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1 Introduction

Kernel methods have been successfully applied to a variety of biological data analysis
problems. One problem of using kernels, however, is the lacking interpretability of the
decision functions. It has been proposed to address this problem by using multiple ker-
nels together with some combination rules, where each of the kernels measures different
aspects of the data. Methods for learning sparse kernel combinations have the potential
to extract relevant measurements for a given task. Moreover, the use of multiple kernels
addresses the problem of data fusion which is inherent in bioinformatics where data
are often represented as strings or graphs. Kernels provide a suitable framework for
combining such inhomogeneous data under a common matrix representation.

Here we present a method for learning kernel combinations which explicitly ad-
dresses the problem of multilabel classification. The main ingredient is an extension
of nonlinear kernel discriminant analysis to sparse combinations of kernel matrices.
The sparsity is obtained by way of adaptive ridge (AdR) regression which works as a
kernel-specific regularizer.

Existing algorithms for combining kernels recast the problem as a quadratically
constrained quadratic program (QCQP), [6], as a semi-infinite linear program (SLIP),
[7], or within a sequential minimization optimization (SMO) framework, [1]. Methods
for selecting kernel parameters have also been introduced in the context of Gaussian
processes. Typical approaches of this kind maximize the marginal likelihood by way of
gradient ascent. Kernels operating e.g. on strings, however, are not differentiable due
to discrete parameters like the length of substrings. None of these approaches has been
extended to handling multiple labels in a consistent way.

Another potential shortcoming of existing methods may be their lacking efficiency,
at least for the QCQP formulation. For the latter there exists an �������
	 �� algorithm and a
�������� approximation, which both seem to impose unacceptable computational costs for
large-scale problems. The complexity of both the SLIP- and the SMO method is unclear,
but empirical results suggest that they work well in practice. For the proposed AdR
method there exists an �������� approximation which can be implemented very efficiently
even if not all kernel matrices can be hold in the memory.

The most important extension to existing methods, however, is the direct solution
for multilabel learning tasks (i.e. problems in which an object can have more than one
label). Whereas existing methods usually ignore the multilabel information, the AdR
formulation can learn the correlations between classes introduced by objects with mul-
tiple labels. We show that this feature leads to an improved prediction of functional
classes for yeast proteins.



2 Convex Kernel Combinations in Multilabel Classification

The method presented here is an extension of the mixture discriminant analysis (MDA)
framework, which forms a link between Gaussian mixture models and discriminant
analysis. [4]. The algorithm for solving multilabel classification problems emerges as a
special case of this clustering approach.

Consider a Gaussian mixture model with � mixture components which share the
covariance matrix � . The classical EM-algorithm provides a convenient method for
maximizing the data likelihood. Following [4], the M-step can be carried out by linear
discriminant analysis (LDA) which uses the “fuzzy labels” estimated in the preceding
E-step. LDA is equivalent to an optimal scoring problem (cf. [5]), the basic ingredient
of which is a linear regression procedure against the class-indicator variables. Since
space here precludes a more detailed discussion, we concentrate in the following on the
aspect of extending the model to learning combinations of different kernel matrices.

Adaptive ridge penalties and kernelization. A central ingredient of optimal scor-
ing is the “blurred” ������� � response matrix

��
, whose rows consist of the current mem-

bership probabilities for each of the � training samples. Given an initial �����	��
� �
scoring matrix ��� ������������������� � , a sequence of ��
�� linear regression problems
is solved by minimizing � �� � �!
#"	$ � � �� , where " is the ���%�'& � data matrix which
contains the data vectors (*),+.-*/+102�4365,7 as rows. Taking a Bayesian viewpoint of re-
gression, we specify a prior distribution over the regression coefficients $ . This distri-
bution has the form of an Automatic Relevance Determination (ARD) prior: 8 �9$;:=< �?>@BADC�E 
GF 7+H0I��J +LK��+�M � For each regression coefficient, the ARD prior contains a free hy-
perparameter J + , which encodes the “relevance” of the N -th variable in the linear regres-
sion. Adaptive ridge regression (AdR) [3] finds the hyper-parameters < by requiring
that the mean prior variance is proportional to �PORQ : �7 F 7+102� �SUT � �V � J +,WX , where
Q is a predefined regularization constant that is typically selected via cross validation.
The balancing procedure has the effect that some hyper-parameters J + go to infinity.
As a consequence, the coefficients KY+ are shrinked to zero and the corresponding input
variables are discarded. Following [3] it is numerically advantageous to introduce new
variables ZU[]\ +2�_^ J +`OaQbKD[�\ +c�edB+2�f^ Q O J + .

Denoting by gih a diagonal matrix with elements d + , we have to minimize

F � �j0I�lkkk
�� � � 
m"ngihBo � kkk

�qp Qroqs� o � s.t. tus,tv�w&r�ed +cWX � (1)

Consider now the case of sharing weights over blocks of x regression coefficients:
xzyR{G�|& (we have { such blocks): tv� �Ld*�P����������d����������B�]d�}~�������B��d�} �.s .

