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1 Introduction

The importance of reliable data is increasing as our models and theories are ad-

vanced to gain access into complex models. Systems biology is a new �eld studying

the interactions of biological components and models containing several levels of

biological insight [Fie01]. Ever more complex models place a progressive demand

for high quality data. Reliability, robustness and repeatability are essential for ex-

perimental data acquisition.

One of the corner stones in the measurement technology in systems biology is mass

spectrometry (MS), which is a methodology to measure accurately �ne amounts of

substances in a sample. The produced spectrum shows the compounds and relative

abundancies of them.

Recently a paper was published by Kind et al. which studies the issue of annotating

and identifying metabolites with MS [KF06]. This study aims to present the relevant

computational methods of identifying compounds from a biological sample using

spectroscopic methods.

In section 2 the reader is introduced to the necessary background in MS and theory

of atoms with the focus on measurements of biological samples. In section 3 the

methods of identi�cation of metabolites from MS data is discussed in detail. Section

4 concludes this work.

2 Chemical background

The problems of analyzing biological samples and measuring their chemical compo-

sitions inherently requires some understanding of the relevant physical and chemical

aspects. The mass spectrometer is an e�ective and accurate device capable of pro-

ducing data in high-throughput manner from chemical samples [dH96]. MS enables

measurements of whole cell's state and the mixture of compounds within. Ideally

we want to measure the state of a single cell but in practise measurements over a

culture of cells in di�erent states are done.

MS measures the mass-to-charge ratio of ions. An inserted compound is ionized and

its mass-to-charge measured. The amount of each compound in the sample is usually

in the range of millions of molecules. The ionization process ionizes compounds

with di�erent amounts of charge. Superior amount of the compound is ionized to a
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charge of one, which allows us to simplify the mass-to-charge to just mass without

signi�cant loss of evidence. In the case of a sample with mixture of compounds,

all compounds can be measured at the same time. It is not uncommon for several

molecules with the same elemental (atomic) composition to overlap in the spectrum

and contribute to a single peak. Using a high-accuracy MS with low error (denoted

usually in parts per million) helps distinguish molecules with close masses.

Molecular compounds, e.g. amino acids and metabolites consists of various amounts

of elements. The elements are made of protons, neutrons and electrons and consti-

tute atoms. E.g. the carbon atom (C) has 6 protons, 6 neutrons and 12 electrons,

making it a charge-neutral and having a nominal (integral) mass of 12 Daltons (Da).

One Da is de�ned as one twelfth of carbon's mass.

Carbon's exact integral mass in an exception: all other elements have a non-integral

exact mass. E.g. oxygen has a nominal mass of 16 but exact mass of 15.9949146.

Note that several molecules of di�erent elemental composition can still have the same

mass with respect to a certain accuracy. E.g. CH2N2O9 has mass of 185.976030 and

C4H11PS3 has a mass of 185.976048, a di�erence of 1.92e-05. In this study we usually

only consider the most common elements of metabolites, namely carbon, hydrogen,

nitrogen, oxygen, phosphor and sulfur (CHNOPS). This is because metabolites are

mostly of these elements. The range of metabolite's sizes is mostly well restricted.

96.5% of all molecules in the KEGG LIGAND database [KG00], which is a database

of metabolites and organic compounds, are smaller than 1000 Da.

An elemental specie can hold di�ering amounts of neutrons in its nucleus, thus

producing isotopes of the same element with otherwise the same chemical properties.

We denote isotopes with a pair of nominal mass and natural abundance. Carbon has

2 naturally occurring isotopes, (C12, 98.89%) and (C13, 1.11%). Sulphur has four:

(S32, 95.02%), (S33, 0.75%), (S34, 4.21%) and (S36, 0.02%). (S35, 0%) doesn't occur in

nature. The isotope with zero extra neutrons is called monoisotopic and sometimes

denoted "+0" peak in the spectrum. It's mass is denoted by M0. Respective to the

focus of this study, higher isotopes quickly diminish in intensity. For a molecule C50

of 600 Da the +5, +6, . . . sum up to less than 0.0002.

The isotopic pattern is clearly visible from the spectrum. Each molecule has its own

unique isotope distribution coming directly from the elemental composition. This

is highly valuable information in identi�cation of molecule solely from it's M0 peak

and isotopic pattern.
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3 Identi�cation of metabolites

The spectrum only provides a peak pattern which corresponds to a molecule. The

isotopic pattern contains information about the molecule's elemental composition,

as does the mass M0. To identify a molecule based on it's deduced elemental com-

position is impossible task with purely computational means if there exists several

plausible molecular structures for a certain peak pattern. This is most often the

case.

