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Lecture 8

• Gene networks – part 2
– Network topology (part 2)
– Network logics
– Network dynamics



Gene Networks - four levels of
hierarchical description

• Parts list – genes, transcription factors,
promoters, binding sites, …

• Topology – a graph describing the connections
between the parts

• Control logics – how combinations of
regulatory signals interact (e.g., promoter logics)

• Dynamics – how does it all work in real time
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The arcs can have different
meaning

G1 G2 - The product of gene G1 is a
transcription factor, which binds to the
promoter of gene G2 (in Chip-chip
experiment) – physical interaction
network (direct network)

G1 G2 - The disruption of gene G1 changes
the expression level of gene G2 – data
interpretation network (indirect
network)



How both networks compare

• How much the two networks have in
common

• We can look at the intersection of the
networks whether the common parts have
evidence in our existing knowledge

• If the target sets of the transcription factors
present in both networks are similar

• Are the network topology (e.g.,
connectivity) properties similar
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A couple of simple notions

• Any gene (node in the graph) with
outgoing edges is called a source gene

• Any gene with incoming edges is a target
gene

• Target set
source node

target node

target set



A problem:

• Both network depend on the chosen
significance threshold - i.e., what level of
microarray signal to use to draw and edge
in the network



The size of the networks for
different significance thresholds
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How both networks compare

• How much networks have in common
• We can look at the intersection of the

networks whether the common parts have
evidence in our existing knowledge

• If the target sets of the transcription factors
present in both networks are similar

• Are the network topology (e.g.,
connectivity) properties similar



Intersection of the networks – many
connections are consistent with out
a priori knowledge
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How both networks compare

• How much networks have in common
• We can look at the intersection of the

networks whether the common parts have
evidence in our existing knowledge

• If the target sets of the transcription factors
present in both networks are similar

• Are the network topology (e.g.,
connectivity) properties similar



How Chip-chip and disruption
networks relate?

All genesAll genes
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How Chip-chip and disruption
networks relate?



How to estimate that the overlap is
more than expected by random?

G
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R∩E

We assume that the elements of the set E
are marked, and pick the set of size |R| at
random. Then the size x=|R∩E| of the
intersection are distributed according
to hypergeometric distribution.
The probability of observing an
intersection of size k or larger can be
computed according to formula:
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All genesAll genes

Transcription
factors

Disrupted genes

Regulation
set of g
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How Chip-chip and disruption
networks relate?

(9)

From 23 transcription factors studied in both networks only 9 have their
target sets overlapping more than expected by chance L



From 23 transcription factors studied in both
networks only 9 have their target sets
overlapping more than expected by chance

• Is it as bad as my look?
– We will expect many indirect connections in

the disruption network that are not present in
Chip network – is this the case?



Direct vs. indirect interactions

Y

ZX

Direct Direct

Indirect
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From 23 transcription factors studied in both
networks only 9 have their target sets
overlapping more than expected by chance

• Is it as bad as my look?
– We will expect many indirect connections in

the disruption network that are not present in
Chip network – is this the case? There is an
anecdotal evidence that this is the case

– What about the connections present in the
Chip network, but not in the disruption
network? – can be explained by nonfunctional
relationships in the chip network and
combinatorial regulatory effects



Conclusions

• We want to think that networks share
enough in common both to be meaningful,
but at the same time apparently there is a
lots of noise in at least one of them
present



How both networks compare

• How much networks have in common
• We can look at the intersection of the

networks whether the common parts have
evidence in our existing knowledge

• If the target sets of the transcription factors
present in both networks are similar

• Are the network topology (e.g.,
connectivity) properties similar – and what
are they



The central node has
degree = 7

indegree = 3
outdegree = 4

Degree of a node in a graph



Most genes have only a few incoming / outgoing
edges, but some have high numbers (>500)

Important genes and genes with
complex regulation

Indegree Outdegree



γ outdegree m n indegree m n
2.0 Carbohydrate metabolism 363 4 Amino-acid metabolism 9 194

RNA turnover 353 4 Nucleotide metabolism 6 82
Meiosis 244 3 Energy generation 5 242
Cellstress 207 9 Small molecule transport 5 343
Protein translocation 197 3 Other metabolism 5 148

2.8 RNA turnover 110 4 Amino-acid metabolism 4 167
Cellstress 62 8 Nucleotide metabolism 3 67
Meiosis 54 3 Energy generation 2 184
Proteinsynthesis 53 7 Differentiation 2 43
Cellwallmaintenance 47 6 Small molecule transport 2 286

3.6 RNA turnover 48 4 Small molecule transport 2 230
RNA processing/
modification 41 4 Other metabolism 2 96
Cellstress 27 8 Nucleotide metabolism 2 58
Small molecule transport 19 8 Matingresponse 2 57
Cellwallmaintenance 19 6 Amino-acid metabolism 2 133

