Sequence Alignment (chapter 6)

- The biological problem
- Global alignment
- Local alignment
- Multiple alignment

Background: comparative genomics

- Basic question in biology: what properties are shared among organisms?
- Genome sequencing allows comparison of organisms at DNA and protein levels
- Comparisons can be used to
 - Find evolutionary relationships between organisms
 - Identify functionally conserved sequences
 - Identify corresponding genes in human and model organisms: develop models for human diseases

Introduction to bioinformatics. Autumn 2006

Homologs

Two genes or characters g_B and g_C evolved from the same ancestor g_A are called homologs

 $g_A = agtgtccgttaagtgcgttc$

· Homologs usually exhibit conserved functions

 $g_B = agtgccgttaaagttgtacgtc$

· Close evolutionary relationship => expect a $g_c = ctgactgtttgtggttc$

high number of homologs

Sequence similarity

Intuitively, similarity of two sequences refers to the degree of match between corresponding positions in sequence

> agtgccgttaaagttgtacgtc ctgactgtttgtggttc

What about sequences that differ in length?

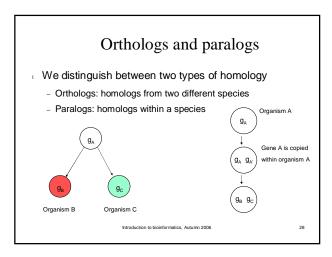
Similarity vs homology

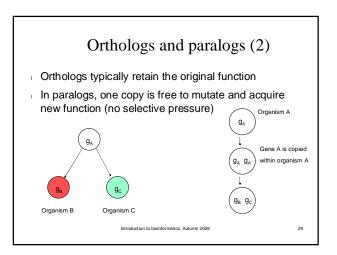
- Sequence similarity is not sequence homology
 - If the two sequences g_{B} and g_{C} have accumulated enough mutations, the similarity between them is likely to be low

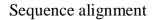
#mutations

- agtgtccgttaagtgcgttc
- agtatccattatagtacattc agtgtccgcttatagtgcgttc
- agtgtccgcttaagggcgttc agtgtccgcttcaaggggcgt
- gggccgttcatgggggt gcagggcgtcactgagggct

#mutations


- 64 acagtccgttcgggctattg 128 cagagcactaccgc 256 cacgagtaagatatagct


- 512 taatcgtgata 1024 accettatctacttcctggagtt
- 2048 agcgacctgcccaa 4096 caaac


Homology is more difficult to detect over greater evolutionary distances.

Similarity vs homology (2)

- Sequence similarity can occur by chance
 - Similarity does not imply homology
- Similarity is an expected consequence of homology

Alignment specifies which positions in two sequences match

acgtctag acgtctag acqtctaq actctag--actctag ac-tctag 2 matches 5 matches 7 matches 5 mismatches 2 mismatches 0 mismatches 1 not aligned 1 not aligned 1 not aligned

ntroduction to bioinformatics, Autumn 2006 30

Mutations: Insertions, deletions and substitutions

Indel: insertion or deletion of a base with respect to the ancestor sequence

Mismatch: substitution (point mutation) of a single base

- Insertions and/or deletions are called indels
 - We can't tell whether the ancestor sequence had a base or not at indel position

ction to bioinformatics, Autumn 2006

Problems

- What sorts of alignments should be considered?
- How to score alignments?
- How to find optimal or good scoring alignments?
- How to evaluate the statistical significance of scores?

In this course, we discuss the first three problems.

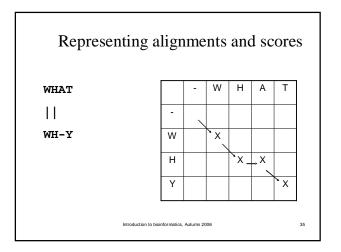
Course Biological sequence analysis tackles all four indepth.

troduction to bioinformatics, Autumn 2006

Sequence Alignment (chapter 6)

- The biological problem
- Global alignment
- Local alignment
- Multiple alignment

ntroduction to bioinformatics, Autumn 2006


natics, Autumn 2006

Global alignment

- Problem: find optimal scoring alignment between two sequences (Needleman & Wunsch 1970)
- We give score for each position in alignment

 $S(WHAT/WH-Y) = 1 + 1 - \delta - \mu$

Introduction to bioinformatics, Autumn 200

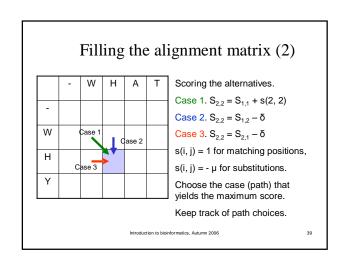
Representing alignments and scores

WHAT

WH-Y

Global alignment score $S_{3,4} = 2-\delta-\mu$

	-	W	Н	Α	Т
-	0				
W		1			
Н			2	2-δ	
Y					2-δ-μ

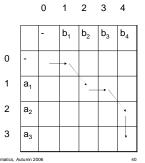

Introduction to bioinformatics, Autumn 2006

Dynamic programming

- How to find the optimal alignment?
- We use previous solutions for optimal alignments of smaller subsequences
- This general approach is known as dynamic programming

