
Model based identification of transcription

factor activity from microarray data

Simon Rogers1, Raya Khanin2, and Mark Girolami1

1 Bioinformatics Research Centre
Department of Computing Science

University of Glasgow
Glasgow, UK

2 Department of Statistics
University of Glasgow

Glasgow, UK
{srogers,girolami}@dcs.gla.ac.uk, raya@stats.gla.ac.uk

http://www.dcs.gla.ac.uk/∼srogers/tfa/

1 Abstract

With the increase in volume of gene expression data available from high through-
put microarray experiments, much research interest has been directed at building
mathematical models of the process of gene regulation. Such models have pri-
marily been used for the so called reverse engineering of regulatory networks;
inferring possible regulatory interactions directly from microarray data, for ex-
ample [1–4]. By using microarray data, all of these techniques make the implicit
assumption that there is a direct relationship between the level of mRNA of genes
coding for transcription factors (TFs) and the mRNA levels of their gene-targets.
Whilst for some TF-gene pairs, this is likely to be a reasonable assumption, there
are many examples of regulatory interactions where it is not due to modifica-
tions of the TF after translation. Such modifications cannot be measured on the
microarray leading to minimal correlation between the expression levels of the
TF gene and it’s targets. It is obvious therefore that any models of regulation
encoding a direct relationship between the mRNA levels of the two genes will
be highly inaccurate over a wide range of interactions and conditions.

A particularly important example of such phenomena being observed in prac-
tice is the Hypoxia Inducible Factor-1 (HIF-1) gene investigated in [5]. HIF-1 is
a TF that stimulates tumour growth and metastases. [5] found that although the
HIF-1α protein was over-expressed in the majority of patients, no amplification
of the HIF-1α gene were detected. Hence, some other process must be respon-
sible. A second example, and one that we will study here can be found in the
cell-cycle regulation of fission yeast. The SEP gene regulates several targets whos
expression has been seen to vary periodically during the cell-cycle [6]. However,
the expression of SEP does not vary periodically (see figure 1) suggesting some
external influence on regulation.
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Fig. 1. Non-periodic expression of SEP and periodic expression of it’s gene targets

Several methods have been proposed to overcome this problem, the major-
ity of which limit themselves to linear (or log-linear) models of transcription
[7, 8], More recently, [9] proposed a model based on a non-linear model of tran-
scription (particularly, Michaelis-Menten kinetics). We extend on this work here.

The model of [9] assumed that the rate of mRNA production of the tar-
get genes for a particular TF followed the well known Michaelis-Menten (MM)
kinetic model, given below for the case of activation

µ̇gi = αg + βg

ηi

ηi + γg

− δgµgi (1)

where µgi is the expression of gene g at time i, ηi is the TFA at time i and
θg = {αg, βg, γg, δg} is a set of gene specific kinetic parameters. The MM kinetic
model is given by the second term on the right hand side and is parameterised
by a gain term, βg and a half-saturation constant γg. In addition to this, there
are two additional terms corresponding to a basal level of production, αg and a
linear decay term with parameter δg . Given the values of the parameters and the
TFA, integration of this differential equation provides an expression profile of
gene g. Using a log-normal likelihood function, the probability of an expression
dataset comprising G genes measured at T time-points with R replicates all
regulated by a common transcription factor is given by
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where the location parameter mgi is calculated by equating the µgi with the
expected value of the log-normal distribution and the noise level σ2 is treated as
a parameter to be inferred. [9] perform inference of both the kinetic parameters
and TFA by maximising this likelihood. The results presented are promising



but there are certain drawbacks of the maximum likelihood approach. Namely,
such approaches provide only point estimates of the quantities of interest and
traditional methods of calculating confidence intervals are non-trivial due to the
non-standard form of the model.

In this work, we make use of the Metropolis algorithm to perform fully
Bayesian inference by sampling from the full posterior over TFA and param-
eter values. In addition to the benefit of obtaining full posterior distributions,
a full Bayesian analysis provides further benefits. Any biological knowledge can
be included through a suitable choice of prior distributions and the fact that
it is not necessary to differentiate the likelihood function (as is required in the
maximum likelihood solution) makes the model far more conducive to extension.

An example of the output of the sampler can be seen in figure 2. Here syn-
thetic microarray datasets have been produced with T = 10 discrete timepoints,
3 replicates, G = 10 genes all activated by a particular TF and three different
levels of noise variance, σ2 = {0.01, 0.05, 0.1}. Figure 2(a) shows the true and
inferred η profiles over time for the highest noise level, σ2 = 0.1. The dotted lines
indicate the 5th and 95th percentiles. Figure 2(b) shows the inferred expression
profile for one of the genes across the three different levels of noise variance and
figure 2(c) shows the inferred posterior for σ2 for each of the three true values.
It is obvious from the example that the method is able to re-create the true TFA
profile with the percentiles providing useful information regarding confidence in
values.

Figure 3 shows an example with real data from the cell-cycle regulation of
fission yeast (data from [6]). We have already seen how the SEP TF has periodi-
cally expressed targets but is not periodically expressed itself. Figure 3(a) shows
the inferred TFA which is periodic, as would be expected from the periodic ex-
pression of the target genes. An example of the data and the expression profile
fitted by the model can be seen in figure 3(b). Finally, as a comparison, we have
repeated this experiment but with eta fixed at the value of SEP’s expression as
if such a model will fit the data well, there is no benefit in inferring the TFA.
The expression of the same gene shown in figure 3(b) under this simpler model
can be seen in figure 3(c). It is obvious that the model is unable to convincingly
fit the data. The improvement in likelihood when the TFA is inferred is signifi-
cant with respect to the additional number of parameters (likelihood ratio test
at 1%, Bayesian model comparison via marginal likelihoods is currently under
investigation).

As well as providing confidence in inference and allowing the incorporation
of prior knowledge, the Bayesian framework is far easier to extend than the
maximum likelihood technique. For example, if we make the assumption that
the kinetic parameters are constant across different conditions we are able to
combine separate microarray datasets, a key problem in microarray analysis (see
for example, [10]), where each dataset has its own TFA and noise parameter.
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Fig. 2. Synthetic data example

Such a technique is useful when one has only limited data for the organism
of interest whilst other larger datasets are available. The Bayesian inference is
particularly useful in this area as it is possible to see how the addition of more
data provides tighter posterior distributions and hence higher confidence in the
TFA and parameter values.
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Fig. 3. Fission yeast example
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