Introduction to Bioinformatics

Lecture 1: Administrative issues MBI Programme, Bioinformatics courses What is bioinformatics? Molecular biology primer

How to enrol for the course?

- p Use the registration system of the Computer Science department: <u>https://ilmo.cs.helsinki.fi</u> n You need your user account at the IT department ("cc account")
- p If you cannot register yet, don't worry: attend the lectures and exercises; just register when you are able to do so

Teachers

- P Esa Pitkänen, Department of Computer Science, University of Helsinki
- P Elja Arjas, Department of Mathematics and Statistics, University of Helsinki
- p Sami Kaski, Department of Information and Computer Science, Helsinki University of Technology
- p Lauri Eronen, Department of Computer Science, University of Helsinki (exercises)

Lectures and exercises

- p Lectures: Tuesday and Friday 14.15-16.00 Exactum C221
- p Exercises: Tuesday 16.15-18.00 Exactum C221
 - n First exercise session on Tue 9 September

Status & Prerequisites

- p Advanced level course at the Department of Computer Science, U. Helsinki
- p 4 credits
- p Prerequisites:
 - n Basic mathematics skills (probability calculus, basic statistics)
 - n Familiarity with computers
 - n Basic programming skills recommended
 - n No biology background required

Course contents

- p What is bioinformatics?
- p Molecular biology primer
- p Biological words
- p Sequence assembly
- p Sequence alignment
- p Fast sequence alignment using FASTA and BLAST
- p Genome rearrangements
- p Motif finding (tentative)
- p Phylogenetic trees
- p Gene expression analysis

How to pass the course?

- p Recommended method:
 - n Attend the lectures (not obligatory though)
 - n Do the exercises
 - n Take the course exam
- p Or:
 - n Take a separate exam

How to pass the course?

- p Exercises give you max. 12 points
 - n 0% completed assignments gives you 0 points, 80% gives 12 points, the rest by linear interpolation
 - n "A completed assignment" means that
 - You are willing to present your solution in the exercise session and
 - You return notes by e-mail to Lauri Eronen (see course web page for contact info) describing the main phases you took to solve the assignment
 - n Return notes at latest on Tuesdays 16.15
- p Course exam gives you max. 48 points

How to pass the course?

- p Grading: on the scale 0-5
 - To get the lowest passing grade 1, you need to get at least 30 points out of 60 maximum
- p Course exam: Wed 15 October 16.00-19.00 Exactum A111
- P See course web page for separate exams
- p Note: if you take the first separate exam, the best of the following options will be considered: n Exam gives you 48 points, exercises 12 points n Exam gives you 60 points
- p In second and subsequent separate exams, only the 60 point option is in use

Questions about administrative & practical stuff?

MBI highlights

- P You can take courses from both HY and TKK
- p Two biology courses tailored specifically for MBI
- p Bioinformatics is a new exciting field, with a high demand for experts in job market
- p Go to www.cs.helsinki.fi/mbi/careers to find out what a bioinformatician could do for living

Admission

- p Admission requirements
 - n Bachelor's degree in a suitable field (e.g., computer science, mathematics, statistics, biology or medicine)
 - At least 60 ECTS credits in total in computer science, mathematics and statistics
 Draficianavia English (standardized language test)
 - n Proficiency in English (standardized language test: TOEFL, IELTS)
- p Admission period opens in late Autumn 2009 and closes in 2 February 2009
- p Details on admission will be posted in www.cs.helsinki.fi/mbi during this autumn

n www.cs.helsinki.fi/mbi/courses/08-09/bfms/

What is bioinformatics?

- p Bioinformatics, n. The science of information and information flow in biological systems, esp. of the use of computational methods in genetics and genomics. (Oxford English Dictionary)
- P "The mathematical, statistical and computing methods that aim to solve biological problems using DNA and amino acid sequences and related information."

What is bioinformatics?

 P "I do not think all biological computing is bioinformatics, e.g. mathematical modelling is not bioinformatics, even when connected with biology-related problems. In my opinion, bioinformatics has to do with management and the subsequent use of biological information, particular genetic information."
 Richard Durbin

What is *not* bioinformatics?

- P Biologically-inspired computation, e.g., genetic algorithms and neural networks
- P However, application of neural networks to solve some biological problem, could be called bioinformatics
 P What about DNA computing?

