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Stoichiometric vector and matrix

• The stoichiometric coefficients of a

reaction are collected to a vector sr

• In sr there is a one position for each

metabolite in the metabolic system,

and the stoichiometric co-efficient of

the reaction are inserted to

appropriate positions, e.g. for the

reaction

r : A + B 7→ 2C,

sr =

·

·

A

·

·

B

·

·

C











































0

0

−1

0

0

−1

0

0

2










































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Example: stoichiometric matrix

• Consider the set of reactions from

the penthose-phospate pathway:

• The stoichiometric matrix is a

10-by-7 matrix:

R1: βG6P + NADP+ zwf
⇒ 6PGL + NADPH

R2: 6PGL + H2O
pgl
⇒ 6PG

R3: 6PG + NADP+ gnd
⇒ R5P + NADPH

R4: R5P
rpe
⇒ X5P

R5: αG6P
gpi
⇔ βG6P

R6: αG6P
gpi
⇔ βF6P

R7: βG6P
gpi
⇔ βF6P

S =

βG6P

αG6P

βF6P

6PGL

6PG

R5P

X5P

NADP+

NADPH

H2O

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

−1 0 0 0 1 0 −1

0 0 0 0 −1 −1 0

0 0 0 0 0 1 1

1 −1 0 0 0 0 0

0 1 −1 0 0 0 0

0 0 1 −1 0 0 0

0 0 0 1 0 0 0

−1 0 −1 0 0 0 0

1 0 1 0 0 0 0

0 −1 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5
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Systems equations

In a network of n metabolites and r reactions, the dynamics of the system are

characterized by the systems equations

dXi

dt
=

r
∑

j=1

sijvj , for i = 1, . . . , n

• Xi is the concentration of the ith metabolite

• vj is the rate of the jth reaction and

• sij is the stoichiometric coefficient of ith metabolite in the jth reaction.

Intuitively, each system equation states that the rate of change of concentration of

a metabolite is the sum of metabolite flows to and from the metabolite.
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Systems equation example

• Assume our example metabolic

network has the following rate

vector v = (1, 1, 0, 0, 1, 0, 0)

• Let us compute the rate of change

for metabolites

R1: βG6P + NADP+ zwf
⇒ 6PGL + NADPH

R2: 6PGL + H2O
pgl
⇒ 6PG

R3: 6PG + NADP+ gnd
⇒ R5P + NADPH

R4: R5P
rpe
⇒ X5P

R5: αG6P
gpi
⇔ βG6P

R6: αG6P
gpi
⇔ βF6P

R7: βG6P
gpi
⇔ βF6P

dβG6P

dt
= −1vR1 + 1vR5 − 1vR7 = 0

dαG6P

dt
= −1vR5 − 1vR6 = −1 ⇒ net consumption!

dβF6P

dt
= 1vR6 + 1vR7 = 0

d6GPL

dt
= 1vR1 − 1vR2 = 0

d6PG

dt
= 1vR2 − 1vR3 = 1 ⇒ net production!

dR5P

dt
= 1vR3 − 1vR4 = 0

dX5P

dt
= 1vR4 = 0

dNADPH

dt
= 1vR1 + 1vR3 = 1 ⇒ net production!

dNADP+

dt
= −1vR1 − 1vR3 = −1 ⇒ net consumption!

dH20

dt
= −1vR2 = −1 ⇒ net consumption!
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Steady state analysis

• The requirements a steady state, i.e. non-changing concentrations

dXi

dt
=

r
∑

j=1

sijvj = 0, for i = 1, . . . , n

constitute a set of linear equations constraining to the reaction rates vj .

• We can write this set of linear constraints in matrix form with the help of the

stoichiometric matrix S and the reaction rate vector v

dX

dt
= Sv = 0,

• A reaction rate vector v satisfying the above is called a flux vector.
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Null space of the stoichiometrix matrix (1/2)

• Any flux vector v that the cell can maintain in a steady-state is a solution to

the system of equations

Sv = 0

• The null space of the stoichiometric matrix

N(S) = {u|Su = 0}

contains all valid flux vectors

• Therefore, studying the null space of the stoichiometric matrix can give us

important information about the cell’s capabilities
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Null space of the stoichiometric matrix (2/2)

The null space N(S) is a linear vector space, so all properties of linear vector spaces

follow, e.g:

• N(S) contains the zero vector, and closed under linear combination:

v1,v2 ∈ N(S) =⇒ α1v1 + αv2 ∈ N(S)

• The null space has a basis {k1, . . . ,kq}, a set of q ≤ min(n, r) linearly

independent vectors, where r is the number of reactions and n is the number of

metabolites.

• The choice of basis is not unique, but the number q of vector it contains is

determined by the rank of S.
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Null space and feasible steady state rate vectors

• The kernel K = (k1, . . . ,kq) of the stoichiometric matrix formed by the above

basis vectors has a row corresponding to each reaction.

