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1 Introduction

The capability of an organism to perform biochemical conversions is encoded in the
genome. The genome contains the genes that encode the enzymes that perform the
biochemical reactions. The complement of the biochemical reactions encoded in the
genome is modelled as a genome-scale metabolic network preserving the connections
between the enzymes performing the reactions and the metabolites that are either
substrates or products of the reactions. The reactions are thus connected through
shared metabolites and form a network. A metabolic flux is the rate at which a
metabolite is converted to another in a reaction. The metabolic fluxesin a cell are the
ultimate physiologica response to the gene function and to the extracellular

conditions.

Cell function is regulated in different functional levels. Gene expression is under
regulation, enzyme synthesis can be controlled and enzyme activities can be adjusted
for examples by inhibitors and activators. The regulation is sensitive to both external
and intracellular conditions through sensor mechanisms. The regulation leads to
adjusting the biochemical conversion capabilities according to the particular
requirements. Thus, all the reactions are not necessarily active at the same time and

the activities of the reactions can vary extensively depending on the conditions.

Genome-scale metabolic network reconstructions for micro-organisms have been
published (Duarte et al., 2004; Forgter et al., 2003). In silico predictions of the
function of an organism’'s metabolism: the optimal growth rate, the maximal
production rates and corresponding metabolic flux distributions, the viability after
gene knockout, can be made using the metabolic network (Famili et al., 2003). The
reconstruction process of a genome-scale metabolic network requires gene annotation
information for coupling the genes with correct biochemical reactions to be included
in the metabolic network. However, the gene annotation information for many
organisms is incomplete. Thus, the reconstruction of the ill-characterised organisms
leads in formation of gaps in the metabolic network (Herrgard et al., 2006).

The optimal metabolic network identification (OMNI) method aimsto determine a set
of active reactions that best agree between the in silico predicted and experimentally



measured metabolic flux distributions in a cell. The OMNI method can be used to fill
gaps in the metabolic networks of ill-characterised organisms, to identify reactions
that are inactive or extensively down-regulated and forming bottlenecks in evolved
and engineered strains and even to evaluate functions of poorly annotated enzymes
and to identify correct aternative reaction mechanisms (Herrgard et al., 2006).

2 Constraint-based modelling

Congtraint-based modelling is used for studying phenotypical behaviour of an
organism. The existing large metabolic models are stoichiometric models describing
the metabolic capabilities of the organisms. The models describe the metabolite-
enzyme connectivities and the stoichiometries of the possible reactions. The reaction
stoichiometries define the reactants and their molar ratios in the reactions. The
constraint-based modelling approach complements the stoichiometric model with
additional physicochemical constraints such as thermodynamic and reaction rate
capacity constraints (Price et al., 2003). The stoichiometric and additional constraints
define the possible metabolic flux distribution outcome of a metabolic network, the
feasible flux distribution solution space, Figurel. A metabolic flux can be thought as
the rate at which material is processed through a reaction or in other words a reaction
rate in moles per unit of time. A metabolic flux distribution is a vector of values for
each of the metabolic fluxes in a cell in defined conditions and a a specific time
point. A complement of all the metabolic fluxes in a cell is a fluxome. All the points
in the defined feasible flux distribution solution space, that is a polyhedral cone, are
possible physiological states of a cell. With only few experimentally measured
parameters, e.g. the extracellular consumption and production rates and the growth
rate, the constraint-based models can be used to determine an optimal metabolic flux
distribution in a cell given a particular objective function using flux balance analysis
(Famili et al., 2003)
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Figure 1. Constraint-based modelling approach integrates stoichiometric, thermodynamic and reaction
rate capacity constraints to define a space of feasible metabolic flux distribution solutions where the
cellular state solution pointslie (Famili et al., 2003).