DNA molecule	(2) DNA input molecule	(3) Input and software molecules	(4) Input molecule hybridizes with a software molecule	(5) The enzyme ligase seals the two molecules
The enzyme Fold binds to the contained molecule	Pold deeves the input molecule inside the next symbol	A new software molecule binds to the remaining input molecule	The process repeats itself until an 'output' sequence, which represents the computation result, is exposed	An "output detector" DNA molecule binds to the sulput sequence, forming the output molecule
	E	· ····································	in a state of the	
		http://www.wisdom.we	zmann.ac.il/~lbn/new_pa	nes/Visual Presentation

Computational biology

- P Application of computing to biology (broad definition)
- p Often used interchangeably with bioinformatics
 p Or: *Biology* that is done with computational means

Biometry & biophysics

- p Biometry: the statistical analysis of biological data
 - n Sometimes also the field of identification of individuals using biological traits (a more recent definition)
- P Biophysics: "an interdisciplinary field which applies techniques from the physical sciences to understanding biological structure and function" -- British Biophysical Society

Turing on biological complexity

 "It must be admitted that the biological examples which it has been possible to give in the present paper are very limited.

This can be ascribed quite simply to the fact that biological phenomena are usually very complicated. Taking this in combination with the relatively elementary mathematics used in this paper one could hardly expect to find that many observed biological phenomena would be covered.

It is thought, however, that the imaginary biological systems which have been treated, and the principles which have been discussed, should be of some help in interpreting real biological forms."

- Alan Turing, The Chemical Basis of Morphogenesis, 1952

Why is bioinformatics important?

- P New measurement techniques produce huge quantities of biological data
 - n Advanced data analysis methods are needed to make sense of the data
 - n Typical data sources produce noisy data with a lot of missing values
- Paradigm shift in biology to utilise bioinformatics in research

Bioinformatician's skill set

- p Statistics, data analysis methods
 - n Lots of data
 - n High noise levels, missing values
 - n #attributes >> #data points

Programming languages

- n Scripting languages: Python, Perl, Ruby, ... n Extensive use of text file formats: need
- parsers
- n Integration of both data and tools
- p Data structures, databases

Bioinformatician's skill set

p Modelling

- n Discrete vs continuous domainsn -> Systems biology
- p Scientific computation packages n R, Matlab/Octave, ...
- p Communication skills!

Molecular biology primer

Molecular biology primer

- p Part 1: What is life made of?
- P Part 2: Where does the variation in genomes come from?

Cells

- p Fundamental working units of every living system.
- Every organism is composed of one of two radically different types of cells:
 prokaryotic cells or
 - n eukaryotic cells.
- Prokaryotes and Eukaryotes are descended from the same primitive cell.
 - n All prokaryotic and eukaryotic cells are the result of a total of 3.5 billion years of evolution.

Common features of organisms

- p Chemical energy is stored in ATP
- p Genetic information is encoded by DNA
- P Information is transcribed into RNA
- p There is a common triplet genetic code
- p Translation into proteins involves ribosomes
- P Shared metabolic pathways
- Similar proteins among diverse groups of organisms

All Life depends on 3 critical molecules

- p DNAs (Deoxyribonucleic acid)
 - n Hold information on how cell works
- P RNAs (Ribonucleic acid)
 - n Act to transfer short pieces of information to different parts of cell
- Provide templates to synthesize into protein
 Proteins
 - Proteins
 - Form enzymes that send signals to other cells and regulate gene activity
 - n Form body's major components (e.g. hair, skin, etc.)
 - n "Workhorses" of the cell

(female) or XY (male) =		3			1 (
total of 46 chromosomes		((1)	"	2)	Х
p Germline cells have 22 chromosomes + either X or Y = total of 23	ĸ	10 15	·)(16	N	12
chromosomes	19 19	20		21	11 22	51

Length of DNA and number of chromosomes

Organism	#base pairs	#chromosomes (germline)
Prokayotic		
Escherichia coli (bacterium)	4x10 ⁶	1
Eukaryotic		
Saccharomyces cerevisia (yeast)	1.35x10 ⁷	17
Drosophila melanogaster (insect)	1.65x10 ⁸	4
Homo sapiens (human)	2.9x10 ⁹	23
Zea mays (corn / maize)	5.0x10 ⁹	10
Zea mays (corn / maize)	5.0x10 ⁹	10

