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Abstract. This work! studies a machine learning technique designed for exploring
relations between microarray experiment data and the corpus ofrgkted liter-
ature available via PubMed. The use of this task is found in that it providterb
clusters of genes by fusing both information sources together, whileniatso be
used to guide the expert through the large corpus of gene-related litekatsed on
insights into microarray experiments and vice versa. The learning taghadfresses
the unsupervised learning problem of finding meaningful clusterscardng in both
knowledge-bases. Here, one is typically interested in whether the mehifbef an
instance to one cluster in the former knowledge-base transduces toarsipof the
same instance to the corresponding cluster in the latter representatiordekhis de-
scribed as an extended MINCUT problem and implemented using a dpmbestaring
technigue possessing a well-defined out-of-sample extension.

1 STATEMENT OF THE LEARNING PROBLEM

In order to emphasize the peculiarity of the investigatedrig setting, the problem is at
first stated in an abstract way. L&tX;, Z;)}7., € R% x R% be iid sampled from the
joint distribution F'x z, for givend,, d2,n € N. Let K < n be an appropriate constant. The
following learning problem is studied: learn a mutual otwtg C'% = {(C},C3)} < |
such that the following relation holds with high probalyilit

(X,Z2)~Fxz: Ci(X)=Ci(2), Vk=1,...,K. 1)

The relevance of this mutual clusteri@d? ¥ is seen as follows: if one observes a new value
X, € R? which belongs ta”}, one can assert with high probability that this instancé wil
belong toC? in the alternative representation (and vice versa). Thihatkcan be used for
example to predict missing values based on an unsupervatedet: if a random variable
X is not observed due to reasons of independency, the menibefshe observed’; can

be used to infer partial knowledge - namely the membershihéacorresponding cluster

- in the latter representation. This question does not adénwith classification as it is
symmetrically valid: the random variable plays the role of labels as well as covariates for
Y and vice versa, while the class assignments are not giveiot. ihe task differs from
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clustering as it possesses an explicit objective. Thislprothas formal relations to the task
of semi-supervised learning and transductive inferereeesg. [5], while its use is situated
in a purely exploratory data analysis setting useful forupesvised data-mining problems.

2 MUTUAL SPECTRAL CLUSTERING

The discussion is cast in a context of graph cuts as theestitider study (genes in this
case) are discrete by nature, and as it is not clear what aarlyimdy distributionF'xy would
mean. Given two graph6 V) = (V,£M) andG? = (N, £®)) which share the same
nodesN (think of any nodeV, as a representation of a single gene, e.g. ‘P53’). Let the
positive weights£") = {w(}};; and&® = {w(?}, ., be associated wit§) andg(?

respectively based on the two different knowledge-basesu;ﬁ) andwgf) be zero for all
i=1,...,n. Letm,m > 0 represent the relative importance or confidentiality oftthe
representation§(!) andG(® . The following approach is based on an additive argumeat: th
performance of a mutual clustering is essentially expiasehe sum of the performances
of the clustering on both individual graphs. We start by &xthy defining a neighbor-based
rule for deciding whether a nod€, (with edges{wffj)};”:1 and{wfj.) %_,) belongs to the
former class (denoted gs= —1) or of the latter § = 1): thus forG(!), the decision rules
become

Rl (N*a CI) = Sigl’l Z;‘L:1 q]wi;) (2)
R*(N.iq) = sign (X7, qjuw'?

*J

Now it can be proven that the MINCUT results in a vecioe {—1,1}™ which yields

decisions using the above rules which are maximally camsiswith the labeling itself.
This argument can be made precise, but for clarity of expianave give only the resulting
learning problem and its spectral approximation.

Proposition 1 (Mutual Spectral Clustering) Letg; = 1 if the i-th node ofg(") and G(?)
belongs to a clustefc,gl),c,f)) for fixedk, andg; = —1 otherwise. The size of the cut in
bothG™) andG(® corresponding with the assignment {—1,1}" is then minimized by

min T (@)= w0 0) Y w0 @)

1£] i#]
Let the extended Laplacian be definedfas ,, = (DM + mD®) — (m WM +
oW ) € R**" possessing the same properties as the individual Lapladidhy — W (1)
and D® — W), This combinatorial optimization problem can be approxietaby the
spectral problem
L, mq = A, (4)

where) € RT is the associated Lagrange multiplier.

