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Lecture 7/

e Gene networks — part 1
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Questions | want to ask

What does it mean to understand a
network of thousands of genes and
connections?

How does a simple cell (with < 6000
genes) work?

What does it mean to understand ‘how
does a cell work’?

Can a descriptive approach to biology ever
provide the answer?



Modelling approach

Develop a model (a formal language)
describing gene networks

Study the properties of the model instead
of the real world gene networks directly

Make predictions about real world gene
networks based on the properties of the
model

Test the predictions in the real world

If the predictions are correct — the model
IS correct



All models are wrong, but some
are useful

- George E. P. Box



Simulation and reverse
engineering of gene networks

e Simulation - given a model, observe its
behaviour and compare to gene
expression data from real networks

 Reverse engineering - given gene
expression data construct a particular
model (In the given model class) that is
consistent with the data



Approach to gene network modelling -
four levels of hierarchical description

o Parts list — genes, transcription factors,
promoters, binding sites, ...

« Topology — a graph describing the
connections between the parts

e Control logics — how combinations of
regulatory signals interact (e.g., promoter
logics)

« Dynamics — how does it all work in real time

Each level models different network properties, each next
level includes more detall



Gene Networks - four levels of
hierarchical description

e Parts list — genes, transcription factors,
promoters, binding sites, ...



Genes and gene products, proteins

The number of

Organism

E.Coli (bacteria) 5000
Y east 6000
Worm 18, 000
Fly 14, 000
Weed 25, 500

Human 25, 000

Part of the genome that
predicted genes  encodes proteins (exons)

90%
70%
217%
20%
20%
< 5%



Gene Networks - four levels of
hierarchical description

« Topology — a graph describing the
connections between the parts



YILO37(

-, @

.

047

@, @\ &R

BOPY) DI
GRI61
SEANER\ G —
VET])
ECMis) Hovg)
RUS) (AD10)
YaLos
H (YOR12-
H Vel
SAGI)
GE
12) QU L7 RPY
YVRO31N
RN =V
NET &
R
MACY) Whg
aw
SHEA)
Smd) RG)
PETL AN R

e

Ri

STE24)

RPS2:

YALOOA

o D
\d

PG

YLRO4: 13)

YIL117(

STE1S)

(YAL107¢

1SA2)




Gene Networks - four levels of
hierarchical description

e Control logics — how combinations of
regulatory signals interact (e.g., promoter
logics)



Gene activation, repression, more
complex combinatorial effects




Logics

o LI

C
C

D=A&B& -C



T — if(F=1orE=1orCD=1)and(Z=1) Repression functions of modules F, E, and
e P DC mediated by Z site
6 F E ¢ =k 0=
R N B A A A else a=0
if (P=1and CG,=1) Both P and CG, needed for synergistic link
v o B=2 with module B
else f=0
if (CG,=1and CG,=1and CG,=1) Final step up of system output
v=2
time varying influence ———> scalar factor -----= > Inhibitory switch wwumvee. {
else vy=1
3(t) = B(t) + G(t) Positive input from modules B and G
g(t) = *o(t) Synergistic amplification of module B
output by CG,-P subsystem
if (¢(t) = 0) Switch determining whether Otx site in
_ module A, or upstream modules (i.e.,
5(t) = Otx(t) mainly module B), will control level of
else  E(t)=¢«(t) activity
if(a=1) Repression function inoperative in
endoderm but blocks activity elsewhere
n{Y=0
else  nt)=&(t)
ot) =y n(t) Final output communicated to BTA

Yuh, C.H, Bolouri, H and Davidson, E.H (1998) Genom c ci s-
regul atory logic: experinental and conputational analysis of a sea
urchin gene. Science 279, 1896-902



Gene Networks - four levels of
hierarchical description

« Dynamics — how does it all work in real time



Simulations on a FSLM
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Gene Networks - four levels of
hierarchical description

e Parts list — genome scale

 Topology — genome scale for smaller
genomes (Yeasts, E. Coli)

 Control logics — tens of genes
« Dynamics — typically a couple of genes



Gene Networks - four levels of
hierarchical description

e Parts list — genome scale

 Topology — genome scale for smaller
genomes (Yeasts, E. Coli)

 Control logics — tens of genes
 Dynamics — typically a couple of genes



Parts list

» Classification of all genes and their
products (transcripts, proteins) — an
ontology or a database
— Some particularly important for regulation

classes of genes — transcription factors,
signalling proteins

— Transcription factor binding sites, promoters -
e.g, TRANSFAC database



Gene Ontology (GO)

What information might we want to
capture about a gene product?

 What does the gene product do?
 Where and when does It act?
 Why does it perform these activities?




GO structure

e GO terms divided into three parts:
— cellular component
— molecular function
— biological process



Cellular Component
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Molecular Function

Insg_lin

Insulin REEEE
Receptor &b ¥

b N
iInsulin binding
Insulin receptor activity



Molecular Function

* A gene product may have several
functions: a function term refers to a

single reaction or activity, not a gene
product.

e Sets of functions make up a biological
process.