Introduction to bioinformatics, Autumn 2006

Filling the alignment matrix Consider the alignment process at shaded square. Case 1. Align H against H (match or substitution). Case 2. Align H in WHY against – (indel) in WHAT. Case 3. Align H in WHAT against – (indel) in WHY.



Global alignment: formal development

$$A = a_1 a_2 a_3 ... a_n$$
,
 $B = b_1 b_2 b_3 ... b_m$

- b_2 b_3 b_4 - a₂ a₃
- Any alignment can be written as a unique path through the
- Score for aligning A and B up to positions i and j:

$$S_{i,j} = S(a_1 a_2 a_3 ... a_i, b_1 b_2 b_3 ... b_j)$$

Scoring partial alignments

Alignment of $A = a_1 a_2 a_3 ... a_n$ with $B = b_1 b_2 b_3 ... b_m$ can end in three ways

$$(b_1b_2...b_{j-1}) b_j$$

$$(b_1b_2...b_i)$$
 -

$$(b_1b_2...b_{j-1}) b_j$$

Scoring alignments

- Scores for each case:
 - Case 1: (a₁a₂...a_{i-1}) a_i $(b_1b_2...b_{i-1}) b_i$

- Case 2: (a₁a₂...a_{i-1}) a_i

 $(b_1b_2...b_j) -$

 $s(a_i, -) = s(-, b_i) = -\delta$ Case 3: (a₁a₂...a_i) - $(b_1b_2...b_{i-1}) b_i$

Scoring alignments (2)

· First row and first column correspond to initial alignment against indels:

> $S(i, 0) = -i \delta$ $S(0, j) = -j \delta$

· Optimal global alignment score $S(A, B) = S_{n,m}$

b₁ b_2 b₃ b_4 0 -2δ -3δ -4δ -δ a_1 -2δ a_2 a_3

2 3

2

3

Algorithm for global alignment

Input sequences A, B, n = |A|, m = |B|

Set $S_{i,0} := -\delta i$ for all i

Set $S_{0,j} := -\delta j$ for all j

for i := 1 to n

for j := 1 to m

 $S_{i,j} := \max\{S_{i-1,j} - \delta, \; S_{i-1,j-1} + s(a_i,b_j), \; S_{i,j}\text{-}1 - \delta\}$

Algorithm takes O(nm) time and space.

Introduction to bioinformatics, Autumn 2006

Global alignment: example

 $\mu = 1$ $\delta = 2$

G G 0 -2 -4 -10 Α -2 Т -4 С -6 G -8 -10 ?

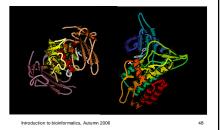
Introduction to bioinformatics, Autumn 2006

Global alignment: example (2) 0 -2 -4 -6 -8 -10 δ = 2 Α -2 -1 -3 -5 -7 -9 Т -4 -1 -2 -4 -4 -6 С -6 -3 -2 -3 -5 -5 ATCGT-G -8 -5 -2 -1 -3 -4 -10 -7 -4 -3 0 -2 -TGGTG

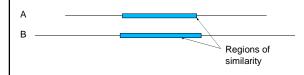
Sequence Alignment (chapter 6)

- The biological problem
- Global alignment
- Local alignment
- Multiple alignment

ntroduction to bioinformatics, Autumn 2006


roddetion to biolinormatics, natariii 2000

Local alignment: rationale


- Otherwise dissimilar proteins may have local regions of similarity
 - -> Proteins may share a function

Human bone morphogenic protein receptor type II precursor (left) has a 300 aa region that resembles 291 aa region in TGF-β receptor (right).

The shared function here is protein kinase.