3 Flux balance analysis

The metabolic flux analysis (MFA) aims to determine the flux distribution in a cell.
The extracellular fluxes such as the consumption and production rates of compounds
by cells and the growth rate can be experimentally determined but the intracellular
metabolic fluxes cannot be measured directly. The stoichiometric coefficients, the
molar ratios of participating reactions, from a stoichiometric metabolic model can be
collected into a stoichiometric matrix N, the metabolites in rows and fluxes in
columns. The stoichiometric matrix describes the metabolic sysem and is
independent of time, the metabolite concentrations and kinetics of the enzymes
catalysing the reactions. If the metabolic flux distribution is the vector v, the changes
of the metabolite concentrations over time can be described by a system of differential
equations, Equation 1 (Klamt and Stelling, 2006).
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Where c(t) is a vector of the metabolite concentrations. The elements of the metabolic
flux distribution vector, the metabolic fluxes, are functions of time, the time-
dependent metabolite concentrations and often not exactly known parameters p
describing the kinetic properties of the enzymes catalysing the reactions, Equation 2
(Klamt and Stelling, 2006).



vit) = £(c(t), p.t) 2

A steady-state of metabolism can be assumed when cells are growing at constant rate
since the biochemical conversions are fast compared to regulatory events. Constant
growth experiments are usually continuous cultivations of a population of micro-
organisms where there is a constant supply of substrates and a constant withdrawal of
culture broth and mixing of the culture broth can be assumed ideal. A limiting
substrate holds the growth rate constant. Under a steady-state assumption the reaction
rates and the intracellular metabolite pool sizes can be assumed to remain constant
over time (Stephanopoulos et al., 1998). Thus, the changes of the metabolite
concentrations in time can be set to zero and a homogenous system of linear mass
balance equations for the metabolites is obtained, Equation 3, (Bonarius et al., 1997).

O=N?'v (3)

The dilution effect of the macromolecule pools caused by the growth of cells is
usually modelled as an artificial reaction consuming macromolecular cell biomass
constituents and producing an artificial metabolite biomass (Stephanopoulos et al.,
1998).

The system in Equation 3 is usually underdetermined because of a high number of
degrees of freedom. The trivia solution to Equation 3, v = 0, would represent a
thermodynamic equilibrium instead of a living organism. The stoichiometric matrix N
and the metabolic flux distribution vector v can be rearranged into measured and
unknown parts so that the measured parts contain the measured extracellular fluxes
and the rest of the fluxes are considered in the unknown part, Equation 4 (Klamt et
al., 2002).

O=Nx=N_x_+N_x, (4)

Where v, contains the measured fluxes and N, contains the soichiometric

coefficients of the measured fluxes and v. contains the rest of the fluxes and N



contains the rest of the stoichiometric coefficients (Stephanopoulos et al., 1998). If
rank(N;) < number of unknown fluxes, the system is underdetermined. If rank(N) =
number of unknown fluxes, the system is determined. If rank(N:;) < number of
metabolites in the system, the system is redundant and thus there are rows in N that
can be expressed as linear combinations of other rows. If rank(N;) = number of
metabolites in the system, the system is not redundant (Klamt et al., 2002). A unique
intracellular flux distribution can be determined if the system is determined and not
redundant. Thus the non-singular square matrix N can be inverted and the v, can be
solved, Equation 5, (Stephanopoulos et al., 1998).

)N, v (5)

However, due to the complex structures of metabolic networks, a MFA system
usually is underdetermined. Isotopic-tracer experiments, in particular carbon-13
labelling experiments, are the means to provide additional experimental input data.
The label is introduced into cells by feeding them with labelled substrate. The fate of
the label depends on the active metabolic pathways in the cell and the fate of the
isotopic label can be determined either from the metabolites or from the biomass
constituents as amino acids either by mass spectrometry (MS) or nuclear magnetic
resonance (NMR) spectroscopy (Stephanopoulos et al., 1998). The drawback is that
the isotopically labelled compounds are expensive, the experiments are laborious and
they do not always provide enough independent data to enable reliable computational

estimation of the intracellular flux distribution.