	Hepatitis delta virus, complete genome						
1	atgagccaag	ttccgaacaa	ggattcgcgg	ggaggataga	tcagegeeeg	agaggggtga	
61	gtcggtaaag	agcattggaa	cgtcggagat	acaactccca	agaaggaaaa	aagagaaagc	
121	aagaagcgga	tgaatttccc	cataacgcca	gtgaaactct	aggaagggga	aagagggaag	
181	gtggaagaga	aggaggcggg	cctcccgatc	cgaggggccc	ggcggccaag	tttggaggac	
241	actccggccc	gaagggttga	gagtacccca	gagggaggaa	gccacacgga	gtagaacaga	
301	gaaatcacct	ccagaggacc	ccttcagcga	acagagagcg	catcgcgaga	gggagtagac	
361	catagcgata	ggaggggatg	ctaggagttg	ggggagaccg	aagcgaggag	gaaagcaaag	
421	agagcagcgg	ggctagcagg	tgggtgttcc	gccccccgag	aggggacgag	tgaggettat	
481	cccggggaac	tcgacttatc	gtccccacat	agcagactcc	cggaccccct	ttcaaagtga	
541	ccgagggggg	tgactttgaa	cattggggac	cagtggagcc	atgggatgct	cctcccgatt	
601	ccgcccaage	tccttccccc	caagggtcgc	ccaggaatgg	cgggacccca	ctctgcaggg	
	teegegttee						
	ggctgggcaa						
	tctctagctt						
	cgtgcgtcct						
	ccgaagagga						
	ggggtcgaca						
	atccctggct						
	ctccttgcat						
	ggttcacacc						
	tcaacctcct						
	getttetett						
	atceteceet						
	ccctcttcgc						
	tgtttcccag						
	ggtetetete						
	ctctcccccc						
		cttactcttt	tctgtaaaga	ggagactgct	ggccctgtcg	cccaagttcg	
1681	ag						

Proteins

- Proteins are polypeptides (strings of amino acid residues)
- Represented using strings of letters from an alphabet of 20: AEGLV...WKKLAG
 Typical length 50, 1000
- P Typical length 50...1000 residues

	http://u	pload.wikimedia	.org/wikipedia/	commons/c/c5/	Amino_acids_2.
	Е	н	н	н	н
	Ear PC - CO	H-N1-50-00	8.8.00.00	BAK - 10-00	HAR -50 - 20
Amino acids	1 O	I O CE ₂	CB.	1,00	10
	1	L CE.	- City	1 L	$\cap \mathbb{C}^{n}$
		1.1	0	0	₩ H
	Č=N'I,	C - 0 1		T DE	н
	6 H2	SIH ₂	Phenyl danine (Flat / F)	The order (T_{12} / Y)	Frystoy hen
	$A_{1,BBLD}$ ($A_{2,C} \in \mathbb{R}$)	GLAncine (Gla / D)		(1997.1)	$(\neg q, \forall c)$
	в		з 19	E L	н 1 ,0
	Har 20 00	н	HAN TO DE	$= E^2 H_{1}^{1/2} H_{1}^{1/2} H_{1}^{1/2} + C \left(\frac{1}{2} \right)$	BM SCO
		H,H* -*C - C (e)	OH)	/	CH ₂
	(CH).a 	0		HR	OH
	NH, Caupe	Olycine (Olycine	Alanine (Alailia)	Histidics (Ein / E)	(Sec.13)
	(1757K)			1.1	- U -
	84 C	an seas	wine of	we also for	un seres?
	н,с Срн	50 285	1 ¹ 0 28,	H - C - CH	CH ₀
	HAN ST CA		10	1 I I I I I I I I I I I I I I I I I I I	1.1
	-rali re	000g	0.004	08 ₁	2.8
	(Prc / P)	DCOH Christmin And	Assault Ac 1	The sources	Cotene
	H 20.	(G)u (3)	$(A_{2}; I \mathbb{D})$	$(\exists c \ (T)$	(Cys / C)
	$B_{i}F^{*} \ll C_{i}^{*}$	3 .0	н Н.,о	B L O	н 1 .0
	CE ₂	3.07 10 0 6	HAN NO D'A	$= \frac{1}{8\mu^2} + \frac{1}{2c} + \frac{1}{c_{\rm e}^2}$	11,67 - 66 - 6 6
	ČE ₂	() (H)	OH OH	EC OB,	CH CH
	1	L.		1 CB	્રાં, ેસ,
	L CE.	- 6. Sa.		1 28,	
	Methoniae	Leaene	HB, Approprie	atleasing	Valine
62	(M + H)	$(\log\ellL)$	(AE/N)	(3:7.1)	(V4(V)

How DNA/RNA codes for protein?