Cellular role table showing the top 5 groups with the highest median degrees for
the networks with γ=2.0, 2.8 and 3.6 with a minimum group size of 3 for
outdegree and  40 for the indegree (m median degree, n number of genes per
group)

Genes with highest in- and out-degree



ChIP network
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Node degree distributions for both
networks – roughly follow power-law



ChIP network
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Yeast network topology properties

• Power-law property  – on logarithmic scale
approximately linear relationship

• Whether this is so is still open to debate – what
is clear however is that most genes have
relatively few connections, a few have many



Why topology is important?
• Reduce hypothesis space when analysing next

layers of model complexity – instead of default –
all genes depend on all, topology tells us which
genes are independent

• What is the complexity of gene regulation
– Given a transcription factor T – how many genes

does T regulate?
– Given a gene A, how many transcription factors

regulate A?
• Are networks modular?



What does ‘modular’ mean?

• Are there only one connected component
or several

• In scale free graphs there are hub nodes
(nodes with high degree keeping
everything together) and there is a theory
that networks fall into pieces (modules) if
the hub nodes are removed – is this the
case for real netoworks











Looking for modules

full removed
1% 5% 10%

largest 2403 2201 1859 1721
ChIP network second 11 11 11 11

total number 3 3 4 6
largest 5583 5416 4988 4259

in-silico network second
total number 1 1 1 1
largest 4095 3209 2301 1815

mutant network second 2 2 3 3
total number 2 2 3 8



Network modularity

• On static topology level there are no
obvious modules in yeast transcription
regulation network

• This does not mean however that there
are no modules?
– there is evidence for modules
– More subtle methods may be needed to find

them



What have we learned on the
topology level?

• Comparison of different networks shows
that we have some idea of what the true
topology is like, but it is far from perfect

• The network topology is roughly scale free
• There are not obvious modules in these

networks on the topology level – one giant
component



Gene Networks - four levels of
hierarchical description

• Parts list – genes, transcription factors,
promoters, binding sites, …

• Topology – a graph describing the
connections between the parts

• Control logics – how combinations of
regulatory signals interact (e.g., promoter
logics)

• Dynamics – how does it all work in real time
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More complex interactions

G1

G2

G3



Logics
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Control functions

• Discrete vs. continuous

D = A & B & ¬C

D = w1A + w2B + w3C



A>5

B>2 C>3

D=1 D=0 E=1 E=0

yesno

yesno yesno

if A>5 and B<=2 then D=1
if A>5 and B>2 then D=0
if A<=5 and C<=3 then E=1
if A<=5 and C>3 then E=0

Decision trees



• Decision tree for CLN2 gene in yeast

1.1 >1.1

0.81 >0.81

0.8 >0.8



Logics – high throughput data is
only now beginning to have impact

• Predicting gene expression from combination of
expression levels of other genes (Soinov et al,
2003)
– Limited to about 20 genes
– For instance, by choosing genes well known to be

involved in yeast cell cycle regulation it is possible to
derive decision trees describing the combinatorial
regulatory effects for these genes

– At least some of the conclusions are supported by a
priori knowledge



Yuh, C.H., Bolouri, H. and Davidson, E.H. (1998) Genomic cis-
regulatory logic: experimental and computational analysis of a sea
urchin gene. Science 279, 1896-902

What is known about the regulatory logics
from classical low throughput approaches?

Boolean, linear and decision tree concepts are all used – 12 input variables



Probabilistic approaches



Canalizing Boolean functions
• There is one input and one value for that input

that determines the output regardless of the
values of other inputs
– F = x V y – canalizing – x=1 ->   F=1
– F = x & y – canalizing – x= 0 -> F=0
– F = x ⊕ y – not canalizing – none of the values of

none of the inputs can determine the value of F
• For Boolean functions of many inputs only a

small number of the possible functions are
canalizing



Gene Networks - four levels of
hierarchical description

• Parts list – genes, transcription factors,
promoters, binding sites, …

• Topology – a graph depicting the connections
of the parts

• Control logics – how combinations of
regulatory signals interact (e.g., promoter logics)

• Dynamics – how does it all work in real time



Classification of dynamic network
models

• Continuous versus discrete state (e.g,
boolean)

• Deterministic versus probabilistic state
transitions (e.g. differential equations
versus Bayesian models);

• Ignoring spatial effects vs modelling
spatial effects



Differential equation based models
The basic assumption – the rate of changes in
gene product abundance at a particular time are
determined by the abundance of gene products
at the time

gi(t) – the abundance of the product of gene i at time t
wij – the weight of the contribution of gene j to the
expression of gene i



Differential equation based models
Difference equation model:

g1(t+∆t) − g1(t) = (w11 g1(t) + ... + w1n gn(t)) ∆t
...

gn(t+∆t) − gn(t) = (wn1 g1(t) + ... + wnn gn(t)) ∆t

where:
gi(t) – the abundance of the product of gene i at time t
wij – the weight of the contribution of gene j to the
expression of gene I

The main problem – we don’t know the constants wij



von Dassow, G., Meir, E., Munro, E.M. and Odell, G.M. (2000)
The segment polarity network is a robust developmental
module. Nature 406, 188-92.

