Neighbor joining algorithm

- Neighbor joining works in a similar fashion to UPGMA
 - Find clusters C_1 and C_2 that minimise a function $f(C_1, C_2)$
 - Join the two clusters C_1 and C_2 into a new cluster C
 - Add a node to the tree corresponding to C
 - Assign distances to the new branches

- Differences in
 - The choice of function $f(C_1, C_2)$
 - How to assign the distances
Neighbor joining algorithm

• Recall that the distance d_{ij} for clusters C_i and C_j was

$$d_{ij} = \frac{1}{|C_i||C_j|} \sum_{p \in C_i, q \in C_j} d_{pq}$$

• Let $u(C_i)$ be the separation of cluster C_i from other clusters defined by

$$u(C_i) = \frac{1}{n-2} \sum_{C_j} d_{ij}$$

where n is the number of clusters.
Neighbor joining algorithm

- Instead of trying to choose the clusters C_i and C_j closest to each other, neighbor joining at the same time
 - Minimises the distance between clusters C_i and C_j and
 - Maximises the separation of both C_i and C_j from other clusters
Neighbor joining algorithm

• Start with a star-shaped tree with n leaves and a hub node (see next slide), n ≥ 3
• Iteration
 - Find nodes i and j connected to the hub for which $d_{ij} - u(C_i) - u(C_j)$ is minimal
 - Define new node k with edges i→k, j→k and k→hub, and define d_{kl} for all l
 - Assign length $\frac{1}{2} d_{ij} + \frac{1}{2} (u(C_i) - u(C_j))$ to the edge i→k
 - Assign length $\frac{1}{2} d_{ij} + \frac{1}{2} (u(C_j) - u(C_i))$ to the edge j→k
• Termination:
 - When the hub node has three edges
Creating a new branch

The figure shows first the merging of species i and j, and then k and l: Each merging creates a new internal branch.
Creating a new branch

Merging (i, j) with m creates another internal branch.
Algorithm terminates when the hub node has three edges.
Assigning lengths to edges

- Distances d_{kx} from the new node k to the other nodes in the graph x are defined as $d_{kx} = \frac{1}{2} (d_{ix} + d_{jx} - d_{ij})$