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1 Introduction

Various emerging quantitative measurement technologies are producing genome,
transcriptome and proteome-wide data collections which has motivated the de-
velopment of data integration methods within an inferential framework. It has
been demonstrated that for certain prediction tasks within computational biol-
ogy synergistic improvements in performance can be obtained via integration of
a number of (possibly heterogeneous) data sources. In [1] six different parameter
representations of proteins were employed for fold recognition of proteins using
Support Vector Machines (SVM). It was observed that certain dataset combina-
tions provided increased accuracy over the use of any single datset. Likewise in
[2] a comprehensive experimental study observed improvements in SVM based
gene function prediction when data from both microarray expression and phy-
logentic profiles were combined. More recently protein network inference was
shown to be improved when various genomic data sources were integrated [3]. In
[4] it was shown that superior prediction accuracy of protein-protein interactions
was obtainable when a number of diverse data types were combined in an SVM.

Whilst all of these papers exploited the kernel method [5] in providing a
means of data fusion within SVM based classifiers it was only in [6] that a
means of estimating an optimal linear combination of the kernel functions was
presented using semi-definite programming. However, the methods developed in
[6] are based on binary SVM’s, whilst arguably the majority of classification
problems within computational biology are inherently multiclass. It is unclear
how this approach could be extended to discrimination over multiple-classes. In
addition the SVM is non-probabilistic and whilst post hoc methods for obtaining
predictive probabilities are available [7] these are not without problems such as
overfitting. On the other hand Gaussian Process (GP) methods [8] for classifica-
tion provide a very natural way to both integrate and infer optimal combinations
of multiple heterogeneous datasets via composite covariance functions within the
Bayesian framework. In this paper it is shown that GP’s can be employed on
large scale bioinformatics problems where there are multiple data sources and
an example of protein fold prediction [1] is provided.
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2 Data Fusion with Gaussian Process Priors

Let us denote each of J independent (possibly heterogeneous) feature represen-
tations, Fj(X), of an object X by xj ∀ j = 1 · · · J . For each object there is a cor-
responding polychotomous response target variable, t, so to model this reponse
we assume an additive generalised multinomial probit regression model. Each
distinct, and possibly heterogeneous, feature representation of X , Fj(X) = xj ,
is nonlinearly transformed such that fj(xj) : Fj 7→ R and a linear model is
employed in this new space such that the overall nonlinear transformation is
f(X) =

∑J
j=1 βjfj(xj).

2.1 Composite Covariance Functions

Rather than specifying a functional form for each of the functions fj(xj) we
assume that each nonlinear function corresponds to a Gaussian process (GP)
such that fj(xj) ∼ GP (θj) where GP (θj) corresponds to a Gaussian process
with mean and covariance functions mj(xj) and Cj(xj ,x

′
j ; θj) where θj de-

notes a set of hyperparameters associated with the covariance function. Due
to the assumed independence of the feature representations the overall nonlin-
ear function will also be a realisation of a Gaussian process defined as f(X) ∼
GP (θ1 · · ·θJ , β1 · · ·βJ ) where now the overall mean and covariance functions

follow as
∑J

j=1 βjmj(xj) and
∑J

j=1 β2
j Cj(xj ,x

′
j ; θj).

For target response values, t ∈ {1 · · ·K} (i.e. a multiclass setting) and fur-
ther assuming zero-mean GP functions then for N object samples, X1 · · ·XN ,
each defined by the J feature representations, x1

j · · ·x
N
j , denoted by Xj , and

associated class specific response fk = [fk(X1) · · · fk(XN )]T we have the overall
GP prior as a multivariate Normal such that

fk | Xj=1···J , θ1k, · · ·θJ k, α1k · · ·αJ k ∼ Nfk

(

0,
∑

j
αjkCjk(θjk)

)

where we employ αjk to denote the positive random variables β2
jk and each

Cjk(θjk) is an N × N matrix with elements Cj(x
m
j ,xn

j ; θjk).
A GP functional prior, over all possible responses (classes), is now available

where possibly heterogeneous data sources are integrated via the composite co-
variance function. It is then, in principle, a straightforward matter to perform
Bayesian inference with this model and no further recourse to ad hoc binary
classifier combination methods or ancillary optimisations to obtain the data
combination weights is required.

