Stoichiometric vector and matrix '

e The stoichiometric coefficients of a - A

: 0
reaction are collected to a vector s,
0
e In s, there is a one position for each
o . Al-1
metabolite in the metabolic system,
and the stoichiometric co-efficient of 0
the reaction are inserted to Sp=-10
appropriate positions, e.g. for the Bl-1
reaction 0
r: A+ Bw— 2C, -1 0
Cl2]

N /
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e Consider the set of reactions from
the penthose-phospate pathway:

e The stoichiometric matrix is a

10-by-7 matrix:

Ri: BG6P + NADP+ 4/ 6PGL + NADPH
Rs: 6PGL + H,0 X 6PG
Rs: 6PG + NADP* 2’ R5P + NADPH

rpe

Rs: R5P & X5P
Rs: aG6P & 3G6P
Rs: aG6P & 3F6P
R BG6P & GF6P

BG6P
aG6P
BF6P
6PGL
6 PG
R5P
X5P
NADP™*
NADPH
H>0O

0 0
0 0

0
-1 0
1 -1
0 1
0 0
0 -1
0 1
-1 0

o o o o O

o O O =

o O O o o o o o

Example: stoichiometric matrix I

|
|

o O O o o o o =

~

|
H 1

o O O o o o o = o

/
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Systems equations I

In a network of n metabolites and r reactions, the dynamics of the system are

characterized by the systems equations

dX; <
dtz :Zsijl}j, for ¢ = 1,...,77,

j=1

e X, is the concentration of the ith metabolite
e v; is the rate of the jth reaction and
e s;; is the stoichiometric coefficient of ith metabolite in the jth reaction.

Intuitively, each system equation states that the rate of change of concentration of

a metabolite is the sum of metabolite flows to and from the metabolite.

N /
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Systems equation example I

e Assume our example metabolic

~

imption!

bn!

: dBG6P
network has the following rate g T —1lvgr, + lvgy; — 1lvgr, =0
vector v = (1,1,0,0,1,0,0) daG6P
T —1lvgry — lvry = —1 = net const
e Let us compute the rate of change
dBF6P B
for metabolites 7~ 1wre +1vr; =0
zw d6GPL
R.: BG6P + NADP+ 2/ 6PGL + NADPH —— = lug, —lug, =0
Rs: 6PGL + H20 ¢ 6PG 16PC _
Rs: 6PG + NADPT 2’ R5P + NADPH g~ 1vme — lvmy =1 = met product
rpe P
Ry: R5P % X5P % — lvm, — log, =0
) gpi
Rs5: aG6P @Z BG6P IXEP
Re: aG6P 2 BF6P g~ lvrs =0
. gpt
Ry BG6P & BF6P dNAdl;PH — 1um, + Lop, — 1 = net producti
dNADP™*
— —1vgr, — lvr; = —1 = net consu
k dH-0 .
7t = —Ivr, = —1 = net consumption
[etabolic Modelling Spring 2007 Juho

mption!
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Steady state analysis I

e The requirements a steady state, i.e. non-changing concentrations

r

dX; :
o :Zsijvj:O, fori=1,...,n

j=1
constitute a set of linear equations constraining to the reaction rates v;.

e We can write this set of linear constraints in matrix form with the help of the

stoichiometric matrix S and the reaction rate vector v

aX
2 _gv—0
a0y

e A reaction rate vector v satisfying the above is called a flux vector.

N /
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Null space of the stoichiometrix matrix (1/2) I

e Any flux vector v that the cell can maintain in a steady-state is a solution to

the system of equations
Sv=0

e The null space of the stoichiometric matrix
N(S) ={u|Su =0}
contains all valid flux vectors

e Therefore, studying the null space of the stoichiometric matrix can give us

important information about the cell’s capabilities

o

~

/
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Null space of the stoichiometric matrix (2/2) I

The null space N(.5) is a linear vector space, so all properties of linear vector spaces

follow, e.g:

e N(S5) contains the zero vector, and closed under linear combination:
Vi,Vgy € N(S) —> 1V] +QVy € N(S)

e The null space has a basis {ki,...,k,}, a set of ¢ < min(n,r) linearly
independent vectors, where r is the number of reactions and n is the number of
metabolites.

e The choice of basis is not unique, but the number ¢ of vector it contains is
determined by the rank of S.

N /
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Null space and feasible steady state rate vectors I

e The kernel K = (ky,...,k,) of the stoichiometric matrix formed by the above
basis vectors has a row corresponding to each reaction.

e K characterizes the feasible steady state reaction rate vectors: for each feasible

flux vector v, there is a vector b € R? such that Kb =v
e In other words, any steady state flux vector is a linear combination
brki +---+ bqkq

of the basis vectors of N(IV).