A necessary step in identi�cation of metabolites is using an metabolic database.

Databases like KEGG [KG00], PubChem [NIH07], Dictionary of Natural Products

(DNP) [CHE07] and Chemical Abstracts (CAS) [CAS07] contain known molecular

structures. KEGG concentrates on naturally occurring compounds and metabo-

lites, while e.g. CAS is the largest compound database, but also contains various

arti�cially synthesized molecules.

Large amount of metabolites are not included in databases because of cell's dynamic

metabolism and the almost limitless range of molecules composed of di�erent struc-

tural motifs. Secondly for a certain mass various molecules of di�erent molecular

formulas can be found. Even if a single molecular formula can be found, there still

might exists several structural isomers, i.e. molecules with same molecular formula

but di�erent structure. Analysis of isomers usually requires a chemist to manually

identify chemically plausible and the most likely structures. Information about or-

ganism's pathways, biochemistry of cell and experimental setting might be utilized.

A sound strategy is to compute all chemically plausible candidate molecules and

restrict their amount with context-dependent information and using isotopic pat-

terns (See schematics of Figure 1). Computation of possible atomic compositions

(molecular formulas) for a mass M0 is discussed alongside with chemical constraints

on the possible molecular formulas. Finally the issue of isotopic pattern matching

is discussed in detail.

This usually results in a small set of highly scoring elemental compositions [KF06],

which can then be queried from databases or studied manually to identify the struc-

ture of the peak. This approach can be extended by utilizing prior information about

organism's biochemical pathways. Another promising extension is to match frag-

mentation patterns of the observed and candidate molecules with MS/MS databases

[JS04, BCE+00] or to use fragmentation patterns directly in structural elucidation

[HRM+06].
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Figure 1: A schematics of identifying a molecule from spectral pattern. Figure

reproduced from [KF06].

The resulting set of candidate molecules depends on the MS's accuracy of mass de-

termination. The mass accuracy of MS is denoted as mass accuracy error, which is

de�ned as |massobs−masstrue|
masstrue

· 106 parts per million. Modern MS devices are capable

of 1-5 ppm, with state of the art devices achieving even 0.1 ppm accuracies. Unfor-

tunately even this level of accuracy is not enough to determine a unique elemental

composition on most metabolites. Using 0.1 ppm accuracy, a total of 5 elemental

compositions are found for a molecule of mass 600 Da. The smallest molecule which

has a non-unique elemental composition has a mass of only 185.9760 Da with 0.1

ppm accuracy. For this particular molecule there exists thousands of valid chemical

structures. Thus the problem can't be solved by increasing the accuracy of MS in

the foreseeable future [Bal04].

The amount of atomic compositions for any mass is exponential. For most metabo-

lites exhaustive methods can still be applied with success, but e.g. protein analysis

relies of heuristic methods.
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3.1 Computation of atomic compositions

To determine the atomic composition of a molecule based on its mass can be for-

malized as computing the decompositions of mass m over the individual elements

a1, a2, . . . , aσ, i.e. we �nd a non-negative integer linear combination for

a1c1 + a2c2 + . . . + ancn ∈ [M0 − ε, M0 + ε], (1)

where M0 is the monoisotopic mass, ai are the real-valued masses of elements (one

can assume a1 < a2 < . . . < aσ), ε denotes the measurement inaccuracy and c is the

integer solution vector. This problem is a special case of well known integer knapsack

problem [KPP04]. In knapsack problem a value of a set of chosen items is maximized

while having the weights of the items below some limit. Atomic composition problem

is a special case of knapsack problem called subset sum problem, where each item

has a value equal to its weight and the set of items is unbounded and corresponds

to the atoms. Thus we try to �nd a subset of unbounded set of atoms that add up

to the desired mass. Both problems are known to be NP-hard.

A naive approach is to exhaustively go through all valid combinations of c. This

results in exponential number of decompositions. For alphabet CHNOPS there are

over 7 · 108 sum formulas below 1000 Da [KF06], which might be feasible depending

on the algorithmic implementation and the scope of the analysis.

