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Sequence Alignment (chapter 6)
p The biological problem
p Global alignment
p Local alignment
p Multiple alignment

201

Local alignment: rationale
p Otherwise dissimilar proteins may have local regions of

similarity
-> Proteins may share a function

Human bone
morphogenic protein
receptor type II
precursor (left) has a
300 aa region that
resembles 291 aa
region in TGF-
receptor (right).

The shared function
here is protein kinase.

202

Local alignment: rationale

p Global alignment would be inadequate
p Problem: find the highest scoring local alignment

between two sequences
p Previous algorithm with minor modifications solves this

problem (Smith & Waterman 1981)

A

B
Regions of
similarity

203

From global to local alignment
p Modifications to the global alignment

algorithm
n Look for the highest-scoring path in the

alignment matrix (not necessarily through the
matrix), or in other words:

n Allow preceding and trailing indels without
penalty

204

Scoring local alignments
A = a1a2a3…an, B = b1b2b3…bm

Let I and J be intervals (substrings) of A and B, respectively:

Best local alignment score:

where S(I, J) is the alignment score for substrings I and J.

205

Allowing preceding and trailing
indels
p First row and column

initialised to zero:
Mi,0 = M0,j = 0

a3

a2

a1

-

b4b3b2b1-

03

02

01

000000

43210

b1 b2 b3
- - a1



2

206

Recursion for local alignment
p Mi,j =  max {

Mi-1,j-1 + s(ai, bi),
Mi-1,j – ,
Mi,j-1 – ,
0

}

020010T

101100G

000000C

010010T

000000A

000000-

GTGGT-

Allow alignment to
start anywhere in
sequences

207

Finding best local alignment
p Optimal score is the highest

value in the matrix

= maxi,j Mi,j

p Best local alignment can be
found by backtracking from the
highest value in M

p What is the best local
alignment in this example? 020010T

101100G

000000C

010010T

000000A

000000-

GTGGT-

208

Local alignment: example

0G8
0G7
0A6
0A5
0T4
0C3
0C2
0A1

00000000000-0
ACTAACTCGG-

109876543210
Mi,j =  max {

Mi-1,j-1 + s(ai,
bi),
Mi-1,j ,
Mi,j-1 ,
0

}

0

Scoring (for example)
Match: +2
Mismatch: -1
Indel: -2

209

Local alignment: example

0G8
0G7
0A6
0A5
0T4
0C3
0C2
0A1

00000000000-0
ACTAACTCGG-

109876543210
Mi,j =  max {

Mi-1,j-1 + s(ai,
bi),
Mi-1,j ,
Mi,j-1 ,
0

}

0 0 0 0 0 2

Scoring (for example)
Match: +2
Mismatch: -1
Indel: -2

210

C T – A A
C T C A A

Local alignment: example

Scoring (for example)
Match: +2
Mismatch: -1
Indel: -2

Optimal local
alignment:

24321002420G8
13543000220G7

32465100000A6
31134320000A5
21201240000T4
13001212000C3
02110202000C2
20022000000A1
00000000000-0
ACTAACTCGG-

109876543210
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Multiple optimal alignments
Non-optimal, good-scoring alignments

24321002420G8
13543000220G7

32465100000A6
31134320000A5
21201240000T4
13001212000C3
02110202000C2
20022000000A1
00000000000-0
ACTAACTCGG-

109876543210
How can you find

1. Optimal
alignments if
more than one
exist?

2. Non-optimal,
good-scoring
alignments?
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Overlap alignment
p Overlap matrix used by Overlap-Layout-

