
Completion of biological networks : the output

kernel trees approach

Pierre Geurts1,2, Nizar Touleimat1,3, Marie Dutreix3, and Florence
d’Alché-Buc1

1 IBISC FRE CNRS 2873 & Epigenomics Project, GENOPOLE, Evry, France
2 Dept. of EECS & CBIG/GIGA, University of Liège, Belgium

3 UMR 2027 CNRS-IC, Institut Curie, Orsay, France

Introduction

Elucidating biological networks appears nowadays as one of the most important
challenge in systems biology. Due to the availability of various sources of data,
machine learning has to play a major role regarding this issue, given its large
spectrum of tools ranging from generative models to concept learning methods.
In this work the focus is narrowed on the completion of biological interactions
networks for which some of the interactions between variables (usually genes
or proteins) are already known. Within this supervised framework, two related
approaches have emerged: supervised methods that implicitly learn the map-
ping between some descriptors of a protein and its position as a node within the
interactions graph [7, 6] and relational learning approaches concerned with the
learning of the local concept of interaction between two proteins [1]. The former
approaches provide a more global view of the problem, accounting for the spe-
cific nature of the output space using a graph-based kernel, whereas the latter
approaches do no take into account the dependency between interactions. In this
work, we have adopted the first supervised network inference framework intro-
ducing a new method based on a kernelization of the outputs of regression tree
based methods. This method recently introduced in [4] inherits several features
of trees such as interpretability, robustness to irrelevant variables, and input
scalability. Applied to the completion of a protein-protein interaction network,
it provides relevant insights on input data regarding their potential relationship
with the existence of interactions.

Supervised network completion

The problem of network completion has been introduced in [7] and subsequently
considered in [6] as the supervised network inference problem.

Let G = (V, E) be an undirected graph with vertices V and edges E ⊂ V ×V .
|V | = m is the number of nodes in the graph. We suppose that each vertex
vi, i = 1...m can be described by some features in some input space X , and we
denote by x(vi) = xi ∈ X this information. Only the knowledge of a subgraph
Gn of G is available during the training phase: without loosing generality, we
enumerate the nodes belonging to Vn as v1,, vn where n is the number of nodes

in the subgraph denoted by Gn = (Vn, En) with Vn ⊂ V and En = {(v, v′) ∈
E|v, v′ ∈ Vn}. The goal of supervised graph completion is then to determine
from the knowledge of Gn a function e(x(v), x(v′)) : V × V → {0, 1}, ideally
such that e(x(v), x(v′)) = 1 ⇔ (v, v′) ∈ E.

Our solution is based on the same kernel embedding of the graph as in [7]. We
first define a kernel k(v, v′) such that adjacent vertices lead to high values of k

and non-adjacent ones lead to smaller ones. The mapping φ of this kernel is thus
such that φ(v) is close to φ(v′) in H as soon as v and v′ are connected. Then,
the problem of graph completion is solved by finding an approximation of the
kernel from the known graph. A graph prediction is then obtained by connecting
those vertices that correspond to a kernel prediction above some threshold.

Output kernel trees

Output kernel trees (OK3, [4]) are a kernelization of multiple output regression
trees that allows this method to handle any structured output space over which
a kernel may be defined and, by extension, to learn a kernel as a function of an
input vector.

Multiple output regression trees are a straightforward extension of regression
trees [2] that allows them to handle vectorial outputs. The idea of (multiple out-
put) regression trees is to recursively split the learning sample with binary tests
based on the input variables, trying at each split to reduce as much as possible
the (empirical) variance of the output vector in the left and right subsamples of
learning cases corresponding to that split.

For simplicity, let us assume that the mapping φ projects all vertices into a
vector of IRl, and that we have actually access to a learning sample {(x(v1),φ(v1)),
. . ., (x(vn),φ(vn))}. Then, the idea is to apply multiple output regression trees on

this learning sample to get an approximation φ̂(x(v)) of the output feature vec-
tor φ(v) corresponding to a new vertex v described by its input vector x(v). The
kernel value between two new vertices is then approximated by the dot-product
of the predictions given by this model for the two vertices.

In this context, the score measure used to evaluate splits is written:

Sc(T, S) = varls−
Nl

N
varlsl

−
Nr

N
varlsr

with vars =
1

Ns

Ns∑

i=1

||φ(vi)−
1

Ns

Ns∑

i=1

φ(vi)||
2

(1)
where T is the split to evaluate, ls is the local learning sample of size N at
the node to split, lsl and lsr are its left and right successors of size Nl and Nr

respectively, and vars denotes the variance of the output vector in a subset s of
size Ns.

