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Abstract. The accurate prediction of co-evolving pairs in protein sequences plays an important role in 
tertiary protein structure prediction and protein engineering. Using information theory to detect co-
evolving pairs is impacted by the phylogenetic effect on entropy measurements. Mutual Information 
(MI) is used to detect co-evolving pairs in a protein family by re-sampling based on mutation events in 
the phylogenetic tree (RPE). The predictive quality of co-evolving pairs with high mutual information 
(Z>=4), a sequence distance > 10 and within 12 angstroms using the RPE method is on average 81% in 
a Pfam family. The accuracy of detecting co-evolving pairs without RPE is 56%. This study represents 
the first known analysis of mutual information to detect co-evolving pairs in the full Pfam data set. 
Results for each protein family in Pfam and corresponding ribbon model graphing the MI relationships 
can be found at http://www.proteinx3d.com. 

1 Introduction 

Mutual information is the measure of mutual dependence between two variables. In protein structures this 
is referred to as co-evolving pairs [1]. When two amino acids are distant (>10 positions) in a sequence the 
fold of the protein could place them at contact points or near neighbors (<12 angstroms - Ǻ) in 3D space. If 
one amino acid mutates then it is possible that a neighboring amino acid in 3D space will also mutate to 
preserve function or structure of the protein. The use of mutual information or entropy measures to detect 
co-evolving pairs is an actively researched topic [2],[3],[4],[5],[1],[6]. The ability to predict secondary 
structure of helix, strands or loops by homology is considered 70-80 percent accurate [7]. The ability to 
take these predicted secondary structures and develop an accurate tertiary model is considered a 
challenging an unsolved problem.  

Developing an algorithm that allows the use of mutual information to detect co-evolving pairs that are 
close in 3D space but distant in a protein sequence would play an important role in tertiary structure 
prediction for that protein family. With a reliable method to predict co-evolving pairs this allows for the 
initial relative placement of secondary structures in a tertiary structure. This narrows the possible number 
of protein folding solutions and provides a potentially accurate base model which can then be further 
refined by already accepted methods. 

With a growing database of sequences associated with a particular protein family the challenges of small 
sample size are becoming less of an issue. The small sampling problem is replaced by the impact of 
phylogenetic noise from closely related sequences. This represent the first known review of an algorithm to 
detect co-evolving pairs against the complete Pfam database which represents 85% coverage of the Swiss-
Prot database and 75% coverage of the SP+TrEMBL database[8]. 

2 Information Theory Approach 

Application of Information Theory and the analysis of sequence data are impacted by a sampling bias from 
targeted research on proteins of medical interest and the introduction of noise from the phylogenetic impact 
on probability calculations. The field of Information Theory was introduced by Shannon (1948), “A 
Mathematical Theory of Communication”, which outlined the statistical measure of information and the 
detection of noise in a communication channel. Mutual information is based on Shannon Entropy (H) 



which is derived from the probabilities of occurrences of individual and combined events between two 
discrete random variables. The entropy of a discrete random variable is given by formula (1) and for two 
discrete random variables in formula (2). Mutual Information is given by formula (3) and represents the 
sum of entropy between two variables minus the joint entropy between two variables. Entropy is 
maximized when the variable is completely random. Standard units for Entropy and Mutual Information are 
bits where the log base is 2. 
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When calculating probabilities one underlying assumption is that the samples used to calculate the 

probabilities are randomly picked samples from the population. If the samples are not randomly picked 
then a bias is introduced towards the grouping of the samples [5]. In a protein family each sequence 
represents a sample of the population of sequences as a member of that family. The first introduced bias is 
that the sequences tend to come from research studies that have medical or pharmaceutical interests. Given 
common evolutionary history of all genetic sequences, the ability to survey the entire population for all 
members of a particular protein family is not practical. These two factors can contribute statistical bias or 
noise when calculating entropy or mutual information relationships.  

Using a phylogenetic tree for a protein family it is possible to detect mutation events at a particular 
sequence position. This reduced set of mutations could then be used as the basis for probability calculations 
to calculate the entropy. In Figure 1, a binary tree represents a phylogenetic tree where the circles are the 
hypothetical parent and the boxes represent a sequence position in a protein family. Without taking into 
consideration the phylogenetic influence the probability of the set p(A)=1/6, p(D)=1/6 and p(C)=2/3. If we 
calculate the probability of observed mutation events starting from the parent node then p(A)=1/3, 
p(D)=1/3 and the p(C)=1/3. This is done by starting at the root node and counting all children nodes where 
the child does not equal the parent. One approach accurately represents the population sample and the latter 
represents the probability of transition to a different amino acid. This has the impact of reducing or 
compensating for the phylogenetic influence on probability calculations. 

