Stoichiometric vector and matrix

- The stoichiometric coefficients of a reaction are collected to a vector s_r.
- In s_r there is a one position for each metabolite in the metabolic system, and the stoichiometric co-efficient of the reaction are inserted to appropriate positions, e.g. for the reaction

\[r : A + B \rightarrow 2C, \]

\[
\begin{bmatrix}
0 \\
0 \\
A & -1 \\
0 \\
0 \\
B & -1 \\
0 \\
C & 2
\end{bmatrix}
\]
Example: stoichiometric matrix

- Consider the set of reactions from the pentose-phosphate pathway:

- The stoichiometric matrix is a 10-by-7 matrix:

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Species</th>
<th>Stoichiometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1: $\beta G6P + NADP^+ \xrightarrow{zwf} 6PGL + NADPH$</td>
<td>$\beta G6P$</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>$\alpha G6P$</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$\beta F6P$</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$6PGL$</td>
<td>1</td>
</tr>
<tr>
<td>R_2: $6PGL + H_2O \xrightarrow{pgl} 6PG$</td>
<td>$6PGL$</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>$6PG$</td>
<td>0</td>
</tr>
<tr>
<td>R_3: $6PG + NADP^+ \xrightarrow{gnd} R5P + NADPH$</td>
<td>$R5P$</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$X5P$</td>
<td>1</td>
</tr>
<tr>
<td>R_4: $R5P \xrightarrow{rpe} X5P$</td>
<td>$X5P$</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$\alpha G6P \xrightarrow{gpi} \beta G6P$</td>
<td>0</td>
</tr>
<tr>
<td>R_5: $\alpha G6P \xrightarrow{gpi} \beta G6P$</td>
<td>$NADP^+$</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>$\beta F6P \xrightarrow{gpi} \beta F6P$</td>
<td>$R5P$</td>
</tr>
<tr>
<td>R_6: $\beta G6P \xrightarrow{gpi} \beta F6P$</td>
<td>$NADPH$</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>H_2O</td>
<td>-1</td>
</tr>
</tbody>
</table>

$$S = \begin{bmatrix}
-1 & 0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$
Systems equations

In a network of n metabolites and r reactions, the dynamics of the system are characterized by the systems equations

$$\frac{dX_i}{dt} = \sum_{j=1}^{r} s_{ij}v_j, \text{ for } i = 1, \ldots, n$$

- X_i is the concentration of the ith metabolite
- v_j is the rate of the jth reaction and
- s_{ij} is the stoichiometric coefficient of ith metabolite in the jth reaction.

Intuitively, each system equation states that the rate of change of concentration of a metabolite is the sum of metabolite flows to and from the metabolite.
Assume our example metabolic network has the following rate vector \(\mathbf{v} = (1, 1, 0, 0, 1, 0, 0) \)

Let us compute the rate of change for metabolites

\[
\begin{align*}
\frac{d[\beta G6P]}{dt} &= -1v_{R_1} + 1v_{R_5} - 1v_{R_7} = 0 \\
\frac{d[\alpha G6P]}{dt} &= -1v_{R_5} - 1v_{R_6} = -1 \Rightarrow \text{net consumption!} \\
\frac{d[\beta F6P]}{dt} &= 1v_{R_6} + 1v_{R_7} = 0 \\
\frac{d[6G6P]}{dt} &= 1v_{R_1} - 1v_{R_2} = 0 \\
\frac{d[6PG]}{dt} &= 1v_{R_2} - 1v_{R_3} = 1 \Rightarrow \text{net production!} \\
\frac{d[R5P]}{dt} &= 1v_{R_3} - 1v_{R_4} = 0 \\
\frac{d[X5P]}{dt} &= 1v_{R_4} = 0 \\
\frac{d[NADPH]}{dt} &= 1v_{R_1} + 1v_{R_3} = 1 \Rightarrow \text{net production!} \\
\frac{d[NADP^+]}{dt} &= -1v_{R_1} - 1v_{R_3} = -1 \Rightarrow \text{net consumption!} \\
\frac{d[H_2O]}{dt} &= -1v_{R_2} = -1 \Rightarrow \text{net consumption!}
\end{align*}
\]
Steady state analysis

• The requirements a steady state, i.e. non-changing concentrations

\[
\frac{dX_i}{dt} = \sum_{j=1}^{r} s_{ij}v_j = 0, \text{ for } i = 1, \ldots, n
\]

constitute a set of linear equations constraining to the reaction rates \(v_j\).