If we assume integral coe�cients, i.e. integral masses, the solution is computed with

dynamic programming. Böcker et al. [BL05] proposed an algorithm which requires

runtime of O(a1στ(M0)), where a1 is the mass of the smallest element, σ is the size

of the alphabet and τ(m) the number of decompositions of M0. The solution still

leaves a lot be desired with a great number of false negatives resulting from integral

precision.

Böcker et al [BLLP06] introduced a Dimension Reduction (DR) algorithm for the

real-valued mass integer knapsack problem. The solution relies on a new formalism

of joint decompositions, or multiple knapsack problem formulation. The results are

consistently better than earlier algorithms.

3.2 Filtering the results on chemical knowledge

The numerous candidate molecular formulas can be reduced using chemical knowl-

edge of plausible molecules. There exists several simple rules dictating plausible
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molecules based on their molecular formulas, which greatly reduces the search space

[KF06].

A well known LEWIS rule dictates that compounds have to account for an even

number of electrons with atoms that all obey the octet rule. Octet rule states that

atoms usually have eight electrons in their shell. If an atom lacks electrons, it tries

to gather them by sharing electrons with its neighbouring atom, i.e. forming a bond.

Valence, a natural property of all atoms, dictates the bonding properties of atoms.

A common abstraction of valence is the amount of single bonds it can form. A

carbon atom has four bonds in its neutral state, oxygen two, etc. The SENIOR

theorem [Sen51, MN03] places common restrictions on the valence properties of a

compound. The degree of unsaturation rule states that DU = −v1

2
+ v3

3
+ v4 + 1

[Pel83] is a non-negative integer if all elements are assumed to be on their lowest

valency state. Variable v1 denotes the number of monovalent atoms (H), v3 trivalent

atoms (N,P) and v4 tetravalent atoms (C). Also unreasonably high or low amounts

of hydrogen atoms can also, depending on context, be excluded.

Heavier elements can be ignored from the calculations. The most precise testing can

be done if each compound is simulated on structural level, however, this is unfeasible

on all but smallest molecules (less than 500 Da).

3.3 Utilizing isotopic information

The isotope pattern contains direct information about the molecule's atomic compo-

sition. Isotopes can be used to eliminate candidate molecules with invalid isotopic

distributions. The isotope pattern is easily retrieved from the spectrum if overlap

is ignored. For sake of simplicity we assume that patterns do not overlap.

All isotopic combinations of a compound is represented by expansion of product of

polynomials (see Table 1 and 2)

(a1 + a2 + . . .)m(b1 + b2 + . . .)n(c1 + c2 + . . .)o . . . , (2)

where a1, a2, . . .; b1, b2, . . .; c1, c2, . . . represents individual isotopes of the elements

a, b and c, respectively, and m, n, o represent the number of atoms of corresponding

element. Thus e.g. sucrose C12H22O11's polynomial is (C12+C13)12(H1+H2)22(O16+

O17 + O18)11.

The iteration of all permutations of above mentioned polynomial is usually a daunt-
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C12 C13 H1 H2 O16 O17 O18 nom. mass mass (Da) abundance %

12 0 22 0 11 0 0 342 342.116215 84.9204

11 1 22 0 11 0 0 343 343.119570 11.4383

12 0 22 0 10 1 0 343 343.120431 0.3558

12 0 21 1 11 0 0 343 343.122492 0.2803

12 0 22 0 10 0 1 344 344.120460 1.8727

10 2 22 0 11 0 0 344 344.122925 0.7062

11 1 22 0 10 1 0 344 344.123786 0.0479

11 1 21 1 11 0 0 344 344.124647 0.0007

12 0 22 0 9 2 0 344 344.125847 0.0378

12 0 21 1 10 1 0 344 344.126708 0.0012

12 0 20 2 11 0 0 344 344.128769 0.0004

Table 1: Isotope species of sucrose (C12H22O11) sorted by mass up till nominal mass

344. Table reproduced from Bocker et al. [BLLP06]

peak nom. mass mean mass (Da) abundance %

+0 342 342.116215 84.9204

+1 343 343.120831 12.0744

+2 344 344.124734 2.6669

. . .

Table 2: First three isotopes of sucrose (C12H22O11). Isotopes +3, +4, . . . contribute

0.3384 % to the isotopic pattern.

ing task. The number of isotopic expansions for the polynomial with nC carbons,

nH hydrogens, nN nitrogens, nO oxygens, nP phosphor and nS sulfur is

(nC + 1)(nH + 1)(nN + 1)

(
nO + 2

2

)
(1)

(
nS + 3

3

)
. (3)

Note that phosphor (P) contains only single naturally occurring isotope and thus

doesn't contribute to the number of permutations.