2.2 Bayesian Inference

The inference methods detailed in [9] are adopted where the auxiliary variables
ynk = fk(Xn) + εnk, εnk ∼ N (0, 1) are introduced. The N × 1 dimensional
vector of target class values associated with each Xn is given as t where each
element tn ∈ {1, · · · , K}. The N ×K matrix of GP random variables fk(Xn) is



denoted by F. We represent the N ×1 dimensional columns of F by F·,k and the
corresponding K×1 dimensional vectors, Fn,·, which are formed by the indexed
rows of F . The N × K matrix of auxiliary variables ynk is represented as Y,
where the N×1 dimensional columns are denoted by Y·,k and the corresponding
K×1 dimensional rows as Yn,· . The multinomial probit likelihood [9] is adopted
which follows as

tn = j if ynj = max
1≤k≤K

{ynk}

and this has the effect of dividing R
K into K non-overlapping K-dimensional

cones Ck = {y : yk > yi, k 6= i} where R
K = ∪kCk and so each P (tn = i|Yn,·)

can be represented as δ(yni > ynk ∀ k 6= i). Independent Gamma priors, with
parameters ϕk, are placed on each αkj and the individual components of θjk (de-
note Θk = {θjk}j=1···J ), so this defines the full model likelihood and associated
priors.

2.3 MCMC Procedure

Samples from the full posterior P (Y,F,Θ1···K , α1···K , ϕ1···K |X1···N , t, a,b) (where
a & b are hyper-parameters associated with the gamma priors) can be obtained
from the following Metropolis-within-Blocked-Gibbs Sampling scheme indexing
over all n = 1 · · ·N and k = 1 · · ·K.

Y
(i+1)
n,· |F

(i)
n,·, tn ∼ T N (F

(i)
n,·, I, tn)

F
(i+1)
·,k |Y

(i+1)
·,k ,Θ

(i)
k , α

(i)
k , X1,··· ,N ∼ N (Σ

(i)
k Y

(i+1)
·,k ,Σ

(i)
k )

Θ
(i+1)
1 , α

(i+1)
1 |F

(i+1)
·,1 , ϕ

(i)
1 , X1,··· ,N ∼ P (Θ

(i+1)
k , α

(i+1)
k )

ϕ
(i+1)
k |Θ

(i+1)
k , α

(i+1)
k , ak, bk ∼ P (ϕ

(i+1)
k )

where T N (Fn,·, I, tn) denotes a conic truncation of a multivariate Gaussian. An
accept-reject strategy can be employed in sampling from the conic truncated
Gaussian however this will very quickly become inefficient for problems with
moderately large numbers of classes and as such a further Gibbs sampling scheme
may be required.

Each Σ
(i)
k = C

(i)
k (I + C

(i)
k )−1 and C

(i)
k =

∑

j=1 α
(i)
jk Cjk(θ

(i)
jk ) with the ele-

ments of Cjk(θ
(i)
jk ) defined as Cj(x

m
j ,xn

j ; θ
(i)
jk ). A Metropolis sub-sampler is re-

quired to obtain samples for the conditional P (Θ
(i+1)
k , α

(i+1)
k ). Finally P (ϕ

(i+1)
k )

is a simple product of Gamma distributions.

2.4 Obtaining Predictive Posteriors

The predictive likelihood of a test sample X∗ is P (t∗ = k|X∗, X1···N , t, a,b)
which can be obtained by integrating over the posterior and predictive prior
such that

∫

P (t∗ = k|f∗)p(f∗|Ω, X1···N)p(Ω|X1···N , t, a,b)df∗dΩ



where Ω = Y,Θ1···K , α1···K . A Monte-Carlo estimate is obtained by using sam-
ples drawn from the full posterior 1

S

∑S

s=1

∫

P (t∗ = k|f∗)p(f∗|Ω(s), X1···N )df∗and
the integral over the predictive prior requires further conditional samples to
be drawn from each p(f∗|Ω(s), X1···N ) finally yielding an estimate of P (t∗ =
k|X∗, X1···N , t, a,b)

1

LS

L
∑

l=1

S
∑

s=1

P
(

t∗ = k|f
(l|s)
∗

)

=
1

LS

L
∑

l=1

S
∑

s=1

Ep(u)







∏

j 6=k

Φ
(

u + f
(l|s)
∗,k − f

(l|s)
∗,j

)