• K characterizes the feasible steady state reaction rate vectors: for each feasible

flux vector v, there is a vector b ∈ R
q such that Kb = v

• In other words, any steady state flux vector is a linear combination

b1k1 + · · · + bqkq

of the basis vectors of N(N).
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Singular value decomposition of S (1/3)

• A basis for the null space can be obtained via the singular value decomposition

(SVD)

• The SVD of S is the product S = UΣV T , where

– U is a m × m orthonormal matrix, where r first columns are the

eigenvectors of the column space of S, and m − r last columns span the left

null space of S.

– Σ = diag(σ1, σ2, . . . , σr) is m × n matrix containing the singular values σi

on its diagonal

– V is a n × n orthonormal matrix, where r first columns span the row space

of S, and n − r last columns span the null space of S
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Singular value decomposition of S (2/3)

The subspaces spanned by the columns of U are interpreted as follows:

• The set of r m-dimensional eigenvectors of the column space of S can be seen as

prototypical or ’eigen-’ reactions: all reaction stoichiometries in the metabolic

system can be expressed as linear combinations of the eigen-reactions.

• The m − r vectors ur+l spanning the left null space of S represent conservation

relations between metabolites or pools of metabolites whose concentration stays

invariant.
TV

n reactions

spanning the row space 
of S

r basis vectors

spanning the null space 
of S

n−r basis vectors

n 
re

ac
tio

ns

m metabolites

σ1
σ2

σspanning the
r basis vectors

column space
of S

U Σ

m
 m

et
ab

ol
ite

s m−r vectors
spanning the
left null
space of S

r

.
.

.
.

.
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Singular value decomposition of S (3/3)

The subspaces spanned by the columns of V are interpreted as follows:

• The set of r n-dimensional eigenvectors of the row space of S can be seen as

systems equations of prototypical ’eigen-’ metabolites: all systems equations of

the metabolism can be expressed as their linear combinations

• The set of n − r n-dimensional vectors spanning the null space are flux vectors

that can operate in steady state, i.e. statifying Svl = 0, l = r + 1, . . . , n: these

can be taken as the kernel K used to analyze steady state fluxes.

TV

n reactions

spanning the row space 
of S

r basis vectors

spanning the null space 
of S

n−r basis vectors

n 
re

ac
tio

ns

m metabolites

σ1
σ2

σspanning the
r basis vectors

column space
of S

U Σ

m
 m

et
ab

ol
ite

s m−r vectors
spanning the
left null
space of S

r

.
.

.
.

.
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Basis steady state flux modes from SVD

• A basis for the null space is thus obtained by picking the n − r last columns of

V from the SVD of S:

K = [vr+1, . . . , vn]

• In MATLAB, the same operation is performed directly by the command

null(S).

• Let us examine the following simple system

R2

R3

R1R0

R4

R5

B

C

A

D

S =

2

6

6

6

6

6

4

1 −1 0 0 0 0

0 1 −1 −1 0 0

0 0 1 0 −1 0

0 0 0 1 0 −1

3

7

7

7

7

7

5
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Basis steady state flux modes from SVD

• The two flux modes given by SVD

for our example system

• All steady state flux vectors can be

expressed as linear combinations of

these two flux modes

K =

2

6

6

6

6

6

6

6

6

6

6

6

4

0.2980 0.4945

0.2980 0.4945

0.5772 −0.0108

−0.2793 0.5053

0.5772 −0.0108

−0.2793 0.5053

3

7

7

7

7

7

7

7

7

7

7

7

5

0.4945
0.0108

0.0108

0.5053

0.5053

0.298 0.298
0.5772

0.5772

0.2793

0.2793

B

C

A

D

VSVD2

0.4945

B

C

A

D

VSVD1
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Null space of PPP

• Consider again the set of reactions

from the penthose-phospate

pathway

• The stoichiometric matrix is a

10-by-9 matrix

R1: βG6P + NADP+ zwf
⇒ 6PGL + NADPH

R2: 6PGL + H2O
pgl
⇒ 6PG

R3: 6PG + NADP+ gnd
⇒ R5P + NADPH

R4: R5P
rpe
⇒ X5P

R5: αG6P
gpi
⇔ βG6P

R6: αG6P
gpi
⇔ βF6P

R7: βG6P
gpi
⇔ βF6P

R8 :⇒ αG6P

R9 : X5P ⇒

S =

βG6P

αG6P

βF6P

6PGL

6PG

R5P

X5P

NADP+

NADPH

H2O

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

−1 0 0 0 1 0 −1 0 0

0 0 0 0 −1 −1 0 1 0

0 0 0 0 0 1 1 0 0

1 −1 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0

0 0 0 1 0 0 0 0 −1

−1 0 −1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5
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Null space of PPP

• Null space of this system has only

one vector K =

(0, 0, 0, 0, 0.5774,−0.5774, 0.5774, 0, 0, 0)T

• Thus, in a steady state only

reactions R5, R6 and R7 can have

non-zero fluxes.