Biological Process

DNA helix

Initiation

Elongation

Termination o I>

transcription



DAG structure - Mitochondrial
membrane
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Gluconeogenesis
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GO for microarray analysis

« Annotations give ‘function’ label to genes

« Ask meaningful questions of microarray
data e.q.

— genes involved in the same process,
same/different expression patterns?



Using GO In practice

e statistical measure

— how likely your differentially regulated genes
fall into that category by chance

A-R-R-R-R-R-R-R-

mitcsis apoptod's positive contrd of - gluoose transport
odl prdiferation

mitosis — 80/100

microarray - 190 LIEEE apoptosis — 40/100
experiment +> differentially === p._ctrl. cell prol. — 30/100

regualted glucose transp. — 20/100

1000 genes




Using GO In practice

 However, when you look at the distribution
of all genes on the microarray:

Process Genes on array # genes expected in occurred
100 random genes

mitosis 800/1000 80 80

apoptosis 400/1000 40 40

p. ctrl. cell prol. 100/1000 10 30

glucose transp. 50/1000 5 20



How to estimate that the overlap Is
more than expected by random?

We assume that the elements of the set E
are marked, and pick the set of size |R]| at

/G \ random. Then the size x=|RCE]| of the

Intersection are distributed according
to hypergeometric distribution.
The probability of observing an

Intersection of size k or larger can be
computed according to formula:
HE|0ei5|- |E|Q

o §i ZIR-i
P(x3 k) =1-
N Y, A

RI5




Parts list - number of transcription

factors
Organism Number of Number of
genes transcription
regulators
(GO:0030528)
Yeast 6682 312 (4.7%)
Fly 13525 492 (3.6%)
Human 22287 1034 (4.6%)
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Transcription factor binding sites
and promoters

e Binding site identification Is much more
elusive than gene identification



Organization of a typical yeast
promoter
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Computational identification of TF
binding sites
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Search for over-represented
patterns in clusters of
putative regulatory regions

600 basepairs 3
EXPression profiles e —

\ Retrieve E

Upstream regions
=== Pattern over-represented in cluster



Pattern selection criteria
Binomial distribution

Background -

ALL —— Gluger P OCCUrs3times
upstream _

SeQuUences - —— ——— P(p,6) is probability

— of having 3 or
more matchesin 6
p— sequences

5 out of 25, p = 0.2 P(p,6) =0.0989
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1 mismatch
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GGTGGCAA is a binding site for
RPN4

FEBS Lett 1999 Apr 30;450(1-2):27-34

Rpn4p actsasatranscription factor by binding to PACE, a nonamer box
found upstream of 26S proteasomal and other genesin yead.

Mannhaupt G, Schnall R, Karpov V, Vetter |, Feldmann H
Adolf-Butenandt-Institut der Ludwig-Maximilians-Universitat Munchen, Germany.

We identified a new, unigue upstream activating sequence

(5-GGTGGCAAA-3) in the promoters of 26 out of the 32 proteasomal
yeast genes characterized to date, which we propose to call proteasome-
associated control element. By using the one-hybrid method, we show that the
factor binding to the proteasome-associated control element is Rpndp, a protein

containing a C2H2-type finger motif and two acidic domains. ...



" cells

Microarray expression
measurements in cell cycle
for over 400 periodic genes

INn yeast
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Computational TF binding site
identification

 Works OK for yeasts, but even for S.
Pombe difficult

 For human this type of strategy does not
work — the putative promoter regions are
too long

e The best that has been achieved for
human Is to use known binding site

patterns, to try to find where they are in
the genome



Known binding sites for S.pombe

CAGTCACA
ACCCTACCCT

TTCTTTGTTY
ACAAT
TTTGTTTAC
GAANnTTC
TGACGTCA

HomolD
HomolE

TR-box
M-box
FLEX
HSE
CRE

(translation)
(translation)

(mating)
(mating)
(meiosis)
(stress)
(stress)



Alternative methods for high throughput
binding site identification

 ChlIP-on-chip — identify intragenic
sequences of a few hundred base-pairs
binding a particular transcription factor,
then look for an overrepresented
seguence elements

* Protein binding arrays — hybridise the
transcription factor directly on the array

* Phylogenetic foot printing or shadowing



ChlP-chip (Chromatin Immuno
Precipitation on chip) experiments

to identify TF binding sites

e The method

— TF are cross-linked to genomic DNA with
Chromatin IP

— The DNA is fragmented and nonprotein binding
bits washed away

— The remaining DNA is labelled and hybridised on
a microarray containing intragenic regions

— The spot brightness now tells where TF were
bound

* Problems
— Binding is still condition specific
— Are the binding functional?