The flux balance analysis (FBA) is a particular case of the metabolic flux analysis.
The FBA is based on solving a system of metabolite mass balance equations under a
steady state assumption with external measured consumption and production fluxes
and growth rates as the only experimental input data (Bonarius et al., 1997). If the
metabolite mass balance equation system remains underdetermined a linear objective
function is set for linear programming and additional constraints from a constraint-
based model are included and thus the optimal flux distribution is obtained as a
solution of (Herrgard et al., 2006)
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where the vector a contains the objective coefficients.

However, setting up a biologically meaningful objective function is not a smple task.
Maximising growth is a suitable objective function for many micro-organisms in
many growth conditions and has even been shown to be valid for knock-out strains
after evolving in the specific growth conditions (Edwards et al., 2001). On the other
hand there is experimental evidence of even bacterial strains that do not optimise for
growth but compromise between the growth requirements and robustness functions
(Fischer and Sauer, 2005). Eukaryotic cells like yeasts may optimise for growth in
some conditions (Famili et al., 2003) but for example Saccharomyces cerevisiae
shows respirofermentative metabolism in glucose excess conditions due to carbon
source repression that limits the respiration and optimal biomass yield. Mammalian
cells in tissues are extreme examples of cells that cannot be thought to optimise
growth but other functions instead.

The biosynthetic fluxes are coupled to the growth rate of an organism. They are either
put into the objective function when the growth is optimised or they are considered as
additional measured fluxes when an estimate of the biomass composition is available
and an artificial biomass synthesis flux can be set up (Herrgard et al., 2006). In an
objective function the stoichiometry of the cell biomass synthesising reactions has to
be known exactly. The macromolecular composition of cell biomass can be
experimentally measured but some of the methods provide results that are prone to
large experimental errors (Lange and Heijnen, 2001). Furthermore, the biosynthetic
routes of many organisms are not completely known and may vary depending on the
growth conditions as the macromolecular composition of the biomass. Also the

compositions of macromolecules may vary growth condition dependently.

The congtraint-based modelling approach obviously provides erroneous predictions on
the metabolic flux distributions if the structure of the metabolic network model is



incorrect. Discrepancies between the model predictions and experimental data are
observed if the model stoichiometry includes errors. The Optimal Metabolic Network
Identification (OMNI) method can be used to define the correct active set of reactions
in the stoichiometric model to improve the model predictions (Herrgard et al., 2006).

4 Optimal Metabolic Network Identification (OMNI)

The OMNI method aims to identify the correct active set of reactions from a larger set
of potentially active enzymes for example from a genome-scale constraint-based
metabolic model. The method is applicable to different type of cases where the active
network structure is unclear. If the metabolic network reconstruction contains gaps,
the OMNI method can be used to identify the gap-filling reactions that make the
model predictions optimally agree with the experimental data from a set of potentially
active reactions. If an evolved strain does not show optimal growth, the OMNI
method can be used to identify the possible bottleneck reactions, which are either
inactive or severely down-regulated (Herrgard et al., 2006).

4.1 Bilevel optimisation problem
The OMNI is based on measured rates, the growth rate and the substrate uptake and

product secretion rates, and on intracellular flux data from MFA. The problem of
finding an optimal active reaction set to match the model predictions with
experimental data is formulated as a bilevel mixed-integer optimisation problem,
Figure 2. The inner problem solves a flux balance analysis problem for the particular
metabolic network structure. Thus the reaction set included in the model is fixed for
the inner problem. The feasible flux distribution solution space, the polyhedral cone,
is different for the different reaction sets. In the inner FBA problem an optimal flux
distribution is solved for the particular feasible solution space. Whereas the outer
problem searches for an optimal network structure, in other words a best set of active
reactions, to obtain predictions that match optimally with the experimental data
(Herrgérd et al., 2006).
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Figure 2. An illustration of the bilevel optimisation approach of the OMNI method. (A) The dtered
model structure results in changes in the FBA-predicted optimal flux distribution. (B) The optimal
network structure identification is formulated as a bilevel optimisation problem (Herrgdrd et al., 2006).