• The reason for this is that there are

no producers of NADP+ or H2O

and no consumers of NADPH.

• Thus our PPP is effectively now a

dead end!

R1: βG6P + NADP+ zwf
⇒ 6PGL + NADPH

R2: 6PGL + H2O
pgl
⇒ 6PG

R3: 6PG + NADP+ gnd
⇒ R5P + NADPH

R4: R5P
rpe
⇒ X5P

R5: αG6P
gpi
⇔ βG6P

R6: αG6P
gpi
⇔ βF6P

R7: βG6P
gpi
⇔ βF6P

R8 :⇒ αG6P

R9 : X5P ⇒
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Null space of PPP

• To give our PPP non-trivial (fluxes

different from zero) steady states,

we need to modify our system

• We add reaction R10 :⇒ H2O as a

water source

• We add reaction R11: NADPH ⇒

NADP+ to regenerate NADP+ from

NADPH.

• We could also have removed the

metabolites in question to get the

same effect

R1: βG6P + NADP+ zwf
⇒ 6PGL + NADPH

R2: 6PGL + H2O
pgl
⇒ 6PG

R3: 6PG + NADP+ gnd
⇒ R5P + NADPH

R4: R5P
rpe
⇒ X5P

R5: αG6P
gpi
⇔ βG6P

R6: αG6P
gpi
⇔ βF6P

R7: βG6P
gpi
⇔ βF6P

R8 :⇒ αG6P

R9 : X5P ⇒

R10: ⇒ H2O

R11: NADPH ⇒ NADP+
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Enzyme subsets of PPP

From the kernel, we can immediately

identify enzyme subsets that operate

with fixed flux ratios in any steady state:

• reactions {R1 − R4, R8 − R11} are

one subset: R11 has double rate to

all the others

• {R6, R7} are another: R6 has the

opposite sign of R7

• R5 does not belong to non-trivial

enzyme subsets, so it is not forced

to operate in lock-step with other

reactions

K =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0.2727 0.1066

0.2727 0.1066

0.2727 0.1066

0.2727 0.1066

0.3920 −0.4667

−0.1193 0.5733

0.1193 −0.5733

0.2727 0.1066

0.2727 0.1066

0.2727 0.1066

0.5454 0.2132

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5
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Basis steady state flux modes from SVD

The kernel matrix obtained from SVD

suffers from two shortcomings,

illustrated by our small example system

• Reaction reversibility constraints

are violated: in vsvd1, R5 operates

in wrong direction, in vsvd2, R4

operates in wrong direction

• All reactions are active in both flux

modes, which makes visual

interpretation impossible for all but

very small systems

• The flux values are all non-integral

0.4945
0.0108

0.0108

0.5053

0.5053

0.298 0.298
0.5772

0.5772

0.2793

0.2793

B

C

A

D

VSVD2

0.4945

B

C

A

D

VSVD1
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Choice of basis

• SVD is only one of the many ways that a basis for the null space can be defined.

• The root cause for hardness of interpretation is the orthonormality of matrix V

in SVD S = UΣV T

– The basis vectors are orthogonal: vT
svd1

vsvd2 = 0

– The basis vectors have unit length ||vsvd1|| = ||vsvd1|| = 1

• Neither criteria has direct biological relevance!
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Biologically meaningful pathways

• From our example system, it is easy

to find flux vectors that are more

meaningful than those given by SVD

• Both pathways on the right statisfy

the steady state requirement

• Both pathways obey the sign

restrictions of the system

• One can easily verify (by solving b

form the equation Kb = v) that

they are linear combinations of the

flux modes given by SVD, e.g.

v1 = 0.0373vsvd1 + 1.997vsvd2

1 1
1

1

0

0

1
0

0

1

1

B

C

A

D

V

B

C

A

D

V1

1

2
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Elementary flux modes

The two pathways are examples of

elementary flux modes

The study of elementary flux modes

(EFM) and concerns decomposing the

metabolic network into components that

• can operate independently from the

rest of the metabolism, in a steady

state,

• any steady state can be described as

a combination of such components.