Note that for given weights t , eq. (1) defines a standard ridge-regression problem
in the transformed data "'�~��"'g�h . It is well-known in the literature that the solution
vectors �o � lie in the span of these input data, i.e. �o � ��"n� s,� � , which allows us
to identify the gram matrix " � " � s as a Mercer kernel. Since we have assumed that a
weight d + is shared over a whole block of x features, we can decompose this kernel as a
weighted sum of { individual kernels: "m��"n� s � F }[]02� d �[ "4� []� "4� []� s �v� F }[]02� d �[ ��[ .
With this expression we have arrived at the desired framework for learning convex



combinations of kernel matrices in each M-step of the EM-algorithm: minimize

F � �j02� kkk
�� � ��
 � F }[]02� d �[ ��[ � � � kkk

� p Q � s� � F }[]02� d �[ ��[ � � � (2)

subject to t s,t � F }[]02� d �[ ��& �ed + WwX � The minimizing vectors �� � � � � �U�����������
can be found simultaneously in a very efficient way by employing block conjugate
gradient methods, [2]. The optimal weights t are found iteratively by a fixed-point
algorithm similar to that proposed in [3].

Multilabel classification. In multilabel classification problems, an object ) + can
belong to more than one class, i.e. it might come with a set of labels � + . We treat
these multilabels in a probabilistic way by assigning to each observation a set of class-
membership probabilities. These probabilities might be given explicitly by the supervi-
sor. Alternatively, they can be estimated uniformly as ��Or: �Y+�: , if the class � is a member
of the label set ��+ , and zero otherwise. In any case we end up with a set of member-
ship probabilities for each object. Encoding these probabilities in the “blurred response
matrix

��
, we run one single M-step of the above clustering model.

Kernel discriminant analysis is a generative classifier which implicitly models the
classes as Gaussians in the kernel feature space. The effect of multilabels on the classi-
fier during the training phase can be understood intuitively as follows. If there are many
objects in the training set which belong to both the classes � + and � [ , the respective
class centroids ��� �j\ �
	 will be shrunk towards the averaged value �PO�� y �� � p � � � . In this
way, the classifier can learn the correlation of class labels.

For discriminant analysis it is straightforward to compute for each object a vector
of assignment probabilities to the individual classes � � , see e.g. [5]. In a traditional
two-class scenario we would typically assign an object to class ��� if the corresponding
membership probability exceeds 1/21. In multilabel scenarios, however, an object can
belong to different classes so that we have to find a suitable way of thresholding the
output probabilities. In analogy to the classical two-class case, we propose to first sort
the assignment probabilities in decreasing order and assign an object ) + to the first

�
classes in this order such that F �[]0I� 8 sorted ��� [ : ) + ��� ��O�� .

3 Functional categories of yeast proteins

This experiment concerns the prediction of functional categories associated with yeast
proteins. On the top-level hierarchy, the functional catalogue provided by the MIPS
comprehensive yeast genome database assigns 3588 yeast proteins with known func-
tion to 13 classes. Since a protein can have several functions, we recast the predic-
tion problem in a multilabel framework. The proteins are represented by a collection
of kernel matrices introduced in [6], consisting of (i) two kernels which analyze the
domain structure: � pfdom and an enriched variant � pf exp; (ii) three diffusion kernels
on interaction graphs: � mpi (protein-protein interactions), � mgi (genetic interactions),
� tap (co-participation in protein complexes); (iii) two kernels derived from cell cycle
gene expression measurements: � exp d and a RBF variant � exp g; (iv) a string alignment
kernel � SW. From each of these 8 original kernels we derive 3 additional Gaussian

1 For simplicity we have ignored the class priors which might give rise to other thresholds.



RBF variants by first computing squared Euclidean distances between pairs of objects,
g �+ [ �|� +1+ 
 �R� + [ p � [=[ , and than computing new kernels via � � � �+ [ � @BADC � 
�� � g �+ [ � .

Performance evaluation. In [6], all 13 classes were trained separately in a one-
against-all manner, where a gene is treated as a member of a certain class whenever
it has a positive label for that class (irrespective of other possible labels!). The per-
formance of these 13 individual classifiers has been evaluated in terms of area under
the ROC curves (auc). Our method, on the contrary, respects the multiclass/multilabel
structure of the problem by explicitly taking into account possible multilabels of genes.
When comparing the performance of our method with the results in [6] in terms of
class-specific auc values, however, we encounter the following problem: our proba-
bilistic multiclass approach uses fractional labels � �G� ��OPx4+ , where xb+ denotes the
label multiplicity of the N -the gene, and outputs a probability vector for all classes. Thus,
even in the optimal case, our classifier will assign a score of ��O�xn+ to a correct class.
Since the test set contains genes with different label multiplicities, the classifier scores
will reside on different scales and it will be impossible to find a common threshold for
the classifier scores when computing a ROC curve.

