Inferring the Past: Phylogenetic
Trees (chapter 12)
1+ The biological problem
1+ Parsimony and distance methods
1+ Models for mutations and estimation of distances

1+ Maximum likelihood methods
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Estimation of distances

1 Many alternative ways to derive the distances d; exist

+ We can construct a simple stochastic model for the
evolution of a DNA sequence...

1 ...and then obtain the distances from the model
i+ Key points:

- mutations at sites are rare events in the course of time =>
poisson process

- sites evolve individually and by an identical mechanism

- number of mismatched bases is a sum of mutations at
individual sites => binomial variable
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A stochastic model for base
substitutions

Consider a single homologous site in two sequences

Assume the sites diverged for time length t: the sites
are separated by time 2t

Suppose that the number of substitutions in any
branch of length t has a Poisson distribution with mean
At

Probability that k substitutions occur is given by the
Poisson probability eM(At)%/(k!), k=0, 1, 2, ...
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Substitutions at one site

i+ General model: P(substitution results in base j | site
was base i) = m

1 Felsenstein model: m; = 1, with ;= 0 and m; + 1, +
M+, =1

1 Assume that the set of probabilities 1;is same at every
position in the sequence
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Substitutions at one site (2)

Probability g;(t) that a base i at time O is substituted by
a base jatimetlater

Vg =eM+ (L -er)m,ifi=]

1 gi(t) = (1 - eM) T, otherwise
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Substitutions at one site (3)

i+ We assume stationarity: distribution of base
frequencies is the same for every time t

1 In other words, we want that

P(base atime t later = j) 0

i For our simple model, this can be shown to hold
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Estimating distances

1 Distances should take into account the mutation
mechanism

1+ Average of At substitutions occur at a particular site on
a branch of length t

i+ However, some of the substitutions do not change the
base (A-> AorA->G -> A, for example)
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Mean number of substitutionsin
timet

What is the chance H that a substitution actually
changes a base?

H=Ym@-m)=1-3n?

Average number of real substitutions is then AtH

Distance K between two sequences is
K = 2AtH
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Estimating distances from sequence
data
+ We want to estimate K = 2AtH from sequence data

1 The chance F;(t) that we observe a base i in one
sequence and a base j in another is

Fi(t) = Zma(tay(t)
by averaging over the possible ancestral nucleotides

Introduction to bioinformatics, Autumn 2006 125

Estimating distances from sequence
data

1 Expression Fy(t) = 3mg;(t)a,(t) can be simplified by
assuming that the mutation process is reversible:
mmy = mm; for all i # j

1+ From this it can be shown that
ma(t) = ma;(t) for alli, jand t > 0

1+ Now the model simplifies into F(t) = mqy(2t)
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Estimating distances from sequence
data

+ What is the probabilitity F = F(t) that the letters at a
particular position in two immediate descendants from
the same node are identical?

F =3 ma,(2t) = e+ (1- e2)(1 - H)
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Putting the sites together

1+ Assume that

- sites evolve independently of one other and
- mutation process is identical at each site

- The two sequences have been aligned against each other
and gaps have been removed

i+ Do the bases at site i in the sequences differ?
X; = 1if the ith pair of sites differ

X; = 0 otherwise
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Putting the sites together (2)

P(X,;=1)=1-F=(1-e2WH

Now D = X, + ... + X, is the number of mismatched
pairs of bases

D is a binomial random variable with parameters s and
1-F

Notice that D is the Hamming distance for the
sequences
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Putting the sites together (3)

F is unknown and has to be estimated from the
sequence data

Recall that the observed proportion of successes is a
good estimator of the binomial success probability:
estimate 1 — F with D/s

D/s=(1- e?MH
2At = -log(1 — D/(sH))
Finally, we obtain K = 2AtH = -H log(1 — D/(sH))
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Jukes-Cantor formula

Estimate 2AtH = -H log(1 — D/(sH)) of the distance K is
known as the Jukes-Cantor formula

When H (chance that a substitution actually occurs)
approaches 1, the estimate decreases and
approaches the Poisson mean 2At

H is usually not known and has to be estimated from
the data as well
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Inferring the Past: Phylogenetic
Trees (chapter 12)

The biological problem

Parsimony and distance methods

Models for mutations and estimation of distances

Maximum likelihood methods
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Maximum likelihood methods

Consider the tree on the right a
with three sequences

Probability p(iy, i, i3) of

observing bases i, i, and i; can

be computed by summing over P 3
all possible ancestral bases,

p(il, i2,i3) = 3,2, Ta0aiz(t) dan(tzt) Apiz (t) Aia (1)

Hard to compute for complex
trees
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Maximum likelihood estimation

+ We would like to calculate likelihood p(iy, iy, - ..
the general case

Jiyin

i Calculations can be arranged using the peeling
algorithm

1 Basic idea is to move all summation signs as far to the
right as possible
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Maximum likelihood estimation

1 Likelihood for the data is then obtained by multiplying
the likelihoods of individual sites

i+ General recipe for maximum likelihood estimation:

- Maximize over all model parameters for a given tree
- Maximize previous expression over all possible trees
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Problems with tree-building

i+ Assumptions
- Sites evolve independently of one other
- Sites evolve according to the same stochastic model
- The tree is rooted
- The sequences are aligned
- Vertical inheritance
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Additional material on phylogenetic
trees

 Durbin, Eddy, Krogh, Mitchison: Biological sequence
analysis

1 Jones, Pevzner: An introduction to bioinformatics
algorithms

i Gusfield: Algorithms on strings, trees, and sequences
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