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Lecture 8

« Gene networks — part 2
— Network topology (part 2)
— Network logics
— Network dynamics




Gene Networks - four levels of
hierarchical description

Parts list — genes, transcription factors,
promoters, binding sites, ...

Topology — a graph describing the connections
between the parts

Control logics — how combinations of
regulatory signals interact (e.g., promoter logics)

Dynamics — how does it all work in real time
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The arcs can have different
meaning
- The product of gene Gl isa
transcription factor, which binds to the
promoter of gene G2 (in Chip-chip

experiment) — physical interaction
network (direct network)

- The disruption of gene G1 changes
the expression level of gene G2 — data
Interpretation network (indirect
network)



How both networks compare

How much the two networks have In
common

We can look at the intersection of the
networks whether the common parts have
evidence In our existing knowledge

If the target sets of the transcription factors
present in both networks are similar

Are the network topology (e.g.,
connectivity) properties similar
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A couple of simple notions

 Any gene (node In the graph) with
outgoing edges Is called a source gene

* Any gene with incoming edges Is a target
gene

o al’get Set target node

source node

A

target set



A problem:;

* Both network depend on the chosen
significance threshold - i.e., what level of
microarray signal to use to draw and edge
In the network



The size of the networks for

different significance thresholds

ChiP ChiP mutant mutant mutant
network | network network | network | network
(p<0.01) | (p<0.001) | (g=2.0) (g=2.5) (g=3.0)
source genes 202 169 250 236 226
target genes 4939 2845 5396 4778 3920
genes 4980 2930 5654 4798 3959
edges 18842 6170 32017 17436 10356
edges where source gene 3694 857 4096 2425 1507
and target gene have the | (19.6%) (13.9%) | (12.8%) | (13.9%) | (14.6%)
same cellular role
annotation in YPD
(http://www.proteome.com
)
edges per source gene 93.3 36.5 135.7 73.8 45.6



http://www.proteome.com

source edages
genes 9 target
genes



How both networks compare

How much networks have in common

We can look at the intersection of the
networks whether the common parts have
evidence In our existing knowledge

If the target sets of the transcription factors
present in both networks are similar

Are the network topology (e.qg.,
connectivity) properties similar



Intersection of the networks — many
connections are consistent with out
a priori knowledge
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Figure 6
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How Chip-chip and disruption
networks relate?
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How to estimate that the overlap Is
more than expected by random?

We assume that the elements of the set E
are marked, and pick the set of size |R]| at

/G \ random. Then the size x=|RCE]| of the

Intersection are distributed according
to hypergeometric distribution.
The probability of observing an

Intersection of size k or larger can be
computed according to formula:
HE|0ei5|- |E|Q

o §i ZIR-i
P(x3 k) =1-
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How Chip-chip and disruption
networks relate?

/ All genes \ /AII genes \
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From 23 transcription factors studied in both networks only 9 have their
target sets overlapping more than expected by chance L



From 23 transcription factors studied in both
networks only 9 have their target sets
overlapping more than expected by chance

e Is It as bad as my look?

— We will expect many indirect connections in
the disruption network that are not present in
Chip network — is this the case?



Direct vs. Indirect interactions

Indirect
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From 23 transcription factors studied in both
networks only 9 have their target sets
overlapping more than expected by chance

e Is It as bad as my look?

— We will expect many indirect connections in
the disruption network that are not present in
Chip network — is this the case? There is an
anecdotal evidence that this is the case

— What about the connections present in the
Chip network, but not in the disruption
network? — can be explained by nonfunctional
relationships in the chip network and
combinatorial regulatory effects



Conclusions

 We want to think that networks share

enough in common both to be meaningful,
out at the same time apparently there is a
ots of noise in at least one of them
oresent




How both networks compare

How much networks have in common

We can look at the intersection of the
networks whether the common parts have
evidence In our existing knowledge

If the target sets of the transcription factors
present in both networks are similar

Are the network topology (e.g.,
connectivity) properties similar — and what
are they



Degree of a node Iin a graph

&

e

The central node has
degree =7
indegree =3
outdegree =4



Important genes and genes with
complex regulation

Most genes have only afew incoming / outgoing
edges, but some have high numbers (>500)

Nodes

(b) Outdegree

Outdegree




Genes with highest in- and out-degree

g outdegree m n indegree m n
2.0 Carbohydrate metabolism 363 4|Amino-acid metabolism 9 194
RNA turnover 353 4|Nucleotide metabolism 6 82
Meiosis 244  3|Energy generation 5 242
Cellstress 207 9|Small molecule transport 5 343
Protein translocation 197 3|Other metabolism 5 148
2.8 RNA turnover 110 4|Amino-acid metabolism 4 167
Cellstress 62 8|Nucleotide metabolism 3 67
Meiosis 54 3|Energy generation 2 184
Proteinsynthesis 53 7|Differentiation 2 43
Cellwallmaintenance 47 6|Small molecule transport 2 286
3.6 RNA turnover 48 4|Small molecule transport 2 230
RNA processing/
modification 41 4|Other metabolism 2 96
Cellstress 27 8|Nucleotide metabolism 2 58
Small molecule transport 19 8|Matingresponse 2 57
Cellwallmaintenance 19 6]|Amino-acid metabolism 2 133

Cellular role table showing the top 5 groups with the highest median degrees for
the networks with 9:2.0, 2.8 and 3.6 with a minimum group size of 3 for
outdegree and 40 for the indegree (m median degree, n number of genes per
group)



Node degree distributions for both
networks — roughly follow power-law

mutant network
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Yeast network topology properties

mutant network
ne
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 Power-law property — on logarithmic scale
approximately linear relationship

 Whether this is so is still open to debate — what
IS clear however Is that most genes have
relatively few connections, a few have many



Why topology Is important?

