
RNA Structure Prediction
Including Pseudoknots Based on

Stochastic Multiple Context-Free Grammar

Yuki Kato, Hiroyuki Seki, and Tadao Kasami

Graduate School of Information Science,
Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara 630-0192, Japan
{yuuki-ka, seki, kasami}@naist.jp

Abstract. Several grammars have been proposed for modeling RNA
pseudoknotted structure. In this paper, we focus on multiple context-
free grammars (MCFGs), which are natural extension of context-free
grammars and can represent pseudoknots, and extend a specific subclass
of MCFGs to a probabilistic model called SMCFG. We present a poly-
nomial time parsing algorithm for finding the most probable derivation
tree and a probability parameter estimation method based on the EM al-
gorithm. Furthermore, we show some experimental results of pseudoknot
prediction using SMCFG algorithm.

1 Introduction

Many attempts have so far been made at modeling RNA secondary structure
including pseudoknots. Brown and Wilson [2] proposed a model based on inter-
sections of stochastic context-free grammars (stochastic CFGs, SCFGs) [5, 13]
to describe RNA pseudoknots. Cai et al. [3] introduced a model based on par-
allel communication grammar systems using a single CFG synchronized with a
number of regular grammars. Akutsu [1] provided dynamic programming algo-
rithms for predicting pseudoknots without using grammars. On the other hand,
several grammars have been proposed where the grammar itself can fully de-
scribe pseudoknots. Rivas and Eddy [11, 12] designed a dynamic programming
algorithm for predicting RNA pseudoknotted structure, and introduced a new
class of grammars called RNA pseudoknot grammars (RPGs). Uemura et al. [15]
defined specific subclasses of tree adjoining grammars (TAGs) named SL-TAGs
and ESL-TAGs respectively, and predicted RNA pseudoknots by using parsing
algorithm of ESL-TAG. Matsui et al. [10] proposed pair stochastic tree adjoining
grammars (PSTAGs) based on ESL-TAGs and tree automata for aligning and
predicting pseudoknots. These grammars have generative power stronger than
CFGs and polynomial time algorithms for parsing problem.

In our previous work [8], we identified RPGs, SL-TAGs and ESL-TAGs as
subclasses of multiple context-free grammars (MCFGs) [7, 14], which can model

pseudoknots, and showed a candidate subclass of the minimum grammars for rep-
resenting pseudoknots. In this paper, we extend the above candidate subclass of
MCFGs to a probabilistic model called SMCFG. We then present a polynomial
time parsing algorithm for finding the most probable derivation tree and a prob-
ability parameter estimation method based on the EM algorithm. Finally, we
show some experimental results of pseudoknot prediction using SMCFG parsing
algorithm.

2 Multiple Context-Free Grammar

A multiple context-free grammar (MCFG) [7, 14] is a 5-tuple G = (N,T, F, P, S)
where N is a finite set of nonterminals, T is a finite set of terminals, F is a finite
set of functions, P is a finite set of (production) rules and S ∈ N is the start
symbol. For each A ∈ N , a positive integer denoted by dim(A) is given and A
derives dim(A)-tuples of terminal sequences. For the start symbol S, dim(S) = 1.
Each rule in P has the form of A0 → f [A1, . . . , Ak] where Ai ∈ N (0 ≤ i ≤ k)
and f : (T ∗)dim(A1)×· · ·×(T ∗)dim(Ak) → (T ∗)dim(A0) ∈ F . If k ≥ 1, then the rule
is called a nonterminating rule, and if k = 0, then it is called a terminating rule.
Examples of rules are A → f [A] and A → g[] where f, g ∈ F and are defined by
f [(x1, x2)] = (ax1b, cx2d) and g[] = (ab, cd). A sample derivation is A ⇒ (ab, cd)
by the second rule, which in turn gives A ⇒ f [(ab, cd)] = (aabb, ccdd) together
with the first rule. Due to limitation of the space, definition of derivation tree of
MCFG is omitted (see [14]). Intuitively, MCFGs can derive terminal sequences
with arbitrary number of gaps, which leads to generative power stronger than
CFGs.