N /
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Singular value decomposition of S (1/3) I

e A basis for the null space can be obtained via the singular value decomposition

(SVD)

e The SVD of S is the product S = ULV, where

— U is a m X m orthonormal matrix, where r first columns are the
eigenvectors of the column space of S, and m — r last columns span the left

null space of S.

— Y =diag(o1,09,...,0,) is m X n matrix containing the singular values o;

on its diagonal

— V is a n X n orthonormal matrix, where r first columns span the row space

of S, and n — r last columns span the null space of S

N /
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column space
of S

\—W./J
\ m metabolites

invariant.
U s
01

0 m-r vectors oo
[} .
= spanning the -
% left null
= _ space of |g
£ r basis vectors
£ spanning the

r basis vectors

spanning the row spac

of S

n—r basis vectors

spanning the null space

of S

n reactions

Singular value decomposition of S (2/3) I

The subspaces spanned by the columns of U are interpreted as follows:

e The set of r m-dimensional eigenvectors of the column space of S can be seen as
prototypical or ’eigen-’ reactions: all reaction stoichiometries in the metabolic
system can be expressed as linear combinations of the eigen-reactions.

e The m — r vectors u,1; spanning the left null space of S represent conservation
relations between metabolites or pools of metabolites whose concentration stays

9]
n reactions

~

/
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m metabolites

o

Singular value decomposition of S (3/3) I

The subspaces spanned by the columns of V' are interpreted as follows:

e The set of r n-dimensional eigenvectors of the row space of S can be seen as

systems equations of prototypical ’eigen-" metabolites: all systems equations of

the metabolism can be expressed as their linear combinations

e The set of n — r n-dimensional vectors spanning the null space are flux vectors

that can operate in steady state, i.e. statifying Sv; =0,l=r +1,...,n: these

can be taken as the kernel K used to analyze steady state fluxes.

U s VT
o1
m-r vectors oo _
spanning the - r basis vectors 2
left null . spanning the row spaceS
. O
space of|g ° of S S
r basis vectors ' =
H c
spanning the o
column space ' n=r basis vectors
of S spanning the null space
of S
n reactions

m metabolites

~

/

[etabolic Modelling Spring 2007

Juho Rousu 11



Basis steady state flux modes from SVD I

e A basis for the null space is thus obtained by picking the n — r last columns of
V from the SVD of S

K =[vry1,...,05]

e In MATLAB, the same operation is performed directly by the command
null(S).

e Let us examine the following simple system

Ro Rly

1
A — - B 0
R S =
X’* 0O 0 1 0 -1 0
Rs
D—— 0

N /

[etabolic Modelling Spring 2007 Juho Rousu 12




Basis steady state flux modes from SVD I

e The two flux modes given by SVD

VsvbD1 .
for our example system 0.577:2

0.577
e All steady state flux vectors can be 0.2908 0.298
expressed as linear combinations of A B
these two flux modes 0.2793
0.2793
_ _ D -
0.2980 0.4945 v
0.2080  0.4945 Svb2 _ o010t
0.5772 —0.0108 0.0y/
K= 0.4945 0.4945
—0.2793  0.5053 A B
0.5772  —0.0108 \\<15053
0.5053
|—0.2793  0.5053 | 5

N /
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from the penthose-phospate
pathway

The stoichiometric matrix is a
10-by-9 matrix

. BG6P + NADP' %/ 6PQL 4+ NADPH
. 6PGL + H,0 ¢ 6PG
. 6PG + NADP* 2 R5P + NADPH

rpe

. R5P & X5P
. aG6P & 3G6P
. aG6P & GF6P
. BG6P & BTGP

= aG6P
: XbP =

BG6P
aG6P
BF6P
6PGL
6 PG
R5P
X5P
NADP™*
NADPH
H>0O

0 0
0 0

0
-1 0
1 -1
0 1
0 0
0 -1
0 1
-1 0

o o o o O

o O O =

o O O o o o o o

Null space of PPP I

e Consider again the set of reactions

|
—_

o O o o o o o

~

|
—_

o O o o o o o = O
o O O O o o o o = O

/
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Null space of PPP I

e Null space of this system has only Ri: BG6P + NADP+ %/ 6PGL + NADPH

one vector K = Ro: 6PGL + H,0 2 6PCG

(0,0,0,0,0.5774, —0.5774,0.5774,0,0,0)" 1 cber 4 NADP+ 2 RSP + NADPH
e Thus, in a steady state only R.: R5P ¢ X5P

reactions Ry, Rg and R; can have Rs: aG6P & BG6P

non-zero fluxes. Re: aG6P & 3F6P
o The reason for this is that there are  p.. gaep &' gF6P

no producers of NADP* or HyO Rs = aG6P

and no consumers of NADPH. Ro: X5P =

e Thus our PPP is effectively now a
dead end!