• We can write this set of linear constraints in matrix form with the help of the stoichiometric matrix \(S\) and the reaction rate vector \(v\)

\[
\frac{dX}{dt} = Sv = 0,
\]

• A reaction rate vector \(v\) satisfying the above is called a flux vector.
Any flux vector v that the cell can maintain in a steady-state is a solution to the system of equations

$$Sv = 0$$

The null space of the stoichiometric matrix

$$N(S) = \{u | Su = 0\}$$

contains all valid flux vectors

Therefore, studying the null space of the stoichiometric matrix can give us important information about the cell’s capabilities
The null space $\mathcal{N}(S)$ is a linear vector space, so all properties of linear vector spaces follow, e.g:

- $\mathcal{N}(S)$ contains the zero vector, and closed under linear combination:
 \[\mathbf{v}_1, \mathbf{v}_2 \in \mathcal{N}(S) \implies \alpha_1 \mathbf{v}_1 + \alpha \mathbf{v}_2 \in \mathcal{N}(S) \]

- The null space has a basis \(\{\mathbf{k}_1, \ldots, \mathbf{k}_q\} \), a set of \(q \leq \min(n, r) \) linearly independent vectors, where \(r \) is the number of reactions and \(n \) is the number of metabolites.

- The choice of basis is not unique, but the number \(q \) of vector it contains is determined by the rank of \(S \).
Null space and feasible steady state rate vectors

- The kernel $K = (k_1, \ldots, k_q)$ of the stoichiometric matrix formed by the above basis vectors has a row corresponding to each reaction.

- K characterizes the feasible steady state reaction rate vectors: for each feasible flux vector \mathbf{v}, there is a vector $\mathbf{b} \in \mathbb{R}^q$ such that $K\mathbf{b} = \mathbf{v}$.

- In other words, any steady state flux vector is a linear combination

$$b_1k_1 + \cdots + b_qk_q$$

of the basis vectors of $\mathcal{N}(N)$.
Singular value decomposition of S (1/3)

- A basis for the null space can be obtained via the singular value decomposition (SVD)
- The SVD of S is the product $S = U \Sigma V^T$, where
 - U is a $m \times m$ orthonormal matrix, where r first columns are the eigenvectors of the column space of S, and $m - r$ last columns span the left null space of S.
 - $\Sigma = diag(\sigma_1, \sigma_2, \ldots, \sigma_r)$ is $m \times n$ matrix containing the singular values σ_i on its diagonal
 - V is a $n \times n$ orthonormal matrix, where r first columns span the row space of S, and $n - r$ last columns span the null space of S
The subspaces spanned by the columns of U are interpreted as follows:

- The set of r m-dimensional eigenvectors of the column space of S can be seen as prototypical or 'eigen-' reactions: all reaction stoichiometries in the metabolic system can be expressed as linear combinations of the eigen-reactions.

- The $m - r$ vectors u_{r+1} spanning the left null space of S represent conservation relations between metabolites or pools of metabolites whose concentration stays invariant.
The subspaces spanned by the columns of V are interpreted as follows:

- The set of r n-dimensional eigenvectors of the row space of S can be seen as systems equations of prototypical 'eigen-' metabolites: all systems equations of the metabolism can be expressed as their linear combinations.
- The set of $n - r$ n-dimensional vectors spanning the null space are flux vectors that can operate in steady state, i.e. statifying $Sv_l = 0, l = r + 1, \ldots, n$: these can be taken as the kernel K used to analyze steady state fluxes.
A basis for the null space is thus obtained by picking the \(n - r \) last columns of \(V \) from the SVD of \(S \):

\[
K = [v_{r+1}, \ldots, v_n]
\]

In MATLAB, the same operation is performed directly by the command `null(S)`.

Let us examine the following simple system

\[
S = \begin{bmatrix}
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & -1
\end{bmatrix}
\]
The two flux modes given by SVD for our example system

All steady state flux vectors can be expressed as linear combinations of these two flux modes

\[
K = \begin{bmatrix}
0.2980 & 0.4945 \\
0.2980 & 0.4945 \\
0.5772 & -0.0108 \\
-0.2793 & 0.5053 \\
0.5772 & -0.0108 \\
-0.2793 & 0.5053
\end{bmatrix}
\]
Null space of PPP

- Consider again the set of reactions from the pentose-phosphate pathway.