Once the tree is grown, each leaf L is labeled with a prediction φ̂L computed
as φ̂L = 1

NL

∑NL

i=1
φ(vi), where NL is the number of learning cases that reach this

leaf. From this tree, we want to make predictions about kernel values between
two new vertices v and v′ described by their input vectors x(v) and x(v′). If

x(v) (resp. x(v′)) reaches leaf L1 (resp. L2) that contains vertices {v1

1
, . . . , v1

NL1

}

(resp. {v2
1 , . . . , v

2

NL2

}), their inner product is approximated by:

k̂(v, v′) = 〈φ̂L1
, φ̂L2

〉 =
1

NL1
NL2

NL1∑

i=1

NL2∑

j=1

〈φ(v1

i), φ(v2

j)〉. (2)

Both variance (1) and kernel predictions (2) are written only in terms of dot
products and consequently in terms of kernel values only:

vars =
1

n

n∑

i=1

k(vi, vi) −
1

n2

n∑

i,j=1

k(vi, vj), (3)

k̂(v, v′) =
1

NL1
NL2

NL1∑

i=1

NL2∑

j=1

k(v1

i , v2

j). (4)

Using the kernel trick, we can thus build a tree, from kernel values only, that
implicitly try to find an approximation of the output feature vector as a function
of the input vector and then can be used to make kernel predictions. We call
this kernel formulation of the tree growing algorithm OK3, for output kernel
trees. By construction, this method shares several features of standard tree-
based methods, the most attractive ones being the interpretability of the model
and the ability of the method to rank the features. OK3 can also benefit from
tree-based ensemble methods. In our experiments, we built ensembles of OK3
with the extra-trees method proposed in [5].

Numerical experiments

We report here experiments concerning a Yeast protein-protein interaction (PPI)
network. Further details and results on an enzyme network may be found in [3].

The PPI network was taken from [6]4. It consists of 2438 high confidence
interactions that link 984 proteins. As the output kernel, we use the diffusion
kernel K = exp(−βL), where L is the Laplacian of the graph and β a parameter
that was fixed to 3.0. As input features, we combine the three sets of attributes
considered in [6], i.e. gene expression data (157 variables), phylogenetic profiles
(145 variables), localization data (23 variables), and yeast two hybrid (y2h)
network. To obtain features from this latter kind of (pairwise) data, we compute
the first 50 components obtained by applying kernel PCA on a diffusion kernel
computed on the network.

We estimate the accuracy of our method by ten-fold cross-validation, predict-
ing at each iteration all interactions that involve at least one protein from the
test fold and varying the kernel threshold to obtain ROC curves. Table 1 gathers
the average AUC values with different sets of variables. The last column reports

4 http://www.cbrc.jp/˜kato/faem/faem.html

Table 1. AUC results

Inputs OK3 Kern.

expr 0.851 0.776
phy 0.693 0.767
loc 0.725 0.788
y2h 0.790 0.612
All 0.910 0.939

Table 2. Variable ranking
Att. Imp.

1 loc - nucleolus 0.021
2 expr (Spell.) - elu 120 0.013
3 loc - cytoplasm 0.012
4 expr (Eisen) - sporulation ndt80 early 0.012
5 loc - nucleus 0.012
6 expr (Eisen) - sporulation 30m 0.011
7 expr (Eisen) - sporulation ndt80 middle 0.010
8 expr (Spell.) - alpha 14 0.010
9 expr (Spell.) - elu 150 0.010
10 loc - mitochondrion 0.009

the result obtained in [6] with the same protocol. The method in [6] exploits a
kernel on the inputs with an algorithm based on expectation-maximization that
automatically learns a weight for each data sources.

The results are quite good. The most important source of information is the
expression data followed by the y2h network, localization data, and phylogenetic
profiles. Combining all data sources allow to improve the AUC values with re-
spect to each data source separately. When integrating all data sources, we get
only slightly worse results than the method in [6]. We are doing a much better
use of the expression data and the y2h network while this latter method is better
in exploiting localization data and phylogenetic profiles.

One of the advantages of our tree-based approach is that it provides in-
terpretable results to some extent. First, like standard trees, OK3 provides a
partition of the learning sample into clusters, one for each tree leaf, where pro-
teins are as much as possible connected between each other and each cluster
is furthermore described by a rule based on the input variables (see [3] for an
illustration). Second, working in the original input space, the method allows to
rank the features according to their importance at predicting new edges. On this
problem, the top ten variables of the ranking obtained without the y2h data (see
Table 2) correspond exclusively to expression and localization features, confirm-
ing the ranking of the different data sources in Table 1.

Acknowledgments

Pierre Geurts is a postdoctoral researcher at the CNRS (France) and a scientific
research worker at the FNRS (Belgium). Florence d’Alché-Buc thanks Genopole
for funding her research activities in the context of an ATIGE funding.

References

1. A. Ben-Hur and W.S. Noble. Kernel methods for predicting protein-protein inter-
actions. Bioinformatics, 21 Suppl.1:i38–i46, 2005.

2. L. Breiman, J.H. Friedman, R.A. Olsen, and C.J. Stone. Classification and Regres-

sion Trees. Wadsworth International, 1984.

3. P. Geurts, N. Touleimat, M. Dutreix, and d’Alché Buc. Inferring biological networks
with output kernel trees. Technical report, University of Evry, IBISC, 2006.

4. P. Geurts, L. Wehenkel, and F. d’Alché Buc. Kernelizing the output of tree-based
methods. To appear in Proceedings of ICML, 2006.

5. Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees.
Machine Learning Journal, 36(1):3–42, 2006.

6. T. Kato, K. Tsuda, and A. Kiyoshi. Selective integration of multiple biological data
for supervised network inference. Bioinformatics, 21(10):2488–2495, 2005.

7. Y. Yamanishi and J.-P. Vert. Protein network inference from multiple genomic data:
a supervised approach. Bioinformatics, 20:i363–i370, 2004.