Local alignment: rationale

- · Global alignment would be inadequate
- Problem: find the highest scoring local alignment between two sequences
- Previous algorithm with minor modifications solves this problem (Smith & Waterman 1981)

roduction to bioinformatics, Autumn 2006

4

From global to local alignment

- Modifications to the global alignment algorithm
 - Look for the highest-scoring path in the alignment matrix (not necessarily through the matrix)
 - Allow preceding and trailing indels without penalty

Introduction to bioinformatics, Autumn 2006

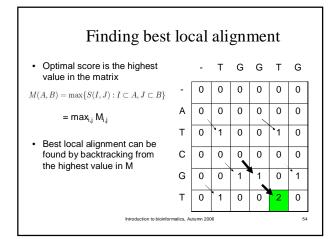
Scoring local alignments

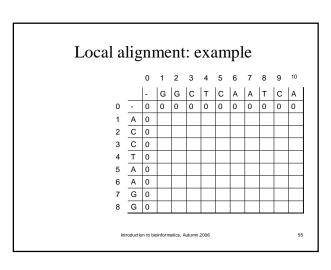
 $A = a_1 a_2 a_3 ... a_n$, $B = b_1 b_2 b_3 ... b_m$

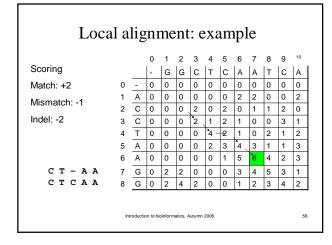
Let I and J be intervals (substrings) of A and B, respectively: $I \subset A$, $J \subset B$

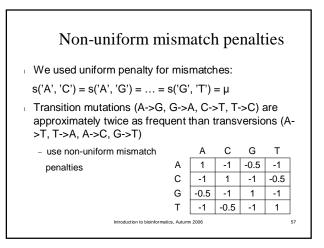
Best local alignment score:


 $M(A, B) = \max\{S(I, J) : I \subset A, J \subset B\}$


where S(I, J) is the score for substrings I and J.


ntroduction to bioinformatics, Autumn 2006


51


Allowing preceding and trailing indels First row and column 1 2 3 4 initialised to zero: b₂ b₃ b₄ $M_{i,0} = M_{0,j} = 0$ 0 ln a₁ 1 b1 b2 b3 2 a_2 - a1 3 a_3

Gaps in alignment

Gap is a succession of indels in alignment

- Previous model scored a length k gap as $w(k) = -k\delta$
- Replication processes may produce longer stretches of insertions or deletions
 - In coding regions, insertions or deletions of codons may preserve functionality

Introduction to bioinformatics, Autumn 2006

Gap open and extension penalties (2)

We can design a score that allows the penalty opening gap to be larger than extending the gap:

$$w(k) = -\alpha - \beta(k-1)$$

- Gap open cost α, Gap extension cost β
- Our previous algorithm can be extended to use w(k) (not discussed on this course)

ntroduction to bioinformatics, Autumn 2006

50

Sequence Alignment (chapter 6)

- The biological problem
- Global alignment
- Local alignment
- Multiple alignment

Introduction to bioinformatics, Autumn 2006

Multiple alignment

- Consider a set of n sequences on the right
 - Orthologous sequences from different organisms
 - Paralogs from multiple duplications
- How can we study relationships between these sequences?

aggcgagctgcgagtgcta cgttagattgacgctgac ttccggctgcgac gacacggcgaacgga agtgtgcccgacgaggaggac gcgggctgtgagcgcta aagcggcctgtgtgcccta atgctgctgccagtgta agtcgagccccgagtgc agtccgagtcc actcggtgc

Introduction to bioinformatics, Autumn 2006

61

Optimal alignment of three sequences

- Alignment of $A = a_1 a_2 \dots a_i$ and $B = b_1 b_2 \dots b_j$ can end either in $(-, b_j)$, (a_i, b_j) or $(a_i, -)$
- $2^2 1 = 3$ alternatives
- Alignment of A, B and C = $c_1c_2...c_k$ can end in 2^3-1 ways: $(a_i, -, -)$, $(-, b_j, -)$, $(-, -, c_k)$, $(-, b_j, c_k)$, $(a_i, -, c_k)$, $(a_i, b_j, -)$ or (a_i, b_j, c_k)
- Solve the recursion using three-dimensional dynamic programming matrix: O(n³) time and space
- Generalizes to n sequences but impractical with moderate number of sequences

Introduction to bioinformatics, Autumn 2006

Multiple alignment in practice

- In practice, real-world multiple alignment problems are usually solved with heuristics
- Progressive multiple alignment
 - Choose two sequences and align them
 - Choose third sequence w.r.t. two previous sequences and align the third against them
 - Repeat until all sequences have been aligned
 - Different options how to choose sequences and score alignments

Introduction to bioinformatics, Autumn 2006

63

Multiple alignment in practice

- Profile-based progressive multiple alignment: CLUSTALW
 - Construct a distance matrix of all pairs of sequences using dynamic programming
 - Progressively align pairs in order of decreasing similarity
 - CLUSTALW uses various heuristics to contribute to accuracy

Introduction to bioinformatics. Autumn 2006

Additional material

- R. Durbin, S. Eddy, A. Krogh, G. Mitchison: Biological sequence analysis
- Course Biological sequence analysis in Spring 2007

teres direction as biological and a second and a second and a

0.5