- The stoichiometric matrix is a 10-by-9 matrix.

\[
\begin{align*}
S = & \\
\begin{bmatrix}
\beta G6P & -1 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 \\
\alpha G6P & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 1 & 0 \\
\beta F6P & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
6PGL & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
6PG & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
R5P & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\
X5P & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 \\
NADP^+ & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
NADPH & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
H_2O & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\end{align*}
\]

\[R_1: \beta G6P + NADP^+ \xrightarrow{zwf} 6PGL + NADPH\]
\[R_2: 6PGL + H_2O \xrightarrow{pql} 6PG\]
\[R_3: 6PG + NADP^+ \xrightarrow{gnd} R5P + NADPH\]
\[R_4: R5P \xrightarrow{rpe} X5P\]
\[R_5: \alpha G6P \xrightarrow{gpi} \beta G6P\]
\[R_6: \alpha G6P \xrightarrow{gpi} \beta F6P\]
\[R_7: \beta G6P \xrightarrow{gpi} \beta F6P\]
\[R_8: \Rightarrow \alpha G6P\]
\[R_9: X5P \Rightarrow\]
Null space of PPP

- Null space of this system has only one vector $K = (0, 0, 0, 0, 0.5774, -0.5774, 0.5774, 0, 0, 0)^T$.

- Thus, in a steady state only reactions R_5, R_6 and R_7 can have non-zero fluxes.

- The reason for this is that there are no producers of NADP$^+$ or H$_2$O and no consumers of NADPH.

- Thus our PPP is effectively now a dead end!

\[
R_1: \beta G6P + NADP^+ \xrightarrow{zwf} 6PGL + NADPH \\
R_2: 6PGL + H_2O \xrightarrow{pgl} 6PG \\
R_3: 6PG + NADP^+ \xrightarrow{gnp} R5P + NADPH \\
R_4: R5P \xrightarrow{rpe} X5P \\
R_5: \alpha G6P \xrightarrow{gpi} \beta G6P \\
R_6: \alpha G6P \xrightarrow{gpi} \beta F6P \\
R_7: \beta G6P \xrightarrow{gpi} \beta F6P \\
R_8: \Rightarrow \alpha G6P \\
R_9: X5P \Rightarrow
\]
To give our PPP non-trivial (fluxes different from zero) steady states, we need to modify our system.

We add reaction $R_{10} : \Rightarrow \text{H}_2\text{O}$ as a water source.

We add reaction $R_{11}: \text{NADPH} \Rightarrow \text{NADP}^+$ to regenerate NADP^+ from NADPH.

We could also have removed the metabolites in question to get the same effect.

\begin{align*}
R_1: & \quad \beta\text{G6P} + \text{NADP}^+ \xrightarrow{zwf} 6\text{PGL} + \text{NADPH} \\
R_2: & \quad 6\text{PGL} + \text{H}_2\text{O} \xrightarrow{pgl} 6\text{PG} \\
R_3: & \quad 6\text{PG} + \text{NADP}^+ \xrightarrow{gnd} 5\text{P} + \text{NADPH} \\
R_4: & \quad 5\text{P} \xrightarrow{rpe} X5\text{P} \\
R_5: & \quad \alpha\text{G6P} \xrightarrow{gpi} \beta\text{G6P} \\
R_6: & \quad \alpha\text{G6P} \xrightarrow{gpi} \beta\text{F6P} \\
R_7: & \quad \beta\text{G6P} \xrightarrow{gpi} \beta\text{F6P} \\
R_8: & \quad \Rightarrow \alpha\text{G6P} \\
R_9: & \quad X5\text{P} \Rightarrow \\
R_{10}: & \quad \Rightarrow \text{H}_2\text{O} \\
R_{11}: & \quad \text{NADPH} \Rightarrow \text{NADP}^+
\end{align*}
From the kernel, we can immediately identify enzyme subsets that operate with fixed flux ratios in any steady state:

- reactions \{R_1 - R_4, R_8 - R_{11}\} are one subset: \(R_{11}\) has double rate to all the others
- \{R_6, R_7\} are another: \(R_6\) has the opposite sign of \(R_7\)
- \(R_5\) does not belong to non-trivial enzyme subsets, so it is not forced to operate in lock-step with other reactions
Basis steady state flux modes from SVD

The kernel matrix obtained from SVD suffers from two shortcomings, illustrated by our small example system:

- Reaction reversibility constraints are violated: in v_{svd1}, R_5 operates in wrong direction, in v_{svd2}, R_4 operates in wrong direction.
- All reactions are active in both flux modes, which makes visual interpretation impossible for all but very small systems.
- The flux values are all non-integral.

\[
\begin{array}{cccc}
V_{SV1} & & V_{SV2} \\
0.298 & 0.298 & 0.4945 & 0.4945 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
A & B & A & B \\
& & \downarrow \\
& 0.2793 & 0.2793 & \\
& \downarrow & \downarrow \\
& C & D & C \\
& 0.5772 & 0.0108 & \\
& \uparrow & \uparrow \\
& D & C & A \\
& 0.5053 & 0.5053 & \\
& \uparrow & \uparrow \\
& A & A & \\
\end{array}
\]
Choice of basis

- SVD is only one of the many ways that a basis for the null space can be defined.

- The root cause for hardness of interpretation is the orthonormality of matrix V in SVD $S = U \Sigma V^T$
 - The basis vectors are orthogonal: $v_{svd1}^T v_{svd2} = 0$
 - The basis vectors have unit length $||v_{svd1}|| = ||v_{svd1}|| = 1$

- Neither criteria has direct biological relevance!
Biologically meaningful pathways

- From our example system, it is easy to find flux vectors that are more meaningful than those given by SVD.
- Both pathways on the right satisfy the steady state requirement.
- Both pathways obey the sign restrictions of the system.
- One can easily verify (by solving b form the equation $Kb = v$) that they are linear combinations of the flux modes given by SVD, e.g.
 $$v_1 = 0.0373v_{svd1} + 1.997v_{svd2}$$
Elementary flux modes

The two pathways are examples of elementary flux modes

The study of elementary flux modes (EFM) and concerns decomposing the metabolic network into components that

- can operate independently from the rest of the metabolism, in a steady state,
- any steady state can be described as a combination of such components.
Representing EFMs

- Elementary flux modes are given as reaction rate vectors
 \[\mathbf{e} = (e_1, \ldots, e_n), \]

- EFMs typically consists of many zeroes, so they represent pathways in the network given by the non-zero components
 \[P(\mathbf{e}) = \{ j | e_j \neq 0 \} \]
Properties of elementary flux modes

The following properties are satisfied by EFMs:

- (Quasi-) Steady state

- Thermodynamical feasibility. Irreversible reactions need to proceed in the correct direction. Formally, one requires $e_j \geq 0$ and that the stoichiometric coefficients s_{ij} are written with the sign that is consistent with the direction

- Non-decomposability. One cannot remove a reaction from an EFM and still obtain a reaction rate vector that is feasible in steady state. That is, if e is an EFM there is no vector v that satisfies the above and $P(v) \subset P(e)$

These properties define EFMs up to a scaling factor: if e is an EFM $\alpha e, \alpha > 0$ is also an EFM.
Example

Metabolic system:

\[
\begin{array}{c}
\text{A} \\
\text{R}_1 \\
\text{B} \\
\text{R}_2 \\
\text{C} \\
\text{R}_3 \\
\text{D} \\
\text{R}_4
\end{array}
\]

EFMs:

non–EFMs:
EFMs and steady state fluxes

• Any steady state flux vector v can be represented as a non-negative combination of the elementary flux modes: $v = \sum_j \alpha_j e_j$, where $\alpha_j \geq 0$.

• However, the representation is not unique: one can often find several coefficient sets α that satisfy the above.

• Thus, a direct composition of a flux vector into the underlying EFPs is typically not possible. However, the *spectrum* of potential contributions can be analysed.
One of the elementary flux modes of our PPP system is given below.

It consists of a linear pathway through the system, excluding reactions R_6 and R_7.