Sucrose has 13·23·
(
13
2

)
= 23322 isotopic permutations, a number well in the range of

exhaustive computation. A sound strategy is to enumerate all isotopic permutations,

compute each's abundance and combine the permutations into +1,+2 etc. peaks.

Let's �rst consider the isotopic distribution of a molecule El consisting of l identical

atoms of element E ∈ {H, C,N,O, P, S}. The abundance of a single isotopic specie is
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multinomial distribution X ∼ P (n+0, n+1, . . . ; l; r1, r2, . . .), with probability function

P (n+0, n+1, . . . ; l; r0, r1, . . .) =
l!

(n+0)!(n+1)! . . .
rn+0

0 rn+1

1 . . . , (4)

where ri denotes the natural abundance of element E's i'th isotope and n(+j) the

count of j'th isotopic element.

The factorials in the equation can get large for medium sized molecules. An im-

mediate optimization method is to calculate the abundancies iteratively [Yer83].

Lets denote with Ai the probability of the i'th permutation using some isotopic

permutation (see Table 1).

Now the probability of the �rst permutation (l, 0, 0, . . .) is computed with

A0 = P (l, 0, . . . ; l; r0, r1, . . .) = rl
0. (5)

The probabilities of following isotopic species are obtained with

Ai+1 = Ai ·
(n+0

i )!(n+1
i )! . . .

(n+0
i+1)!(n

+1
i+1)! . . .

r
n+0

i+1−n+0
i

0 r
n+1

i+1−n+1
i

1 . . . . (6)

Note that for elements in {H, C,N} the abundance is a simpler binomial distribu-

tion. The joint distribution of several elemental species is the product of monoele-

mental species.

There also exists other methods. Rockwood et al. [RVOS05] has concentrated on

applying fast fourier transformation (FFT) on the problem. Later the method was

optimized for high resulution [RVOS96] and for large sized molecules [RVO96].

Finally measured isotope pattern is compared to the simulated isotopic distributions.

An adequate solution for this problem is to discriminate candidate molecules with

root mean square (RMS) analysis. We minimize cost C

C =
k∑

i=1

(fobs(Mi)− fsim(Mi))
2, (7)

where fobs(Mi) is the i'th peak's observed intensity and fsim(Mi) is the corresponding

simulated intensity. This method only measures di�erencies in isotope intensities

and ignores the questions about isotope's mass error. However, it performs well in

most cases (see Figure 2).
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Figure 2: Candidate molecules for a target mass (Silylated sorbitol) are plotted on

their isotopic distributions of M+1 and M+2 isotopes. The red square indicates a

5% RMS error area around the target. Figure reproduced from [KF06].

Another approach is to use bayesian statistics in distribution evaluation [ZAS02,

ZC00]. A probability is assigned for simulated patterns with Bayes equation

P (Mj|D, B) =
P (Mj|B)P (D|Mj, B)∑
i P (Mi|B)P (D|Mi, B)

, (8)

where D is the data (observed pattern), Mi are the models (simulated pattern) and

B is the prior knowledge. B can be used to exclude impossible or invalid candidate

molecules by setting prior P (Mj|B) to zero for desired molecules. Probability of the

observed intensity is calculated by P (D|M, B) =
∏

j P (Mj|mj)
∏

j P (fj|pj), where

P (Mj|mj) is the probability to observe peak j at mass Mj with true mass of mj

and P (fj|pj) probability to observe peak j with intensity fj with real intensity of

pj. This formulation takes into account the error in peak position, which follows

from mass spectrometry's inaccuracies and also from the fact that di�erent isotopic

species contain sligthly di�erent masses even with the same nominal mass (See Table

1).
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4 Conclusions

Mass spectrometric data is abundant and the emphasis on the analysis of compounds

in data. The annotation of compounds based on low error in peak measurements

and isotopic information produces highly speci�c elucidations for the compounds.

The completely automical annotation of compounds is not yet resolved, though. A

meticulous care has to be taken for overlapping compounds and isotopes, technical

and chemical aspects of experiments and error-ranges of the MS devices.

The various computational methods in this area are mature. The chemical databases

also have increased in size and accuracy to keep in pace with systems biology ad-

vancements. Contextual information about pathways and feasible potential metabo-

lites adds while for hard cases methods like fragmentation patterns can be utilized.
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