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Abstract. This work1 studies a machine learning technique designed for exploring
relations between microarray experiment data and the corpus of gene-related liter-
ature available via PubMed. The use of this task is found in that it provides better
clusters of genes by fusing both information sources together, while it can also be
used to guide the expert through the large corpus of gene-related literature based on
insights into microarray experiments and vice versa. The learning technique addresses
the unsupervised learning problem of finding meaningful clusters co-occurring in both
knowledge-bases. Here, one is typically interested in whether the membership of an
instance to one cluster in the former knowledge-base transduces to membership of the
same instance to the corresponding cluster in the latter representation. Thisidea is de-
scribed as an extended MINCUT problem and implemented using a spectral clustering
technique possessing a well-defined out-of-sample extension.

1 STATEMENT OF THE LEARNING PROBLEM

In order to emphasize the peculiarity of the investigated learning setting, the problem is at
first stated in an abstract way. Let{(Xi, Zi)}n

i=1 ⊂ R
d1 × R

d2 be iid sampled from the
joint distributionFXZ , for givend1, d2, n ∈ N. Let K < n be an appropriate constant. The
following learning problem is studied: learn a mutual clustering C12,K = {(C1

k, C2
k)}K

k=1
such that the following relation holds with high probability

(X,Z) ∼ FXZ : C1
k(X) ⇔ C2

k(Z), ∀k = 1, . . . ,K. (1)

The relevance of this mutual clusteringC12,K is seen as follows: if one observes a new value
X∗ ∈ R

d2 which belongs toC1
k , one can assert with high probability that this instance will

belong toC2
k in the alternative representation (and vice versa). This method can be used for

example to predict missing values based on an unsupervised dataset: if a random variable
Xi is not observed due to reasons of independency, the membership of the observedYi can
be used to infer partial knowledge - namely the membership tothe corresponding cluster
- in the latter representation. This question does not coincide with classification as it is
symmetrically valid: the random variableX plays the role of labels as well as covariates for
Y and vice versa, while the class assignments are not given a priori. The task differs from
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clustering as it possesses an explicit objective. This problem has formal relations to the task
of semi-supervised learning and transductive inference, see e.g. [5], while its use is situated
in a purely exploratory data analysis setting useful for unsupervised data-mining problems.

2 MUTUAL SPECTRAL CLUSTERING

The discussion is cast in a context of graph cuts as the entities under study (genes in this
case) are discrete by nature, and as it is not clear what an underlying distributionFXY would
mean. Given two graphsG(1) = (N , E(1)) andG(2) = (N , E(2)) which share the same
nodesN (think of any nodeN∗ as a representation of a single gene, e.g. ‘P53’). Let the
positive weightsE(1) = {w(1)

ij }i6=j andE(2) = {w(2)
ij }i6=j be associated withG(1) andG(2)

respectively based on the two different knowledge-bases. Let w(1)
ii andw

(2)
ii be zero for all

i = 1, . . . , n. Let π1, π2 > 0 represent the relative importance or confidentiality of thetwo
representationsG(1) andG(2). The following approach is based on an additive argument: the
performance of a mutual clustering is essentially expressed as the sum of the performances
of the clustering on both individual graphs. We start by explicitly defining a neighbor-based
rule for deciding whether a nodeN∗ (with edges{w(∗j)

∗ }n
j=1 and{w(2)

∗j }n
j=1) belongs to the

former class (denoted asq = −1) or of the latter (q = 1): thus forG(1), the decision rules
become







R1(N∗; q) = sign
(

∑n

j=1 qjw
(1)
∗j

)

R2(N∗; q) = sign
(

∑n

j=1 qjw
(2)
∗j

)

.
(2)

Now it can be proven that the MINCUT results in a vectorq ∈ {−1, 1}n which yields
decisions using the above rules which are maximally consistent with the labeling itself.
This argument can be made precise, but for clarity of explanation we give only the resulting
learning problem and its spectral approximation.