- p DNA alphabet contains fou letters but must specify protein, or polypeptide sequence of 20 letters.
- Dinucleotides are not enough: 4² = 16 possible dinucleotides
- p Trinucleotides (triplets) allow 4³ = 64 possible trinucleotides
- P Triplets are also called codons

	U	С	A	G	
	UUU Phenyl- UUC alanine	UCU UCC	UAU UAC Tyrosine	UGU UGC Cysteine	U C
	UUA UUG Lexcire	UCC UCA UCG	UAA Stop coden Stop coden	UGA Stop coden UGG Tryptophan	A G
(CUU CUC CUA	CCU CCC CCA Proline	CAU CAC Histidine	CGU CGC CGA Arginine	U C
First letter	CUG	CCG	CAA CAG Glutamine	CGG	A G
	AUU AUC Isoleucine AUA	ACU ACC Threenine	AAU AAC Asparagine	AGU AGC Serine	U C
	AUG Methionine, start codon	ACA ACG	AAA AAG	AGA AGG Arginine	A G
	GUU GUC GUA Valine	GCU GCC Alanine	GAU GAC acid	GGU GGC GGA Glycine	Ų C
Ì	GUA GUG	GCA GCG	GAA GAG acid	GGA GIYONK	A G

How DNA/RNA codes for protein?

- P Three of the possible triplets specify "stop translation"
- P Translation usually starts at triplet AUG (this codes for methionine)
- Most amino acids may be specified by more than triplet
- How to find a gene? Look for start and stop codons (not that easy though)

Proteins: Workhorses of the Cell

p 20 different amino acids

- n different chemical properties cause the protein chains to fold up into specific three-dimensional structures that define their particular functions in the cell.
- p Proteins do all essential work for the cell
 - n build cellular structures
 - n digest nutrients
 - n execute metabolic functions
- n mediate information flow within a cell and among cellular communities.
 P Proteins work together with other proteins or nucleic acid
 - Proteins work together with other proteins or nucleic acids as "molecular machines"
 - n structures that fit together and function in highly specific, lockand-key ways.

Lecture 8: Proteomics

Causes of variation

- p Mistakes in DNA replication
- P Environmental agents (radiation, chemical agents)
- p Transposable elements (transposons)
 n A part of DNA is moved or copied to another location in genome
- p Horizontal transfer of DNA
 - n Organism obtains genetic material from another organism that is not its parent
 - n Utilized in genetic engineering

Biological string manipulation

- P Point mutation: substitution of a base n ...ACGGCT... => ...ACGCCT...
- p Deletion: removal of one or more contiguous bases (substring)
- n ...TTGATCA... => ...TTTCA...
- p Insertion: insertion of a substring n ...GGCTAG... => ...GGTCAACTAG...

Lecture: Sequence alignment Lecture: Genome rearrangements

> Chromosomal crossover as described by T. H. Morgan in 1916

Meiosis

- Sexual organisms are usually diploid
 - n Germline cells (gametes) contain N chromosomes
 - n Somatic (body) cells have 2N chromosomes
- Meiosis: reduction of chromosome number from 2N to N during reproductive
 - cycle n One chromosome doubling is followed by two cell divisions

http://en.wikipedia.org/wiki/Meiosis

Recombination and variation Recap: Allele is a viable DNA р coding occupying a given locus (position in the genome) In recombination, alleles from р parents become suffled in offspring individuals via chromosomal crossover over Allele combinations in offspring are usually different from combinations found in parents Recombination errors lead into р additional variations

10 most important biodatabases... according to "Bioinformatics for dummies"

а а а а а а а а а а а	GenBank/DDJB/EMBL Ensembl PubMed NR UniProt InterPro OMIM Enzymes PDB KEGG	www.ncbi.nlm.nih.gov www.ensembl.org www.ncbi.nlm.nih.gov www.expasy.org www.ebi.ac.uk www.ncbi.nlm.nih.gov www.expasy.org www.rcbb.org/pdb/ www.genome.ad.jp	Nucleotide sequences Human/mouse genome Literature references Protein sequences Protein domains Genetic diseases Enzymes Protein structures Metabolic pathways

FASTA format

p A simple format for DNA and protein sequence data is FASTA

Header line, begins with >