 Reduce hypothesis space when analysing next
layers of model complexity — instead of default —
all genes depend on all, topology tells us which
genes are independent

 What is the complexity of gene regulation
— Given a transcription factor T — how many genes
does T regulate?
— Given a gene A, how many transcription factors
regulate A?

e Are networks modular?



What does ‘modular’ mean?

* Are there only one connected component
or several

* In scale free graphs there are hub nodes
(nodes with high degree keeping
everything together) and there Is a theory
that networks fall into pieces (modules) if
the hub nodes are removed - Is this the
case for real netoworks















Looking for modules

full removed
1% [5% |10%
largest 2403 | 2201 | 1859 | 1721
Chl P network second 11 11 11 11
total number 3 3 4 6
largest 5583 | 5416 | 4988 | 4259
IN-Slico network second
total number 1 1 1 1
largest 4095 | 3209 | 2301 | 1815
mutant network second 2 2 3 3
total number 2 2 3 8




Network modularity

* On static topology level there are no
obvious modules In yeast transcription
regulation network

e This does not mean however that there
are no modules?

— there Is evidence for modules

— More subtle methods may be needed to find
them



What have we learned on the
topology level?

 Comparison of different networks shows
that we have some idea of what the true
topology is like, but it Is far from perfect

* The network topology Is roughly scale free

* There are not obvious modules Iin these
networks on the topology level — one giant
component



Gene Networks - four levels of
hierarchical description

o Parts list — genes, transcription factors,
promoters, binding sites, ...

« Topology — a graph describing the
connections between the parts

e Control logics — how combinations of
regulatory signals interact (e.g., promoter
logics)

« Dynamics — how does it all work in real time
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More complex interactions

(&

o



D=A&B& -C



Control functions

e Discrete vs. continuous

D=A&B& -C

D=wA+w,B+w,C



Decision trees

if A>5 and B<=2 then D=1
if A>5 and B>2 then D=0

if A<=5 and C<=3 then E=1
if A<=5 and C>3 then E=0



Decision tree for CLN2 gene in yeast

>1.1

L CLMZis
L downregulated

>0.81

L CLNZis |
upregulated

<0.8

L CLM2is L CLNZis
L upregulated | t downregulated




Logics — high throughput data Is
only now beginning to have impact

e Predicting gene expression from combination of
expression levels of other genes (Soinov et al,
2003)

— Limited to about 20 genes

— For instance, by choosing genes well known to be
Involved in yeast cell cycle regulation it is possible to
derive decision trees describing the combinatorial
regulatory effects for these genes

— At least some of the conclusions are supported by a
priori knowledge



What Is known about the regulatory logics
from classical low throughput approaches?

B
if(F=1orE=10orCD=1)and (Z=1) Repression functions of modules F, E, and
DC mediated by Z site
a=1
else a=0
if (P =1and CG, =1) Both P and CG, needed for synergistic link
with module B
B=2
else f=0
if (CG,=1and CG,=1and CG,=1) Final step up of system output
v=2
time varying influence ———> scalar factor ------; > Inhibitory switch wwumvee. {
else vy=1
3(t) = B(t) + G(t) Positive input from modules B and G
g(t) = *o(t) Synergistic amplification of module B
output by CG,-P subsystem
if (¢(t) = 0) Switch determining whether Otx site in

module A, or upstream modules (i.e.,
mainly module B), will control level of

E(t) = Otx(t)

else  E(t)=¢«(t) activity
if(a=1) Repression function inoperative in
endoderm but blocks activity elsewhere
n{Y=0
else  nt)=&(t)
o(t) = yn(t) Final output communicated to BTA

Yuh, C.H, Bolouri, H and Davidson, E.H (1998) Genom c ci s-
regul atory logic: experinental and conputational analysis of a sea
urchin gene. Science 279, 1896-902

Boolean, linear and decision tree concepts are all used — 12 input variables



Probabillistic approaches



Canalizing Boolean functions

e There Is one input and one value for that input
that determines the output regardless of the
values of other inputs

— F=xVy-canalizing- x=1-> F=1

— F=x &Yy - canalizing—x=0->F=0

— F = x A y — not canalizing — none of the values of
none of the inputs can determine the value of F

 For Boolean functions of many inputs only a
small number of the possible functions are
canalizing



Gene Networks - four levels of
hierarchical description

Parts list — genes, transcription factors,
promoters, binding sites, ...