Proposition 1 (Mutual Spectral Clustering) Let qi = 1 if the i-th node ofG(1) andG(2)

belongs to a cluster(C(1)
k , C(2)

k ) for fixedk, andqi = −1 otherwise. The size of the cut in
bothG(1) andG(2) corresponding with the assignmentq ∈ {−1, 1}n is then minimized by

min
q∈{−1,1}n

Jπ1,π2
(q) =

π1

4

∑

i6=j

w
(1)
ij (qi − qj)

2 +
π2

4

∑

i6=j

w
(2)
ij (qi − qj)

2. (3)

Let the extended Laplacian be defined asLπ1,π2
= (π1D

(1) + π2D
(2)) − (π1W

(1) +

π2W
(2)) ∈ R

n×n possessing the same properties as the individual LaplaciansD(1)−W (1)

and D(2) − W (2). This combinatorial optimization problem can be approximated by the
spectral problem

Lπ1,π2
q = λq, (4)

whereλ ∈ R
+ is the associated Lagrange multiplier.

Proof: The derivation follows [2]. Let the degrees be defined asd
(1)
i =

∑n

j=1 w
(1)
ij

and letd(1)
i =

∑n

j=1 w
(1)
ij . Problem (3) can be written equivalently as

min
q∈(−1,1)n

Jπ1,π2
(q) =

1

4
qT

(

(π1D
(1) + π2D

(2)) − (π1W
(1) + π2W

(2))
)

q (5)



subject toq ∈ {−1, 1}n. Replacing the integer constraint by the norm constraintqT q = 1
yields the familiar spectral formulation (4). where the eigenvector associated with the lowest
eigenvalue is the trivialq = c(1, . . . , 1)T ∈ R

n with constantc = ±√
n. Then it is known

that the lowest nontrivial eigenvectorq(2) associated with the second lowest eigenvalueλ(2)

is a continuous approximation to (3).
This reasoning provides a complete answer how to extend the mutual clustering to la-

bel out-of-sample examples using (2). A refinement of the method and a discussion of a
normalized cut method as in [6] is under investigation. A clearcut analyzes of the learning
algorithm is possible due to the clear definition of a criterion, and the definition of a rule
underlying the analysis which describes extensions to new nodes.
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Fig. 1. (a) Graphical presentation of mutual clustering. The objective is to find a clustering of the
shared nodes which is consistent with both representations at the same time. This application shows
the genesG1, . . . , G6 represented using information extracted from microarray experiments(vertical)
and using information retrieval techniques based on the PubMed corpus(horizontal). This example
indicates that the mutual clustering can improve the min cut by fusing different data sources together.
(b) Validation of the clustering based on the text corpus only, the microarray experiments only and
the proposed technique for data fusion. The plot shows the ROC curvesof the predicted cluster-
membership of the different clustering methods versus the labels givenin the gene ontology.

3 MICROARRAY EXPERIMENTS VERSUS TEXT CORPUS

Both knowledge bases have a one-to-one correspondence: textual information and microar-
ray experiments can be used to construct a gene graph. The text corpus can be organized in a
gene graph as follows: graphG(1) encodes the relation between genes based on the abstracts
concerning this gene. The relation between genes is based onthe distance between genes in



a classical term based vector space model [3]. Specifically,a gene is represented as the aver-
age term vector of the different citing abstracts. The graphweights are determined using the
cosine rule applied to those terms. GraphG(2) encodes the similarity between genes using
information obtained from a series of microarray experiments [4]. To estimate the relations
between genes based on the different experimental conditions, an RBF based scheme is
used. Some preliminary experiments are conducted on a database of 51 different genes [7]
concerning motor activity and visual perception. Figure 1.b shows the performance of a
spectral clustering method using text data only, using microarray data only, and using the
technique for integrating both knowledge-bases. The performance is expressed as a ROC
curve measuring the correspondence of the predicted membership via the nearest neighbor
rule (2), versus the labeling as given in gene ontology. Thisplot indicates that the proposed
mutual clustering method can indeed improve the use of the learned clusters.

4 FURTHER ISSUES

Several further important issues need to be addressed. Important from a practical point of
view is how to zoom in on small but coherent mutual clusters effectively representing func-
tionally related genes. Further, it is important to extend the method of mutual spectral clus-
tering based on neighborhood rules to multiple (overlapping) clusters. A related issue is how
to validate the obtained clustering using biological experience as encoded in the gene on-
tology [1]. Moreover, the example described in the previoussection indicates that the prac-
titioner should bear the influence of weakly connected nodesin mind. It also emphasizes
the importance of the choice of a proper method to infer a graph based on the observations.
Important from a methodological point of view is a quantification of the probabilistic con-
fidence in a learned mutual rule. Extensions to the data integration of multiple sources is
straightforward in this setting, while large scale versions can straightforwardly incorporate
results described in the large literature on large scale eigenvalue decompositions.
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