3 SMCFG

We extend a subclass of MCFG to a probabilistic model called stochastic MCFG
(SMCFG). An SMCFG Gs has m different nonterminals denoted by W1, . . . ,Wm,
each of which uses the only one type of a rule denoted by E, S, D, B1, B2, B3, B4,
U1L, U1R, U2L, U2R or P for indicating End, Start, Delete, Bifurcation,
Unpair and Pair respectively (see Table 1). Delete nonterminals are used to
deal with gaps in sequence alignment. The type of Wv is denoted by type(v) and
we predefine type(1) = S, that is, W1 is the start symbol. Consider a sample
rule set Wv → UP1L[Wy] | UP1L[Wz] for U1L where UPα

1L[(x1, x2)] = (αx1, x2)
and α is a variable for which a terminal is substituted. Let tv(y) be the tran-
sition probability that Wv → UP1L[Wy] is applied. Let ev(a) be the emission
probability that α = a where a is a terminal. The sum of the transition/emission
probabilities with the same left hand side is one. All the transition probabilities
of Bifurcation nonterminals are defined as one since most of the nontermi-
nals for modeling RNA structure have the type of either Unpair or Pair, and
Bifurcation nonterminals are sometimes used to deal with concatenating and
wrapping operation. This single choice of transition for Bifurcation nontermi-
nal reduces time complexities of SMCFG algorithms. Let Cv be the set of indices

y such that Wv can make a transition to Wy. To avoid non-emitting cycles, we
assume that the nonterminals are numbered such that v < y for all y ∈ Cv.
The probability of a derivation tree is defined as the product of transition and
emission probabilities of all rules used in the derivation.

Table 1. SMCFG Gs

Type Rule set Function Transition Emission

E Wv → (ε, ε) 1 1

S Wv → J [Wy] J [(x1, x2)] = x1x2 tv(y) 1

D Wv → SK[Wy] SK[(x1, x2)] = (x1, x2) tv(y) 1

B1 Wv → C1[Wy, Wz] C1[x1, (x21, x22)] = (x1x21, x22) 1 1

B2 Wv → C2[Wy, Wz] C2[x1, (x21, x22)] = (x21x1, x22) 1 1

B3 Wv → C3[Wy, Wz] C3[x1, (x21, x22)] = (x21, x1x22) 1 1

B4 Wv → C4[Wy, Wz] C4[x1, (x21, x22)] = (x21, x22x1) 1 1

U1L Wv → UP1L[Wy] UP1L[(x1, x2)] = (aix1, x2) tv(y) ev(ai)

U1R Wv → UP1R[Wy] UP1R[(x1, x2)] = (x1aj , x2) tv(y) ev(aj)

U2L Wv → UP2L[Wy] UP2L[(x1, x2)] = (x1, akx2) tv(y) ev(ak)

U2R Wv → UP2R[Wy] UP2R[(x1, x2)] = (x1, x2al) tv(y) ev(al)

P Wv → BP [Wy] BP [(x1, x2)] = (aix1, x2al) tv(y) ev(ai, al)

4 Algorithms for SMCFG

We mention the way to find the most probable derivation tree of Gs for an in-
put sequence. This can be solved by a dynamic programming algorithm similar
to CYK algorithm for SCFGs [4], and in this paper, we also call the parsing
algorithm for Gs the CYK algorithm. We fix an input sequence w = a1 · · · an

(|w| = n). Let γv(i, j) and γy(i, j, k, l) be the logarithm of maximum probabilities
of a derivation subtree rooted at a nonterminal Wv for a terminal subsequence
ai · · · aj and of a derivation subtree rooted at a nonterminal Wy for a tuple of
terminal subsequences (ai · · · aj , ak · · · al) respectively. The variables γv(i, i − 1)
and γy(i, i−1, j, j−1) are the logarithm of maximum probabilities for an empty
sequence ε and a pair of ε. The CYK algorithm uses five dimensional dynamic
programming matrix to calculate γ, which leads to log P (w, π̂ | θ) where π̂ is
the most probable derivation tree and θ is a set of probability parameters. The
detailed description of the CYK algorithm is shown in Fig. 1. When the calcula-
tion terminates, we obtain log P (w, π̂ | θ) = γ1(1, n). If there are b Bifurcation
nonterminals and a other nonterminals (m = a + b), the time and space com-
plexities of the CYK algorithm are O(amn4 + bn5) and O(mn4), respectively.
Note that we need traceback to recover the optimal derivation tree.

In order to re-estimate the probability parameters of Gs, we design the inside-
outside algorithm based on the EM algorithm. For further information, refer to
[9].