Problems in binding site

identification

They are all based on the assumption that
statistically overrepresented sequence elements
are functional

They are all based the assumption that the
binding sites can be described by regular
expressions or position weight matrices

They work on yeasts around ~50% OK, but so
far they have failed in higher organisms

On the order of 4000 TF BS location for S.
Cerevisiae



Parts list - conclusions

Gene identification - OK

Gene function — only 1/3 of the genes
have known function

Transcription Factors — 1/3 — 2/3

Transcription factor binding site
identification — More or less OK for yeast,
rather poor for higher organism



Gene Networks - four levels of
hierarchical description

Parts list — genes, transcription factors,
promoters, binding sites, ...

Topology — a graph describing the connections
between the parts

Control logics — how combinations of
regulatory signals interact (e.g., promoter logics)

Dynamics — how does it all work in real time



Gene Networks - four levels of
hierarchical description

Parts list — genes, transcription factors,
promoters, binding sites, ...

Topology — a graph describing the connections
between the parts

Control logics — how combinations of
regulatory signals interact (e.g., promoter logics)

Dynamics — how does it all work in real time



Topology — a graph where nodes
represent genes and edges (arcs)
represent relationships between genes




The arcs can have different
meaning

- The product of gene Gl isa
transcription factor, which binds to the
promoter of gene G2 (in Chip-chip
experiment) — physical interaction

network (direct network)

@ | - Gene G2 contains a binding site for
gene G1 (in silico BS identification)

@ | - The disruption of gene G1 changes

the expression level of gene G2 — data
Interpretation network (indirect
network)

9



What kind of things we can study
on this level?

o |deally this graph should tell us which
gene can potentially regulate which others
and which are independent

« How complex is this graph? What are the
connectivity properties? Can we find
modules?



What kind of things we can study
on this level

e Source genes and target genes — nodes
with outgoing arcs and nodes with
Incoming arcs respectively

* For every source gene we can define the
set of target genes (target set of a gene)

 How graphs with different edges relate?
How do target sets of the same gene
compare Iin different networks?



Data for S. cerevisiae

 ChIP network (Young lab, Science 2002,
Nature 2004) — binding locations for 177
transcription factors (about 4500 locations
In the genome) — direct network

 Mutation network (Hughes et al, Cell 2000)
— 228 yeast mutant expression data for all
genes — indirect network



The arcs can have different
meaning
- The product of gene Gl isa
transcription factor, which binds to the
promoter of gene G2 (in Chip-chip

experiment) — physical interaction
network (direct network)

- Gene G2 contains a binding site for
gene G1 (in silico BS identification)



Transcription factor binding
network in S. cerevisiae for ~100




Data for S. cerevisiae

 ChIP network (Young lab, Science 2002,
Nature 2004) — binding locations for 177
transcription factors (about 4500 locations
In the genome) — direct network

 The presence of derived transcription
factor binding site data used to improve
the networks



The arcs can have different
meaning

- The disruption of gene G1 changes
the expression level of gene G2 — data
Interpretation network (indirect
network)



Data for S. cerevisiae

 Mutation network (Hughes et al, Cell 2000)
— 228 yeast mutant expression data for all
genes — indirect network



The mutation microarray data matrix

MUTATIONS === oo >
S 88 88 5
GENES
gene A .““‘
gene B .““‘
gene C .““‘
gene D .““‘
v genekE ‘.....




Discretization of the data

The normalized expression log(ratios) are discretized using two thresholds:
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Gene disruption networks

gene A
gene B
gene C

gene D

o O + | DA




Yeast mutation data

* Gene expression data for all ~6000 genes
for ~300 systematic mutation experiments
In yeast published by Rosetta (Gene
Expression Compendium, Cell, 2000)

« Additionally ~60 replicates for the wild-
type, and an error model, together
allowing to discretize the data



Dataset

The dataset used is coming from Hughes et al..

“Functional discovery viaacompendium of expression profiles’, Cell 102, 109-
126 (2000)

« Y east data, 6316 gene expression profiles over 300
experiments

276 deletion mutants (274 single, 2 double)

* 11 tet-promotor mutants

* 13 compound treatments

We have sdlected a subset of 207
experiments:

 Single deletion mutants

e Diploid cellsonly

 All chromosomes present



clustered profile index

clustered transcript response index
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Gene specific thresholds

e ~ 80 experiments on ‘wild-type’ yeast were
performed, revealing wide variation in gene
expression dependent on particular gene

« Gene expression variation for each gene can be
assumed to have normal distribution

o Standard deviation for each gene can be used
therefore for assessing the threshold on gene by
gene basis




Mutation network for S. Cerevisiae
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Why topology Is important?

 Reduce hypothesis space when analysing next
layers of model complexity — instead of default —
all genes depend on all, topology tells us which
genes are independent

 What is the complexity of gene regulation
— Given a transcription factor T — how many genes
does T regulate?
— Given a gene A, how many transcription factors
regulate A?