Mathematically the bilevel-optimisation problem is formulated as (Herrgard et al.,
2006):
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The vector a contains the objective coefficients. The vector V™ contains the
maximum fluxes from the model constraints. The vector V™ is the optimal flux
distribution for a given set of reactions and v*® is the experimentally measured flux
distribution. The vector w contains weights for the measured fluxes. The vector y is a
binary vector. The elements of the vector y indicate if the reaction is included in the
model or not. The corresponding reactions to the elements of y that get the value one
are included in the model. F is a set of reactions that are essential and cannot be
excluded from the model and D is a set of reactions that can be removed from the
model to improve the model predictions. The reactions in the set F have high
evidence of being active whereas the set D contains the potential reactions to be
inferred. The set D can, for example, contain all the reactions that are not included in
the set F in the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al.,
2004) for filling gaps in the reconstructed metabolic networks of poorly characterised
organisms. K is the number of allowed reaction deletions. M is the set of reactions
with measured fluxes. The set E contains the reactions with constrained fluxes. The
set E can include measured extracellular fluxes. In general it is possible to divide
reactions to sets M and E in different ways. The fluxes in the constraint set E are
assumed to be measured more accurately than the fluxes in the set M that are used in
the objective (Herrgard et al., 2006).



The inner problem is a FBA problem that is solved for a particular set of reactions
defined by the binary vector y, the elements of the vector y are parameters, whereas
the elements of y are variables in the outer problem that is solved for minimised
discrepancy between the optimal predicted flux distribution and the experimental flux
distribution. The outer problem searches through the space of possible binary vectors
y, that is dependent on the reaction sets F and D, for the best possible metabolic
model structure given the experimental flux distribution (Herrgard et al., 2006). The
OptKnock computational strain design method utilises a similar kind of bilevel
optimisation strategy, where the outer problem optimises for a single specific
production flux of an organism. However, the OptKnock method does not include any
experimental flux datain the input data (Burgard et al., 2003).

4.2 Transformation into a single-level MILP
Solving the bilevel optimisation problem directly is time consuming due to the

numerous possible reaction combinations to be included or excluded from the model
(Herrgérd et al., 2006). Instead the overall bilevel optimisation problem can be
formulated as a single mixed-integer linear program (MILP) as in the OptKnock
method (Burgard et al., 2003). According to the linear programming duality theory
there exist a unique dual optimisation problem for each primal linear programming
problem and the optimal objective values of the primal and dual problems are equal.
Thus, the objectives of the primal and dual problems can be set equal to one another,
the respective constraints of the problems accumulated and the bilevel optimisation
problem formulation becomes transformed into a single MILP (Burgard et al., 2003).
In the transformation of the OMNI optimisation problem into a single MILP the inner
problem is converted into a set constraint and thus, the OMNI method will always
evaluate the distance between the experimental flux distribution and the one of the
predicted alternative flux distributions that is the closest to the experimental flux
distribution (Herrgard et al., 2006).

To convert the OMNI optimisation problem in Equation 5 into a single large MILP

the objective function in Equation 7 can be expressed in terms of only linear terms
and constraints as (Herrgard et al., 2006):
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A constraint for searching unique model structures that give equally good predictions,
the equal value of the objective function, can be formulated as (Herrgard et al., 2006):

é Y, >0 n=1..N 9)
KR,

N is the number of previously obtained active reaction set solutions.

In most cases the OMNI MILP can be solved to optimality using standard solvers run
on a single workstation within few hours. If the upper and lower bounds for the fluxes
can be set tighter the computational time is reduced. For many reactions the bounds
can be set to zero depending on the growth conditions without any loss of information
(Herrgérd et al., 2006).