5 Experimental Results

The dataset for experiments was taken from an RNA family database called
“Rfam” (version 7.0) [6] which is a database of multiple sequence alignment and
covariance models [5] representing non-coding RNA families. We selected three
viral RNA families with pseudoknot annotations named Corona pk 3 (Corona),
HDV ribozyme (HDV) and Tombus 3 IV (Tombus). Corona pk 3 ranges in length
from 62 to 64 and has a simple pseudoknotted structure, whereas HDV ribozyme
and Tombus 3 IV range in length from 87 to 92 and have more complicated struc-
tures with pseudoknot. We specified SMCFG Gs by utilizing secondary struc-
ture annotation of each family. Rules were determined by considering consensus
secondary structure. Probability parameters were estimated in a few selected
sequences by the simplest pseudocounting method known as the Laplace’s rule
[4]. The other sequences in the alignment were used as the test sequences for
prediction. We implemented the CYK algorithm with traceback in ANSI C on
a machine with Intel Pentium D CPU 2.80 GHz and 2.00 GB RAM.

We tested prediction accuracy by calculating precision and recall (sensitiv-
ity), which are the ratio of the number of correct base pairs predicted by the
algorithm to the total number of predicted base pairs, and the ratio of the num-
ber of correct base pairs predicted by the algorithm to the total number of base
pairs specified by the trusted annotation, respectively. The results are shown in
Table 2. A nearly correct prediction (94.4% precision and recall) for Corona pk 3
is shown in Fig. 2 where underlined base pairs agree with trusted ones. The sec-
ondary structures predicted by our algorithm agree very well with the trusted
structures. Furthermore, we compared the prediction accuracy of our SMCFG
algorithm with that of PSTAG algorithm [10] (see Table 3).

Table 2. Prediction results (The numbers of test sequences are 10 in Corona pk 3, 10
in HDV ribozyme and 12 in Tombus 3 IV respectively.)

Family Precision [%] Recall [%] CPU time [sec]

Average Min Max Average Min Max Average Min Max

Corona pk 3 99.4 94.4 100.0 99.4 94.4 100.0 27.8 26.0 30.4

HDV ribozyme 100.0 100.0 100.0 100.0 100.0 100.0 252.1 219.0 278.4

Tombus 3 IV 100.0 100.0 100.0 100.0 100.0 100.0 244.8 215.2 257.5

6 Conclusion

In this paper, we have proposed a probabilistic model named SMCFG, and de-
signed a polynomial time parsing algorithm and a parameter estimation method
for SMCFG. Moreover, we have demonstrated computational experiments of
RNA secondary structure prediction with pseudoknots using SMCFG parsing
algorithm, which show good performance in accuracy.

Table 3. Comparison of SMCFG with PSTAG

Model Average precision [%] Average recall [%]

Corona HDV Tombus Corona HDV Tombus

SMCFG 99.4 100.0 100.0 99.4 100.0 100.0

PSTAG 95.5 95.6 97.4 94.6 94.1 97.4

References

1. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure pre-
diction with pseudoknots. Discrete Applied Mathematics, Vol. 104 (2000) 45–62

2. Brown, M., Wilson, C.: RNA pseudoknot modeling using intersections of stochastic
context free grammars with applications to database search. Proc. Pacific Sympo-
sium on Biocomputing (1996) 109–125

3. Cai, L., Malmberg, R.L., Wu, Y.: Stochastic modeling of RNA pseudoknotted
structures: a grammatical approach. Bioinformatics, Vol. 19, suppl. 1 (2003) i66–
i73

4. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis.
Cambridge University Press (1998)

5. Eddy, S.R., Durbin, R.: RNA sequence analysis using covariance models. Nuc.
Acids Res., Vol. 22, No. 11 (1994) 2079–2088

6. Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., Eddy, S.R.: Rfam: an
RNA family database. Nuc. Acids Res., Vol. 31, No. 1 (2003) 439–441

7. Kasami, T., Seki, H., Fujii, M.: Generalized context-free grammar and multiple
context-free grammar. IEICE Trans. Inf. & Syst., Vol. J71-D, No. 5 (1988) 758–
765 (in Japanese)

8. Kato, Y., Seki, H., Kasami, T.: On the generative power of grammars for RNA
secondary structure. IEICE Trans. Inf. & Syst., Vol. E88-D, No. 1 (2005) 53–64