Proof: The derivation follows [2]. Let the degrees be definediﬁé = 2?21 wl(;)

and Ietdl(l) = Z?Zl wfjl) Problem (3) can be written equivalently as

mi

1
0 T (@) = 307 (MDY +mD@) - (W +mW®)) g (5)
ge(=1,1)" 4



subject tog € {—1,1}". Replacing the integer constraint by the norm constrgigt = 1
yields the familiar spectral formulation (4). where theegigector associated with the lowest
eigenvalue is the triviag = ¢(1,...,1)T € R™ with constant = +./n. Then it is known
that the lowest nontrivial eigenvectg2) associated with the second lowest eigenvalye
is a continuous approximation to (3). ]
This reasoning provides a complete answer how to extend theainclustering to la-
bel out-of-sample examples using (2). A refinement of thehoektand a discussion of a
normalized cut method as in [6] is under investigation. Aaoteit analyzes of the learning
algorithm is possible due to the clear definition of a craeriand the definition of a rule
underlying the analysis which describes extensions to rezies
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Fig. 1. (a) Graphical presentation of mutual clustering. The objective is to find aerlng of the
shared nodes which is consistent with both representations at the samé&Hisapplication shows
the genes:1, . . ., Gs represented using information extracted from microarray experinfegrtical)
and using information retrieval techniques based on the PubMed cfirprisontal). This example
indicates that the mutual clustering can improve the min cut by fusing éliffefata sources together.
(b) Validation of the clustering based on the text corpus only, the microaxagrienents only and
the proposed technique for data fusion. The plot shows the ROC cafube predicted cluster-
membership of the different clustering methods versus the labels igitba gene ontology.

3 MICROARRAY EXPERIMENTSVERSUSTEXT CORPUS

Both knowledge bases have a one-to-one correspondentelteormation and microar-

ray experiments can be used to construct a gene graph. Tttomtpys can be organized in a
gene graph as follows: gragh®) encodes the relation between genes based on the abstracts
concerning this gene. The relation between genes is basthe aistance between genes in



a classical term based vector space model [3]. Specifieadfgne is represented as the aver-
age term vector of the different citing abstracts. The grapights are determined using the
cosine rule applied to those terms. Gra@R encodes the similarity between genes using
information obtained from a series of microarray experitag]. To estimate the relations
between genes based on the different experimental consljitam RBF based scheme is
used. Some preliminary experiments are conducted on aatsalf 51 different genes [7]
concerning motor activity and visual perception. Figure dhows the performance of a
spectral clustering method using text data only, using saicay data only, and using the
technique for integrating both knowledge-bases. The pedace is expressed as a ROC
curve measuring the correspondence of the predicted mehipesia the nearest neighbor
rule (2), versus the labeling as given in gene ontology. plasindicates that the proposed
mutual clustering method can indeed improve the use of traéal clusters.

4 FURTHER ISSUES

Several further important issues need to be addressedrtmmpdrom a practical point of
view is how to zoom in on small but coherent mutual clusteiesotifzely representing func-
tionally related genes. Further, it is important to exteémelmethod of mutual spectral clus-
tering based on neighborhood rules to multiple (overlagpatusters. A related issue is how
to validate the obtained clustering using biological eigraze as encoded in the gene on-
tology [1]. Moreover, the example described in the previeestion indicates that the prac-
titioner should bear the influence of weakly connected nadesind. It also emphasizes
the importance of the choice of a proper method to infer algbgsed on the observations.
Important from a methodological point of view is a quantifica of the probabilistic con-
fidence in a learned mutual rule. Extensions to the dataratieg of multiple sources is
straightforward in this setting, while large scale versican straightforwardly incorporate
results described in the large literature on large scalene@ue decompositions.
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