N /
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Null space of PPP I

e To give our PPP non-trivial (fluxes g . 3gep + NADP* &/ 6PGL + NADPH

different from zero) steady states, R.: 6PCL -+ H.0 22 6PC

we need to modify our system Rs: 6PG + NADPT 22 R5P + NADPH
e We add reaction Rqp := H50 as a Rs: R5P & X5P

water source Rs: aG6P & BG6P

Re: aG6P 2 GF6P

e We add reaction R;1: NADPH = Rs: 3G6P 9Ri BF6P

NADP™ to regenerate NADP™ from

Rg : = aG6P
NADPH. Rg : X5P =
e We could also have removed the Rio: = H20
metabolites in question to get the Ri1: NADPH = NADPT
same effect

N /
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o

identify enzyme subsets that operate
with fixed flux ratios in any steady state:

e reactions {R; — Ry, Rs — Ry1} are
one subset: K11 has double rate to
all the others

e {Rg, R} are another: Rg has the
opposite sign of Ry

e Rs does not belong to non-trivial
enzyme subsets, so it is not forced
to operate in lock-step with other

reactions

[ 0.2727
0.2727
0.2727
0.2727
0.3920
—0.1193
0.1193
0.2727
0.2727
0.2727

| 0.5454

Enzyme subsets of PPP I

From the kernel, we can immediately

0.1066 |
0.1066
0.1066
0.1066
—0.4667
0.5733
—0.5733
0.1066
0.1066
0.1066

0.2132 |

~

/
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very small systems

o

illustrated by our small example system

e Reaction reversibility constraints
are violated: in wvg,q1, 25 operates
in wrong direction, in vg,q2, R4

operates in wrong direction

e All reactions are active in both flux
modes, which makes visual

interpretation impossible for all but

e The flux values are all non-integral

Basis steady state flux modes from SVD I

The kernel matrix obtained from SVD

suffers from two shortcomings,

Vsvp1 0.5772

VsvD2 0.010¢

0.010
0.4945 0.4945

A B

~

/
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Choice of basis '

e SVD is only one of the many ways that a basis for the null space can be defined.

e The root cause for hardness of interpretation is the orthonormality of matrix V'
in SVD S =UXV?T

— The basis vectors are orthogonal: v’ , vgyg2 =0

— The basis vectors have unit length ||vsya1|| = |[Vsvar|| =1

e Neither criteria has direct biological relevance!

N /
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o

From our example system, it is easy V1
to find flux vectors that are more

meaningful than those given by SVD 1 1
A

Both pathways on the right statisfy
the steady state requirement

Both pathways obey the sign
restrictions of the system Vo

One can easily verify (by solving b

form the equation Kb = v) that 1

they are linear combinations of the
flux modes given by SVD, e.g.
v1 = 0.0373v4pq1 + 1.99704p42

1

B
B

N

%
%
XD

Biologically meaningful pathways I

1
C——
0
C

[

0

.

1

.

~

/
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Elementary flux modes I
The two pathways are examples of Vi 1
elementary flux modes L C——
The study of elementary flux modes 1 1 /
(EFM) and concerns decomposing the A B 0
metabolic network into components that \ 0
e can operate independently from the D
rest of the metabolism, in a steady V2 0
tat C——
state, 0/
e any steady state can be described as 1 R 1 5
a combination of such components. 1
\ 1
D —_——

N /
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Representing EFMs I

e Flementary flux modes are given as V1 1
reaction rate vectors 1 C——~
e=(e1,...,€en), 1 A 1 B/
e EFMs typically consists of many X 0
zeroes, so they represent pathways D— -

in the network given by the

non-zero components

Ple) = {jle; # 0} PR

N /
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Properties of elementary flux modes I

The following properties are statisfied by EFMs:

e (Quasi-) Steady state

e Thermodynamical feasibility. Irreversible reactions need to proceed in the
correct direction. Formally, one requires e; > 0 and that the stoichiometric

coefficients s;; are written with the sign that is consistent with the direction

e Non-decomposability. One cannot remove a reaction from an EFM and still
obtain a reaction rate vector that is feasible in steady state. That is, if e is an
EFM there is no vector v that satisfies the above and P(v) C P(e)

These properties define EFMs upto a scaling factor: if e is an EFM ae,a > 0 is
also an EFM.