9. Kato, Y., Seki, H.: Stochastic multiple context-free grammar for RNA pseudoknot
modeling. NAIST Info. Sci. Tech. Rep., NAIST-IS-TR2006002 (2006)

10. Matsui, H., Sato, K., Sakakibara, Y.: Pair stochastic tree adjoining grammars for
aligning and predicting pseudoknot RNA structures. Bioinformatics, Vol. 21, No.
11 (2005) 2611–2617

11. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure pre-
diction including pseudoknots. J. Mol. Biol., Vol. 285 (1999) 2053–2068

12. Rivas, E., Eddy, S.R.: The language of RNA: A formal grammar that includes
pseudoknots. Bioinformatics, Vol. 16, No. 4 (2000) 334–340

13. Sakakibara, Y., Brown, M., Hughey, R., Mian, I.S., Sjölander, K., Underwood,
R.C., Haussler, D.: Stochastic context-free grammars for tRNA modeling. Nuc.
Acids Res., Vol. 22 (1994) 5112–5120

14. Seki, H., Matsumura, T., Fujii M., Kasami, T.: On multiple context-free grammars.
Theor. Comput. Sci., Vol. 88 (1991) 191–229

15. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree adjoining grammars
for RNA structure prediction. Theor. Comput. Sci., Vol. 210 (1999) 277–303

Initialization:
for i ← 1 to n + 1, j ← i to n + 1, v ← 1 to m

do if type(v) = E
then γv(i, i − 1, j, j − 1) ← 0

else γv(i, i − 1, j, j − 1) ← −∞
Iteration:
for i ← n downto 1, j ← i − 1 to n, k ← n + 1 downto j + 1, l ← k − 1 to n,
v ← 1 to m

do if type(v) = E
then if j = i − 1 and l = k − 1

then skip
else γv(i, j, k, l) ← −∞

if type(v) = S
then γv(i, j) ← max

y∈Cv

max
h=i−1,...,j

[log tv(y) + γy(i, h, h + 1, j)]

if type(v) = B1

then γv(i, j, k, l) ← max
h=i−1,...,j

[γy(i, h) + γz(h + 1, j, k, l)]

if type(v) = B2

then γv(i, j, k, l) ← max
h=i−1,...,j

[γy(h + 1, j) + γz(i, h, k, l)]

if type(v) = B3

then γv(i, j, k, l) ← max
h=k−1,...,l

[γz(i, j, h + 1, l) + γy(k, h)]

if type(v) = B4

then γv(i, j, k, l) ← max
h=k−1,...,l

[γz(i, j, k, h) + γy(h + 1, l)]

if type(v) = P
then if j = i − 1 or l = k − 1

then γv(i, j, k, l) ← −∞
else γv(i, j, k, l) ← max

y∈Cv

[log ev(ai, al) + log tv(y) + γy(i + 1, j, k, l − 1)]

else γv(i, j, k, l) ← max
y∈Cv

[log ev(ai, aj , ak, al) + log tv(y)

+ γy(i + ∆1L
v , j − ∆1R

v , k + ∆2L
v , l − ∆2R

v)]
Note: ev(ai, aj , ak, al) = ev(ai) for type(v) = U1L, ev(ai, aj , ak, al) = ev(aj) for
type(v) = U1R, ev(ai, aj , ak, al) = ev(ak) for type(v) = U2L, ev(ai, aj , ak, al) = ev(al)
for type(v) = U2R, ev(ai, aj , ak, al) = 1 for the other types except P. Also, ∆1L

v = 1
for type(v) = U1L, ∆1R

v = 1 for type(v) = U1R, ∆2L
v = 1 for type(v) = U2L, ∆2R

v = 1
for type(v) = U2R, and ∆1L

v , . . . ∆2R
v are set to 0 for the other types except P.

Fig. 1. CYK algorithm

CUAGUCUUAUACACAAUGGUAAGCCAGUGGUAGUAAAGGUAUAAGAAAUUUGCUACUAUGUUA
 [[[[[[[[((((((((((]]]]]]]]))))))))))

CUAGUCUUAUACACAAUGGUAAGCCAGUGGUAGUAAAGGUAUAAGAAAUUUGCUACUAUGUUA
 [[[[[[[[((((((((((]]]]]]]]))))))))))

[Trusted structure in Rfam]

[Prediction by SMCFG]

Corona_pk3 (EMBL accession #: X51325.1)

Fig. 2. Comparison of a prediction result with a trusted structure in Rfam