5 Identification of flux bottlenecks in E. coli knock-out strains

For a fraction of knock-out strains FBA significantly over predicted the growth rates
at the end point of evolution for 45-50 d. The E. coli iIJR904 genome-scale metabolic
model overpredicted the growth rates of two independently evolved endpoint strains
of each triose phosphate isomerase (tpi), phosphoenolpyruvate carboxylase (ppc) and
phosphoglucose isomerase (pgi) deletions strains by an average of 22 % compared to
the data from evolution experiments. The deletion strains had been characterised with
metabolic flux and gene expression profiling experiments. The OMNI method was
applied to identify the causes of the discrepancies between the model predictions and
the experimental data. Since the discrepancies were over predictions of the growth
rates, except for pgiE2 that was thus not included in the analysis, it was assumed that
for some reasons some of the reactions in the model could not operate optimally in the
experiments and thus the OMNI method could improve the model predictions. The
corresponding in silico reactions were deleted from the genome-scale model. The set
of measured target fluxes in the objective function of the OMNI was the growth rate
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and 23 intracellular fluxes that had been determined from the strains. One to four
reaction deletions were allowed for the OMNI. The model predictions did not
improve significantly with over four reaction deletions (Herrgard et al., 2006).

The results of the study are shown in Table 1 from Herrgard et al., 2006. For all the
strains included in the analysis the OMNI was able to identify a model structure that
significantly improved the model predictions. Increasing the number of deleted
reaction from the model up to four further improved the model predictions.
Significant improvement of the model predictions required deletion of at least two
reactions and thus the bilevel-optimisation approach of the OMNI method is highly
efficient compared to full enumeration of all possible reaction deletions (Herrgard et
al., 2006).

Table 1. Thereaction bottlenecks identified by the OMNI method for evolved E. coli knockout strains.
The value of the OMNI objective function for the corresponding number of reaction deletions is
shown. Also the corresponding errorsin the growth rate prediction are given (Herrgérd et al., 2006).

Reaction Number of OMNI Growth Rate Expression Expression Reaction Description Subsystem
Reactions Objective Error (%) Score 1 Score 2
paiEl 0 121 326 —_ - - - —
2 115 275 0.2 990 MTHFC Methenyltetrahydrofolate Folate metabolism
cyclohydrolase
NADH& NADH dehydrogenase Oxidative phosphorylation
3 104 207 0.4 13 DRPA Deoxyribose-phosphate aldolase Alternate carbon metabolism
NADHG NADH dehydrogenase Oxidative phosphorylation
FRD3 Fumarate reductase Citrate cycle (TCA)
ppckl 0 60.1 244 = == — — —
1 517 23.0 140 13.7 TKT2 Transketolase Pentose phosphate cycle
2 462 225 900 99.0 AKGDH 2-oxogluterate dehydrogenase Citrate cycle (TCA}
TKT2 Transketolase Pentose phosphate cycle
3 347 136 30 4.7 AKGDH 2-oxogluterate dehydrogenase Citrate cycle (TCA)
NADH& NADH dehydrogenase Oxidative phosphorylation
FRD3 Fumarate reductase Citrate cycle (TCA)
ppcE2 0 49,1 17.0
1 403 15.8 990 134 TKT2 Transketolase Pentose phosphate cycle
2 52 15.2 1.9 99.0 AKGDH 2-oxogluterate dehydrogenase Citrate cycle (TCA)
TKT2 Transketolase Pentose phosphate cycle
3 288 72 928 135 NADH& NADH dehydrogenase Oxidative phosphorylation
NADHB NADH dehydrogenase Oxidative phosphorylation
SUCOAS Succinyl-CoA synthetase
{ADP-forming) Citrate cycle (TCA)
4 26.7 69 4.7 18 FDHZ Formate dehydrogenase Oxidative phosphorylation
AKGDH 2-oxogluterate dehydrogenase Citrate cycle (TCA]
NADHG NADH dehydrogenase Oxidative phosphorylation
NADHE NADH dehydrogenase Oxidative phosphorylation
tpiEl 1] 36 290 — — — — —
1 255 219 1.2 13.0 PGL 6-phosphogluconolactonase Pentose phosphate cycle
2 9.8 20.2 1.0 13.2 EDD 6-phosphogluconate dehydratase Pentose phosphate cycle
PGL 6-phosphogluconalactonase Pentose phosphate cycle
tpiE2 0 EEN] 253 — — — — —
1 243 185 138 13.0 PGL 6-phosphogluconolactonase Pentose phosphate cycle
2 10.7 16.8 90.0 13.4 EDD 6-phosphogluconate dehydratase Pentose phosphate cycle
PGL 6-phosphogluconolactonase Pentose phosphate cycle
3 104 127 1.9 13.0 CYTBO3 Cytochrome oxidase bol Oxidative phosphorylation
2-dehydmo-3-deoxy-phosphogluconate  Pentose phosphate cycle
EDA aldolase
PGL &-phosphogluconolactonase Pentose phosphate cycle
4 9.9 16.2 290 99.0 EDD &-phosphogluconate dehydratase Pentose phosphate cycle
PGL &-phosphogluconolactonase Pentose phosphate cycle
GALU UTP-glucose-1-phosphate Alternate carbon metabolism
uridylyltransferase
PPM2 Phosphop 2 (d ibose) Al carbon metabolism
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The correspondence of the bottleneck reactions identified by the OMNI method and
the gene expression data from the strains compared to the E. coli wild-type strain was
also studied. In many cases the genes corresponding to the bottleneck reactions were
downregulated in the evolved strain compared to the wild-type. However, the gene
expression changes were quite similar in all the strains even though the OMNI
method identified distinctive bottleneck reaction sets for the strains (Herrgard et al.,
2006).