 

 
Fig. 1. – Phylogenetic tree for a single sequence position

 
Fig. 2 – Phylogenetic tree for co-evolving pairs
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In Figure 2, the tree represents a pair of amino acids found at sequence position x and y. The 
phylogenetic tree is used to detect mutation events between pairs which becomes the population sample 
used for probability calculations. The probability based on the number of observed sequences would result 
in p(AE)=1/6, p(DE)=1/6, p(CD)=3/6 and p(CE)=1/6. By using the method described above where we start 
at the root node and count children nodes that are different with the additional rule that if an internal node 
is XX it takes on the value of its parent node we get the following probabilities: p(AE)=1/4, p(DE)=1/4, 
p(CD)=1/4 and p(CE) =1/4. The impact of having CD occur 50% of the time is now reduced to 25% which 
serves as an adjustment to the phylogenetic influence of a mutation that occurs early in the tree and overall 



only four distinct mutations occur. The motivation for this approach is to increase the reliability of 
detecting co-evolving pairs that are < 12 Ǻ apart when measured from the closest non-Hydrogen atoms. 
The phylogenetic effect on the overall probability scores is reduced by calculating probabilities using 
observed state transitions. 

3 Mutual Information in Protein Families 

To illustrate the two approaches mutual information was calculated using log base 2 (STA) for Pfam family 
PF04055.9. A total of 24 amino acid pairs that are greater than 10 sequence positions apart have a Z score 
of 4 or greater. Eight of these pairs have a near-contact point < 12 Ǻ and four pairs > 16 Ǻ. This does not 
mean the other 16 MI scores are not significant but it does make it difficult to use the data in determining 
relative 3D position of two secondary structures. An indication of a false positive will be defined as two 
amino acid pairs greater than 16 Ǻ apart. We would like to increase the percentage of MI scores that are < 
12 Ǻ apart and reduce the number of well defined false positives.  

Using the reduced phylogenetic effect (RPE) method for PF04055.9, 23 data points have a MI score with 
Z >=4, 16 of the data points are < 12 Ǻ apart with an average distance of 7.4 Ǻ. The average overall 
distance for the RPE method is 9.6 Ǻ with a standard deviation of 3.8 compared to an average of 12.3 Ǻ 
and a standard deviation of 5.0 for the STA method. Reducing the phylogenetic impact in the probability 
scores in this one example has doubled the number of identified pairs that are < 12 Ǻ with a lower average 
distance between amino acid pairs. 

The two methods of calculating Mutual Information are applied to the Pfam data set where proteins are 
grouped by family based on Hidden Markov Models. Of the 8,183 protein families in Pfam 19.0, 2,765 
families have one or more referenced PDB structures and were used to test the prediction accuracy of 
detecting co-evolving pairs using Mutual Information. The phylogenetic tree used for each protein family 
was provided with the Pfam data set and is assumed to be optimal.  

Once mutual information is calculated for a protein family the referenced PDB models for that family 
are used to determine actual 3D position/distance between amino acid pairs as the closest non-Hydrogen 
atoms. For a PDB model to be used as a reference it was required that the Pfam sequence should align with 
the PDB sequence by at least 90%. From the 2,765 Pfam families with known PDB structures, 783 families 
were used that had a family size > 100 and < 5000 with at least one PDB structure that has 90% sequence 
alignment. 

The primary focus is on mutual information scores with a value four times or greater the standard 
deviation from the mean or Z>= 4 and sequence distance between pairs greater than 10. The percentage of 
MI scores grouped by Z score that indicate a pair is < 12 Ǻ is calculated for each family. This average 
prediction percentage represents the likelihood that if we use the same approach in Pfam families that do 
not have solved PDB models that the MI scores would represent co-evolving pairs. There are numerous 
attributes associated with the data and by clustering the different dimensions; the goal is to detect additional 
filter criteria that can be used to increase the quality of the predicted co-evolving pairs that are is < 12 Ǻ 
apart.  

By including an additional filter or constraint on the overall number of predicted co-evolving pairs with 
MI scores, where Z>=2 is less than 500 increases the Z>=4 percentages to 56.2% for the STA group. It was 
determined that if the average number of mutation events between co-evolving pairs for a protein family 
was less than 40 the prediction of co-evolving pairs was poor. For the RPE group and additional filter is 
applied where the number of mutation events for a column pair must be > 40 results in improved prediction 
accuracy of 81.3%. Using the filter criteria, the accuracy of the STA and RPE methods are compared in 
Figure 3 and Table 1. The RPE average prediction accuracy improved from a reduction in the number of 
low scoring families for both the Z>=4 and Z=3 groups. The average percentage of predicted co-evolving 
pairs with a distance greater than 16 Ǻ (false positive), Z>=4 and the number MI scores < 500 for the STA 
group is 26% and for the RPE group is 10.9%.  

 
 
 
 

 



Table 1- #MI scores per family < 500 and RPE MC > 40 
 

STA RPE 
 %<12A %Pfam %<12A %Pfam 

Z>=4 56.2 18.3 81.3 15.8 
Z=3 42.6 55.8 56.4 46.4 
Z=2 33.2 79.7 36.9 71.6 

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

#P
fa

m
 fa

m
ili

es

RPE Z>=4 STA>=4 RPE Z=3 STA Z=3
 

Fig. 1 – Percentage accuracy per Pfam family with #MI scores per family < 500 

4 Conclusion 

The RPE method of re-sampling sequence data based on mutation events along the phylogenetic tree is an 
effective approach in improving the quality of predicted co-evolving pairs. Information theory when 
applied to multiple sequence alignments in protein families can play an import role in detecting co-evolving 
pairs for tertiary protein prediction, protein engineering and regions of structural and functional importance. 
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