutcuoglu, Robert E. Schapire, and Olga G. Troyanskaya. Hierar-
chical multi-label prediction of gene function. Bioinformatics, 22(7):830–
836, 2006.

[2] H. Blockeel, M. Bruynooghe, S. Džeroski, J. Ramon, and J. Struyf. Hi-
erarchical multi-classification. In Proceedings of the ACM SIGKDD 2002
Workshop on Multi-Relational Data Mining (MRDM 2002), pages 21–35,
2002.

[3] H. Blockeel, L. De Raedt, and J. Ramon. Top-down induction of clustering
trees. In Proceedings of the 15th International Conference on Machine
Learning, pages 55–63, 1998.

[4] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification
and Regression Trees. Wadsworth, Belmont, 1984.

[5] A. Clare. Machine learning and data mining for yeast functional genomics.
PhD thesis, University of Wales, Aberystwyth, 2003.

[6] A. Clare and R. D. King. Predicting gene function in Saccharomyces cere-
visiae. Bioinformatics, 19(Suppl. 2):ii42–49, 2003.

[7] J. Davis and M. Goadrich. The relationship between precision-recall and
ROC curves. Technical report, University of Wisconsin, Madison, 2005.

[8] M. Ashburner et al. Gene ontology: tool for the unification of biology. The
Gene Ontology Consortium. Nature Genet., 25(1):25–29, 2000.

[9] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
series in Machine Learning. Morgan Kaufmann, 1993.

[10] J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor. Learning hi-
erarchical multi-category text classification models. In L. De Raedt and
S. Wrobel, editors, Proceedings of the 22nd International Conference on
Machine Learning, pages 744 – 751. ACM Press, 2005.

6