Based on the bottleneck reaction identification by the OMNI method, regulatory
constraints limiting the optimal performance could be estimated. The bottleneck
reactions in the pentose-phosphate pathway were identified for tpiE1 and tpiE2 strains
and downregulation of the corresponding genes compared to the wild-type strain was
observed. The reason for bottlenecks in the pentose-phosphate pathway is not clear
but it could be argued that the reason is the aim to reduce the production of NADPH
by the pentose-phosphate pathway because the reduced consumption of NADPH by
the reactions linked to the deleted tpi gene reaction (Herrgard et al., 2006).

6 Conclusions

The most prominent application of the OMNI method is the identification of the
correct active set of reactions in evolved strains showing slower than optimal growth
rate based on the model predictions. An example of this application was given in the
article by Herrgard et al., (2006) where evolved E. coli strains were studied. However,
the suggested gap-filling application (Herrgard et al., 2006) can be expected to be
computationally extremely time consuming if the set of potential reactions to be
included in the model cannot be held small. The other suggested application in
evaluating functions of poorly annotated enzymes and identifying the correct
alternative reaction mechanisms (Herrgard et al., 2006) are not sraightforward
applications and for solving these problems there are possibly more efficient methods.
Alternative reaction mechanisms could only be studied in the level of reaction
stoichiometry with the OMNI method. The enzyme function annotation problem is
hard to solve by searching for optimal biochemical conversions, reactions, for the
model since even though an optimal set of biochemical conversions is found it does

not necessarily couple enzymes to the biochemical conversions.
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The OMNI method uses metabolic flux distribution data as input data (Herrgard et al.,
2006). If only extracellular rates as the growth rate and uptake and production rates
are included in comparisons of the experimental flux data and the model predictions,
the distribution of intracellular fluxes may have many alternative solutions that are
equally good and thus even different model structures could give show equally good
predictions. On the other hand obtaining reliable information on the intracellular flux
distribution to be used as input data would require isotopic labelling experiments and
that is laborious and expensive to be carried out for a larger set of for example knock-

out strains.

The objective function for the FBA problem is in a centra role in the OMNI method
asin al FBA applications if biologically meaningful results are desired. Maximising
growth is more suitable objective for simple bacteria than for eukaryotic micro-
organisms. The stoichiometry of an artificial flux for biomass synthesis should be set

up carefully.

In the formulation of the bilevel-optimisation problem the number of allowed
deletions was given exactly without further explanation (Herrgard et al., 2006). If it
was replaced with an inequality, would the computation become too time-consuming
to be practical?
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