1 1
1

1

0

0

1
0

0

1

1

B

C

A

D

V

B

C

A

D

V1

1

2
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Representing EFMs

• Elementary flux modes are given as

reaction rate vectors

e = (e1, . . . , en),

• EFMs typically consists of many

zeroes, so they represent pathways

in the network given by the

non-zero components

P (e) = {j|ej 6= 0}

1 1
1

1

0

0

1
0

0

1

1

B

C

A

D

V

B

C

A

D

V1

1

2

Metabolic Modelling Spring 2007 Juho Rousu 22



'

&

$

%

Properties of elementary flux modes

The following properties are statisfied by EFMs:

• (Quasi-) Steady state

• Thermodynamical feasibility. Irreversible reactions need to proceed in the

correct direction. Formally, one requires ej ≥ 0 and that the stoichiometric

coefficients sij are written with the sign that is consistent with the direction

• Non-decomposability. One cannot remove a reaction from an EFM and still

obtain a reaction rate vector that is feasible in steady state. That is, if e is an

EFM there is no vector v that satisfies the above and P (v) ⊂ P (e)

These properties define EFMs upto a scaling factor: if e is an EFM αe, α > 0 is

also an EFM.
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Example

R4

R2

R3

R1

R4

R2

R3

R1 R4

R2

R3

R1

R4

R2

R3

R1
A DB C

R4

R2

R3

R1
A DB

A DB A DB C

C

C

Metabolic system:

A DB C

EFMs:

non−EFMs:
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EFMs and steady state fluxes

• Any steady state flux vector v can be represented as a non-negative

combination of the elementary flux modes: v =
∑

j αjej , where αj ≥ 0.

• However, the representation is not unique: one can often find several coefficient

sets α that satisfy the above.

• Thus, a direct composition of a flux vector into the underlying EFPs is typically

not possible. However, the spectrum of potential contributions can be analysed
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EFMs of PPP

• One of the elementary flux modes of our PPP system is given below

• It consist of a linear pathway through the system, exluding reactions R6 and R7

• Reaction R11 needs to operate with twice the rate of the others

efm1 =

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1

1

1

1

1

0

0

1

1

1

2

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

R1

R2

R3
R4

R8

R9

R10

R11

R5R6

R7

G6P

F6P
G6P

6PGL

6PGR5P

X5P

H O2

α

β
β

NADPH

NADP
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EFMs of PPP

• Another elementary flux modes of our PPP system

• Similar linear pathway through the system, but exluding reactions R5 and

using R7 in reverse direction

• Again, reaction R11 needs to operate with twice the rate of the others

efm2 =

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1

1

1

1

0

1

−1

1

1

1

2

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

R1

R2

R3
R4

R5

R8

R9

R10

R11

R6

R7

G6P

F6P
G6P

6PGL

6PGR5P

X5P

H O2

α

β
β

NADPH

NADP
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EFMs of PPP

• Third elementary flux mode contains only the small cycle composed of R5, R7

and R6. R6 is used in reverse direction

• A yet another EFM would be obtained by reversing all the reactions in this

cycle

efm3 =

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0

0

0

0

1

−1

1

0

0

0

0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

R1

R2

R3
R4

R5

R8

R9

R10

R11

R6

R7

G6P

F6P
G6P

6PGL

6PGR5P

X5P

H O2

α

β
β

NADPH

NADP
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Building the kernel from EFMs

• In general there are more

elementary flux modes than the

dimension of the null space

• Thus a linearly independent subset

of elementary flux modes suffices to

span the null space

• In our PPP system, any two of the

three EFMs together is linearly

independent, and can thus be taken

as the representative vectors

EFM =

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11
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














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
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
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


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0 1 1

0 1 1

0 1 1

0 1 1

1 1 0

−1 0 1
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
























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Software for finding EFMs

• From small systems it is relatively easy to find the EFMs by manual inspection

• For larger systems this becomes impossible, as the number of EFMs grows

easily very large

• Computational methods have been devised for finding the EFMs by Heinrich &

Schuster, 1994 and Urbanczik and Wagner, 2005

• Implemented in MetaTool package
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Conservation relations

• As chemical reactions do not create or destroy matter, they obey conservation

relations

• The counts of substrate and product molecules are balanced

• In the example reaction r : A + B 7→ 2C, the sum A + B + 2C = const is

constant.

• Other conserved quantitites:

– Elemental balance: for each element species (C,N,O,P,...) the number of

elements is conserved

– Charge balance: total electrical charge, the total number of electrons in a

reaction does not change.

– Moiety balancing: it is possible to write balances for larger chemical

moieties such as the co-factors (NAD,NADH, ATP, ADP,...)
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Conservation relations from the stoichiometric matrix

• From the stoichiometric matrix conservation relations of metabolites can be

found by examining the left null space of S, i.e. the set {l|lS = 0}

• A basis spanning the left null space can be obtained from SVD S = UΣV T :

the last m − r columns of the matrix U span the left null space, where r is the

rank of S

• In MATLAB the basis can be computed by the command null(S′).

TV
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.
.

.
.
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Conservation in PPP

The left null space of our PPP system only contains a single vector, stating that

the sum of NADP+ and NADPH is constant in all reactions.

lT =

βG6P

αG6P

βF6P

6PGL

6PG

R5P

X5P

NADP+

NADPH

H2O






















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
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