To overcome this problem, we use two different measures: for each class � � , ��� d	�	
 �
measures the area under the ROC curve only on the subset of genes which either do
not belong to class � � , or which are member of � � with label multiplicity 1. For this
subset (which for the yeast genome consists of � 2/3 of the genes) we can directly
compute a ROC curve, since there are no scaling problems. The measure ��� d weighted,
on the other hand, uses all test genes and avoids scaling problems by rescaling both the
fractional label �u� for class �l� and the corresponding probabilistic classifier score 8~�
by the individual multiplicities, �r�� ��U��y�x4+����D�� 3 ( X ���a- , 8 � � � 8 ��y�xb+ .

The obtained performances are depicted in figure 3 for 10 random splits into (80%
training) / (20% test) data (detailed description below). It turns out that the AdR model
significantly outperforms the method used in [6] in most of the classes. A closer analysis
shows that this improvement is only partially due to the enlarged number of kernels
(which can be managed very efficiently with our algorithm). The main influence factor
for the improved prediction is the direct solution of the multi-class multilabel problem,
whereas the method in [6] ignores the multilabel nature of the problem completely.

To highlight the different sources of improvements two experiments are conducted:
first we use the 8 “basis” kernels from [6], see http://noble.gs.washington.edu/proj/yeast/.
The left panel of figure 3 depicts three performance values (area under ROC curve) for
each of the 13 classes: the result reported in [6] (represented as vertical bars since no
variance measurements are provided) and the two measures ��� d weighted and ��� d	�	
 � for
our multilabel approach (represented as box-plots with median line and lower/upper
quartile). Each of the latter two significantly outperforms the former in 9 of the 13
classes (marked red). The measure ��� d���
 � shows an improved median performance
in all classes (some improvements are probably not significant, marked in orange),
whereas ��� d weighted has lower performance in three of the classes (probably also not
significant, marked light blue).

In a second experiment we use the increased kernel set which additionally con-
tains 3 RBF kernel variants of the 8 “basis” kernels. The right panel of figure 3 depicts
the results, again in terms of ��� d weighted and ��� d	�	
 � . We conclude that with respect to



the class-specific auc measures there might be a slight (but statistically insignificant)
improvement due to the enlarged kernel set. The improvement becomes more obvious
when computing the F1-measure which is the harmonic mean of precision and recall. In
order to compute the latter we first select for each gene the

�
most probable multilabels

as described at the end of section 2 above. With these sets of labels we then compute
both precision and recall up to the rank

�
and finally combine both to the F1-measure.

With the enlarged kernel set F1 increases to 0.59 as compared to 0.56 for the original
kernels. The improvement is due to higher precision at a comparable recall value.
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Fig. 1. Left: original kernels from [6]. For each class from left to right: results from [6], ����� weighted

and ���������
	 . Red: significant improvements; orange: probably insignificant improvements; light
blue: probably insignificant worse performance. Right: enlarged kernel set.

Figure 3 depicts the learned kernel weights. Each box contains 4 bins corresponding
to the original kernels from [6] and three Gaussian RBF kernel variants with decreasing
kernel width. It is of particular interest that a RBF variant of the genetic interaction
kernel � mgi attains the highest weight of all kernels, whereas the original diffusion
kernel on the interaction graph seems to contain almost no discriminative information
(consistent with [6] where � mgi is the least important kernel). This result shows that
genetic interactions are highly important for predicting functional classes. The diffusion
kernel � mgi, however, does not encode this information in a suitable way. The reason
for the improved performance of the RBF kernel variant might be the local nature of
the Gaussian kernel function. A diffusion kernel encodes transition probabilities for a
random walk model on a graph � . In the light of this random walk interpretation, the
steep decay of the Gaussian kernel accentuates the local graph structure by additionally
down-weighting transitions to farther nodes in the graph.

4 Discussion

The problem of learning kernel combinations has been addressed by reformulating
classification as an indicator regression problem using adaptive ridge penalties. While
the standard AdR model presented in [3] selects individual input features, our exten-
sions concerning weight sharing and kernelization lead to a nonlinear model that com-
bines/selects different kernel matrices.
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Fig. 2. Learned kernel weights in the experiment with the enlarged kernel set. Each box contains
one of the 8 “basis” kernels and three Gaussian RBF variants (from left to right).

From the experiments we conclude that for the prediction of functional protein
classes the AdR model compares favorably to the approach in [6]. Two aspects seem to
be important: on the modeling side, our approach directly exploits the multilabel struc-
ture of the problem, rather than training one binary classifier per class and ignoring
class correlations. Concerning the computational aspects, the efficiency of the method
allows us to easily enlarge the set of kernels: as long as one single matrix can be hold
in the main memory, the block conjugate gradient algorithm is extremely efficient. In
the case of yeast proteins, the use of additional kernels has e.g. lead to the insight that
genetic interactions are highly discriminative for functional predictions.

Due to a lack of space, details on using this approach in unsupervised settings will
appear elsewhere.
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