Differential equation model for
drosophila embryo development



Synchronous Boolean networks –
the assumptions

• Each gene the system (cell) can be in one of
two states –

• ‘expressed’ – 1,
• ‘not expressed’ – 0

• The genes can switch from state to state all
simultaneously in synchronous manner

• The next state of each gene is determined by
previous states of all genes by Boolean
functions describing the network



&

X

Y Z

Y=X&Z,  X=Y,  Z= ¬X

000 001

010011

111

101

110 100
State transitions

X Y Z X Y Z
0 0 0 0 0 1
0 0 1 0 0 1
0 1 0 1 0 1
0 1 1 1 0 1
1 0 0 0 0 0
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 1 0

t t+1

State space



Reverse engineering:
• Given the state space transitions:

000
001

010

011
111

101110

100

• Reconstruct the network:



Reverse engineering problem
• On one hand the problem is trivial – the stage

space immediately gives one a transition
table, which is an equivalent representation to
the wiring diagram

• However the problem of building the smallest
wiring diagram from the table is NP-hard, i.e.,
it takes exponential time to do this

• For small networks (3 genes as above) this is
not a problem, but for thousands of genes this
is not a solution



Exponential algorithm
• Assume that all genes depend on all, i.e., in the

wiring diagram connect each to all
• The Boolean function is the disjunctions of all

vectors as given in the table
• This gives a hugely long Boolean functions for

each gene (i.e, n2n for a network of each gene)
• The minimisation of this Boolean function to the

smallest equivalent one is a classic NP hard
problem



Solution

• Instead of the minimal possible network
look for simply ‘small’ network

• Somogyi et al – algorithm using mutual
information – not clear how good is this
heuristics



Attractors in the state space
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Canalizing Boolean functions
• There is one input and one value, which

determines the output regardless of the values
of other imputs

• F = x V y – canalizing – x=1 ->   F=1
• F = x & y – canalizing – x= 0 -> F=0
• F = x ⊕ y – not canalizing – none of the values

of none of the inputs can determine the value of
F

• For Boolean functions of many inputs only a
small number of the possible functions are
canalizing



Kaufman’s simulations

• Randomly constructed Boolean networks
such that
– the number of inputs of each ‘gene’ is small
– the control functions are canalizing

have a property that
– their state space consists of a relatively small

number of attractors
– most of the time the spend in attractor states



Attractors in the state space
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Kaufman’s hypothesis

• Gene networks are predominantly
controlled by canalizing functions

• Attractors are cell types
• He estimated that under certain conditions

on network connectivity and assuming
100000 genes, there should be a few
hundred different cell types



A hybrid models –
the finite state linear model

&

¬

ri=(-1.5, 0.5)

Fi

B2

B1

B3



&

¬

Fi

B2 1

B1 1

B3 0

ri=(-1.5, 0.5)



&

¬

ri=(-1.5, 0.5)

Fi

B2 1
1

B1 1

B3 0



&

Fi

B2 1
1

ci

tB1 1

B3 0 ¬



&

¬

Fi

B2 1
0

ci

tB1 1

B3 1



assorep

dissorep

time

concentration
of repressor

assorep

dissorep

time

concentration
of repressor

t1

assorep

dissorep

time

concentration
of repressor

t1 t2

brep Srep

¬0 1 r+

brep Srep

¬1 0 r-

brep Srep

¬1 0 r+



Simulations on a FSLM



Lac operon in E.coli bacteria

• There are two modes in E.coli – glucose or
lactose utilisation mode that is regulated
by the presence or absence of lactose



lacZ ...Promoter Operator

Repressor

lacIPromoter

Activator

Glucose

Lactose GlucoseGalactose

+

Galactosidase

repressor
repressor

galactose

activator

glucose

activator

see table

galactosidase
galactosidase

repressor

activator

galactosidase

&

&

glucose galactose

FSLM representation

Finite state model for Lac-Operon
network
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Network dynamics – the state of art

• Most of the current dynamic models
include less than 10 genes, and the
knowledge used in the modelling mostly
comes from traditional biology studies

• There are no convincing examples where
high throughput technologies had a
substantial impact on network modelling
on the dynamics level yet



Conclusions – what have we
learned on each level so far?

• Parts list – we are dealing with thousands to tens of
thousands of elements in these networks, and
hundreds to thousands regulating elements;

• Topology – may be tens of thousands of connections,
it seems to be scale free, no obvious modules

• Control logics – a gene can be controlled by dozens
of transcription factors in a rather complex way

• Dynamics – we are not yet able to model dynamics of
genome scale transcription regulation  networks



What do I hope you have learned in
this course

• Some feel what real microarray data are
like, some idea of the basic methods (if
you didn’t know this before)

• How to use ArrayExpress and Expression
Profiler if you need this

• A flavour what is our current knowledge
how genes are regulated and how little we
know