Topology — a graph depicting the connections
of the parts

Control logics — how combinations of
regulatory signals interact (e.g., promoter logics)

Dynamics — how does it all work in real time



Classification of dynamic network
models

e Continuous versus discrete state (e.q,
boolean)

* Deterministic versus probabilistic state
transitions (e.g. differential equations
versus Bayesian models);

 Ignoring spatial effects vs modelling
spatial effects



Differential equation based models

The basic assumption — the rate of changes in
gene product abundance at a particular time are
determined by the abundance of gene products
at the time

0i(t) — the abundance of the product of gene i at time t
w; — the weight of the contribution of gene j to the
expression of gene |



Differential equation based models

Difference equation model:

g,(t+Dt) - g4(t) = (wy; 0y(t) +... +wy, g,(t)) Dt
Oy (D) - Gy(®) = (Woy Gy() + ... + Wy, Go(D)) DX

where:
0i(t) — the abundance of the product of gene i at time t
w; — the weight of the contribution of gene j to the
expression of gene |

The main problem — we don’t know the constants w;



Differential equation model for
drosophila embryo development
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von Dassow, G, Meir, E., Munro, EM and dell, G M (2000)
The segnent polarity network is a robust devel opnent al
nodul e. Nature 406, 188-92.



Synchronous Boolean networks —
the assumptions

 Each gene the system (cell) can be in one of

two states —
o ‘expressed’ — 1,
* ‘not expressed’ — 0
 The genes can switch from state to state all
simultaneously in synchronous manner

 The next state of each gene Is determined by
previous states of all genes by Boolean
functions describing the network



Y=X&Z, X=Y, Z=-X

t+1

1O OO0OO0O

OO OO0 0O

OO OO

XY Z| X' Y Z

O 1O 10O O
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State transitions
011

State space



Reverse engineering:

* Glven the state space transitions:

e Reconstruct the network:

L]



Reverse engineering problem

 On one hand the problem is trivial — the stage
space immediately gives one a transition
table, which is an equivalent representation to
the wiring diagram

 However the problem of building the smallest

wiring diagram from the table is NP-hard, I.e.,
It takes exponential time to do this

* For small networks (3 genes as above) this is
not a problem, but for thousands of genes this
IS not a solution



Exponential algorithm

Assume that all genes depend on all, i.e., in the
wiring diagram connect each to all

The Boolean function is the disjunctions of all
vectors as given in the table

This gives a hugely long Boolean functions for
each gene (i.e, n2" for a network of each gene)

The minimisation of this Boolean function to the
smallest equivalent one is a classic NP hard
problem



Solution

e Instead of the minimal possible network
look for simply ‘small’ network

e Somogyi et al — algorithm using mutual
iInformation — not clear how good is this
heuristics



Attractors In the state space




Canalizing Boolean functions

There Is one input and one value, which
determines the output regardless of the values
of other imputs

- =xVy-canalizing - x=1-> F=1
- =X &y — canalizing —x=0 -> F=0
= = x A y — not canalizing — none of the values

of none of the inputs can determine the value of
F

For Boolean functions of many inputs only a
small number of the possible functions are
canalizing




Kaufman’s simulations

« Randomly constructed Boolean networks
such that

— the number of inputs of each ‘gene’ is small
— the control functions are canalizing

have a property that

— their state space consists of a relatively small
number of attractors

— most of the time the spend in attractor states



Attractors In the state space




Kaufman’s hypothesis

« Gene networks are predominantly
controlled by canalizing functions

o Attractors are cell types

 He estimated that under certain conditions
on network connectivity and assuming
100000 genes, there should be a few
hundred different cell types



A hybrid models —
the finite state linear model

I I




%I‘i: (-1.5, 0.5)




%I‘i: (-1.5, 0.5)
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Simulations on a FSLM
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Lac operon in E.coli bacteria

 There are two modes in E.coli — glucose or
lactose utilisation mode that is regulated
by the presence or absence of lactose



Finite state modd for Lac-Operon
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Finite state linear
model for lambda
phage
lytic/lysogenic
mode switch




Network dynamics — the state of art

* Most of the current dynamic models
Include less than 10 genes, and the
knowledge used in the modelling mostly
comes from traditional biology studies

* There are no convincing examples where
high throughput technologies had a
substantial impact on network modelling
on the dynamics level yet



Conclusions — what have we
learned on each level so far?

Parts list — we are dealing with thousands to tens of
thousands of elements in these networks, and
hundreds to thousands regulating elements;

Topology — may be tens of thousands of connections,
It seems to be scale free, no obvious modules

Control logics — a gene can be controlled by dozens
of transcription factors in a rather complex way

Dynamics — we are not yet able to model dynamics of
genome scale transcription regulation networks



What do | hope you have learned In
this course

 Some feel what real microarray data are
like, some Idea of the basic methods (if
you didn’t know this before)

 How to use ArrayExpress and Expression
Profiler if you need this

A flavour what is our current knowledge

how genes are regulated and how little we
Know