N /
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Metabolic system:

—_— B
R3
Ro
Ry
—_— B
Rs

/
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EFMs and steady state fluxes I

e Any steady state flux vector v can be represented as a non-negative

combination of the elementary flux modes: v = > ; o€, where o > 0.

e However, the representation is not unique: one can often find several coefficient

sets a that satisfy the above.

e Thus, a direct composition of a flux vector into the underlying EFPs is typically

not possible. However, the spectrum of potential contributions can be analysed

N /
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/ EFMs of PPP . \

e One of the elementary flux modes of our PPP system is given below
e It consist of a linear pathway through the system, exluding reactions Rg and R~

e Reaction Ri; needs to operate with twice the rate of the others

R |1
Ry |1
Rg
Rs |1 / =
R, |1 BF6P —
Rs |1
efmi = Rg |0
NADPH
R7 |0
Rs |1 R5P
Ro |1 RA‘
RlO 1
k X5P /
R 2 L

He
H=
I
|
<
A
o

[etabolic Modelling Spring 2007 Juho Rousu 26



/ EFMs of PPP . \

e Another elementary flux modes of our PPP system

e Similar linear pathway through the system, but exluding reactions R5 and
using R7 in reverse direction

e Again, reaction R needs to operate with twice the rate of the others

R, |1

Ry |1
Rg

s 1 BG6P

R. |1 BFGP—/L"

Rs | O

eme == RG 1

R7 |—1

Rs 1 R5P

Ry 1 R4

k Rio | 1 /
X5P
[etabolic Modelling Rll | 2 ] Spring 20 )Rg Juho Rousu 27




/ EFMs of PPP . \

e Third elementary flux mode contains only the small cycle composed of Rs5, R~
and Rg. Rg is used in reverse direction

e A yet another EFM would be obtained by reversing all the reactions in this
cycle

R, |0
R> | O
Rs | O
Ry, |0
Rs |1
efms = Rg |—1
R; | 1
Rs | O
Ry | O
N e o Y
Ri1 10

letabolic Modelling - - Juho Rousu 28
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Building the kernel from EFMs I
e In general there are more - 7
R, |0 1 1
elementary flux modes than the
dimension of the null space f |01 1
R 0 1 1
e Thus a linearly independent subset s
of elementary flux modes suffices to Ry |01 1
span the null space Rs |1 1 0
e In our PPP system, any two of the EFM = Rg | -1 0 1
three EFMs together is linearly R; |1 0 -1
independent, and can thus be taken Rs |0 1 1
as the representative vectors Ro |0 1 1
Ro| O 1 1
Ry |0 2 2

N /
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Software for finding EFMs I

e From small systems it is relatively easy to find the EFMs by manual inspection

e For larger systems this becomes impossible, as the number of EFMs grows
easily very large

e Computational methods have been devised for finding the EFMs by Heinrich &
Schuster, 1994 and Urbanczik and Wagner, 2005

e Implemented in MetaTool package

N /
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Conservation relations '

e As chemical reactions do not create or destroy matter, they obey conservation

relations
e The counts of substrate and product molecules are balanced

e In the example reaction r : A+ B — 2C, the sum A+ B + 2C = const is
constant.
e Other conserved quantitites:

— Elemental balance: for each element species (C,N,O,P,...) the number of

elements is conserved

— Charge balance: total electrical charge, the total number of electrons in a

reaction does not change.

— Moiety balancing: it is possible to write balances for larger chemical
moieties such as the co-factors (NAD,NADH, ATP, ADP,...)

N /
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m metabolites

o

Conservation relations from the stoichiometric matrix '

e From the stoichiometric matrix conservation relations of metabolites can be

found by examining the left null space of S, i.e. the set {1]1S = 0}

e A basis spanning the left null space can be obtained from SVD S = UXV?:
the last m — r columns of the matrix U span the left null space, where r is the
rank of S

e In MATLAB the basis can be computed by the command null(S”).

~

/
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m-r vectors op _
spanning the - r basis vectors 2
left null spanning the row spaceS
(&)
space of|g ° of S S
r basis vectors =
H c
spanning the o
r L
column space N=T basis vectors
of S spanning the null space
of S
m metabolites n reactions
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/ Conservation in PPP ' \

The left null space of our PPP system only contains a single vector, stating that
the sum of NADP* and NADPH is constant in all reactions.

gaepr [ o |
aG6P 0
BF6P 0
6PGL 0
o 6PG 0
R5P 0
X5P 0
NADP+ [0.7071
NADPH [0.7071
HO | 0

N /
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