2.5 Variational Approximation

From the above conditionals which appear in the Gibbs sampler it can be seen
that a mean field approximation gives a simple iterative scheme which provides
a computationally efficient alternative to the full sampler, details of which are
given in [9]. Consider a toy dataset consisting of three classes having ten fea-
tures only two of which are predictive of the class labels [9]. We can compare the
time taken to obtain reasonable predictions from the MCMC and the Variational
schemes. Figure 1 (a) shows the samples of the covariance function parameters Θ

drawn from the Metropolis subsampler and overlaid in black the corresponding
approximate posterior mean estimates obtained from the variational scheme [9].
It is clear that after 100 calls to the sub-sampler the samples obtained reflect
the relevance of the features, however the deterministic steps taken in the vari-
ational routine achieve this in just over ten computational steps of equal cost
to the Metropolis scheme. Figure 1 (b) shows the predictive error incurred by
the classifier and under the MCMC scheme 30,000 CPU seconds are required to
achieve the same level of predictive accuracy under the variational approxima-
tion obtained in 200 seconds (a factor of 150 times faster). This is due, in part,
to the additional level of sampling from the predictive prior which is required
when using MCMC to obtain predictive posteriors. Because of this we adopt the
variational approximation for the following large scale experiment.

3 Protein Fold Prediction with GP Based Data Fusion

To illustrate the proposed GP based method of data integration a protein fold
classification problem originally studied in [1] is considered. The task is to devise
a predictor of 27 SCOP classes from a set of low homology protein sequences.
Six different feature sets are available characterizing (1) Amino Acid composi-
tion (AA); (2) Hydrophobicity profile (HP); (3) Polarity (PT); (4) Polarizability
(PY); (5) Secondary Structure (SS); (6) Van der Waals volume. In [1] a number
of combination strategies were employed in devising a multiway classifier from
a series of binary SVM’s. The best predictive accuracy obtained on an indepen-
dent set of low sequence similarity proteins was 53%. It was noted after extensive
careful experimentation by the authors that a combination of Gaussian kernels
each composed of the (AA), (SS) and (HP) datasets improved predictive accu-
racy. We employ the proposed GP based method (mean field approximation) in
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Fig. 1. (a) Progression of MCMC and Variational methods in estimating covariance
function parameters, (b) the development of percentage error under the MCMC (gray)
and Variational (black) schemes, (c) the development of predictive likelihood under
both schemes.

devising a classifier for this task where now we employ a composite covariance
function, a linear combination of RBF functions for each data set. Figure (2)
shows the predictive performance of the GP classifier in terms of percentage
prediction accuracy (a) and predictive likelihood on the test set (b). We note a
significant synergistic increase in performance when all data sets are combined
and weighted (MA). Although the test error is the same for an equal weighting
of the data sets (MF) and that obtained using the proposed inference procedure
(MA) for (MA) there is a small increase in predictive likelihood i.e. more confi-
dent correct predictions being made. It is interesting to note that the weighting
obtained (posterior mean for α) Figure (2.c) weights the (AA) & (SS) with equal
importance whilst other data sets play less of a role in performance improvement.
The overall performance accuracy achieved is 62%.

AA HP PT PY SS VP MA MF
0

10

20

30

40

50

60

P
er

ce
nt

 A
cc

ur
ac

y

(a)

AA HP PT PY SS VP MA MF
0

0.05

0.1

0.15

0.2

P
re

di
ct

iv
e 

Li
ke

lih
oo

d

(b)

AA HP PT SS VP PZ
0

0.5

1

1.5

2

2.5

A
lp

ha
 W

ei
gh

t

(c)

Fig. 2. (a) The prediction accuracy for each individual data set and the corresponding
combinations, (MA) employing inferred weights and (MF) employing a fixed weighting
scheme (b) The predictive likelihood achieved for each individual data set and with
the integrated data (c) The posterior mean values of the covariance function weights
α1 · · · α6.
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4 Conclusion

Kernel based methods for data integration have been previously proposed though
restricted to SDP methods based on binary SVM’s. In this contribution it has
been shown that full Bayesian inference can be achieved for integrating multiple
datasets in the multiway classification setting employing GP priors and this has
been illustrated successfully with a protein fold prediction problem.