Reaction R_{11} needs to operate with twice the rate of the others.

\[efm_1 = \begin{bmatrix}
R_1 & 1 \\
R_2 & 1 \\
R_3 & 1 \\
R_4 & 1 \\
R_5 & 1 \\
R_6 & 0 \\
R_7 & 0 \\
R_8 & 1 \\
R_9 & 1 \\
R_{10} & 1 \\
R_{11} & 2
\end{bmatrix} \]
EFMs of PPP

- Another elementary flux modes of our PPP system
- Similar linear pathway through the system, but excluding reactions R_5 and using R_7 in reverse direction
- Again, reaction R_{11} needs to operate with twice the rate of the others

\[
efm_2 = \begin{bmatrix}
 R_1 & 1 \\
 R_2 & 1 \\
 R_3 & 1 \\
 R_4 & 1 \\
 R_5 & 0 \\
 R_6 & 1 \\
 R_7 & -1 \\
 R_8 & 1 \\
 R_9 & 1 \\
 R_{10} & 1 \\
 R_{11} & 2 \\
\end{bmatrix}
\]
• Third elementary flux mode contains only the small cycle composed of R_5, R_7 and R_6. R_6 is used in reverse direction.

• A yet another EFM would be obtained by reversing all the reactions in this cycle.

\[
\begin{bmatrix}
R_1 & 0 \\
R_2 & 0 \\
R_3 & 0 \\
R_4 & 0 \\
R_5 & 1 \\
R_6 & -1 \\
R_7 & 1 \\
R_8 & 0 \\
R_9 & 0 \\
R_{10} & 0 \\
R_{11} & 0
\end{bmatrix}
\]

\[efm_3 = \begin{bmatrix}
R_6 \\
R_7 \\
R_8 \\
R_9 \\
R_{10} \\
R_{11}
\end{bmatrix}\]
Building the kernel from EFM\(s\)

- In general there are more elementary flux modes than the dimension of the null space
- Thus a linearly independent subset of elementary flux modes suffices to span the null space
- In our PPP system, any two of the three EFM\(s\) together is linearly independent, and can thus be taken as the representative vectors

\[
\begin{align*}
R_1 &= \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \\
R_2 &= \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \\
R_3 &= \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \\
R_4 &= \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \\
R_5 &= \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \\
E FM &= R_6 \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \\
R_7 &= \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} \\
R_8 &= \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \\
R_9 &= \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \\
R_{10} &= \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \\
R_{11} &= \begin{bmatrix} 0 & 2 & 2 \end{bmatrix}
\end{align*}
\]
Software for finding EFMs

• From small systems it is relatively easy to find the EFMs by manual inspection

• For larger systems this becomes impossible, as the number of EFMs grows easily very large

• Computational methods have been devised for finding the EFMs by Heinrich & Schuster, 1994 and Urbanczik and Wagner, 2005

• Implemented in MetaTool package
Conservation relations

• As chemical reactions do not create or destroy matter, they obey conservation relations
• The counts of substrate and product molecules are balanced
• In the example reaction \(r : A + B \rightarrow 2C \), the sum \(A + B + 2C = const \) is constant.
• Other conserved quantities:
 - Elemental balance: for each element species (C,N,O,P,...) the number of elements is conserved
 - Charge balance: total electrical charge, the total number of electrons in a reaction does not change.
 - Moiety balancing: it is possible to write balances for larger chemical moieties such as the co-factors (NAD,NADH, ATP, ADP,...)
Conservation relations from the stoichiometric matrix

- From the stoichiometric matrix conservation relations of metabolites can be found by examining the left null space of S, i.e. the set \(\{ l | lS = 0 \} \)
- A basis spanning the left null space can be obtained from SVD $S = U\Sigma V^T$:
 the last \(m - r \) columns of the matrix U span the left null space, where r is the rank of S
- In MATLAB the basis can be computed by the command \textit{null}(\(S' \)).
Conservation in PPP

The left null space of our PPP system only contains a single vector, stating that the sum of NADP\(^+\) and NADPH is constant in all reactions.

\[
1^T = \begin{bmatrix}
\beta G6P & 0 \\
\alpha G6P & 0 \\
\beta F6P & 0 \\
6PGL & 0 \\
6PG & 0 \\
R5P & 0 \\
X5P & 0 \\
NADP^+ & 0.7071 \\
NADPH & 0.7071 \\
H_2O & 0
\end{bmatrix}
\]