Consensus algorithm can be computed with
dynamic programming

p Initialization: Oi,0 = O0,j = 0 for all i, j
p Recursion:
Oi,j =  max {

Oi-1,j-1 + s(ai, bi),
Oi-1,j – ,
Oi,j-1 – ,

}
Best overlap: maximum value from rightmost

column and bottom row

213

Non-uniform mismatch penalties
p We used uniform penalty for mismatches:

s(’A’, ’C’) = s(’A’, ’G’) = … = s(’G’, ’T’) = µ
p Transition mutations (A->G, G->A, C->T, T->C) are

approximately twice as frequent than transversions (A->T,
T->A, A->C, G->T)
n use non-uniform mismatch

penalties collected into a
substitution matrix

1-1-0.5-1T
-11-1-0.5G

-0.5-11-1C
-1-0.5-11A
TGCA

214

Gaps in alignment
p Gap is a succession of indels in alignment

p Previous model scored a length k gap as
w(k) = -k

p Replication processes may produce longer
stretches of insertions or deletions
n In coding regions, insertions or deletions of

codons may preserve functionality

C T – - - A A
C T C G C A A

215

Gap open and extension penalties (2)
p We can design a score that allows the

penalty opening gap to be larger than
extending the gap:

w(k) = - – (k – 1)
p Gap open cost , Gap extension cost
p Alignment algorithms can be extended to

use w(k) (not discussed on this course)

216

Amino acid sequences
p We have discussed mainly DNA sequences
p Amino acid sequences can be aligned as

well
p However, the design of the substitution

matrix is more involved because of the
larger alphabet

p More on the topic in the course Biological
sequence analysis

217

Demonstration of the EBI web site
p European Bioinformatics Institute (EBI)

offers many biological databases and
bioinformatics tools at
http://www.ebi.ac.uk/
n Sequence alignment: Tools -> Sequence

Analysis -> Align

http://www.ebi.ac.uk/
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Sequence Alignment (chapter 6)
p The biological problem
p Global alignment
p Local alignment
p Multiple alignment

219

Multiple alignment
p Consider a set of n sequences

on the right
n Orthologous sequences from

different organisms
n Paralogs from multiple

duplications
p How can we study

relationships between these
sequences?

aggcgagctgcgagtgcta
cgttagattgacgctgac
ttccggctgcgac
gacacggcgaacgga
agtgtgcccgacgagcgaggac
gcgggctgtgagcgcta
aagcggcctgtgtgcccta
atgctgctgccagtgta
agtcgagccccgagtgc
agtccgagtcc
actcggtgc

220

Optimal alignment of three
sequences
p Alignment of A = a1a2…ai and B = b1b2…bj can

end either in (-, bj), (ai, bj) or (ai, -)
p 22 – 1 = 3 alternatives
p Alignment of A, B and C = c1c2…ck can end in 23 –

1 ways: (ai, -, -), (-, bj, -), (-, -, ck), (-, bj, ck),
(ai, -, ck), (ai, bj, -) or (ai, bj, ck)

p Solve the recursion using three-dimensional
dynamic programming matrix: O(n3) time and
space

p Generalizes to n sequences but impractical with
even a moderate number of sequences

221

Multiple alignment in practice
p In practice, real-world multiple alignment

problems are usually solved with heuristics
p Progressive multiple alignment

n Choose two sequences and align them
n Choose third sequence w.r.t. two previous sequences

and align the third against them
n Repeat until all sequences have been aligned
n Different options how to choose sequences and score

alignments
n Note the similarity to Overlap-Layout-Consensus

222

Multiple alignment in practice
p Profile-based progressive multiple

alignment: CLUSTALW
n Construct a distance matrix of all pairs of

sequences using dynamic programming
n Progressively align pairs in order of decreasing

similarity
n CLUSTALW uses various heuristics to

contribute to accuracy

223

Additional material
p R. Durbin, S. Eddy, A. Krogh, G.

Mitchison: Biological sequence analysis
p N. C. Jones, P. A. Pevzner: An introduction

to bioinformatics algorithms
p Course Biological sequence analysis in

period II, 2008
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Rapid alignment methods: FASTA and
BLAST
p The biological problem
p Search strategies
p FASTA
p BLAST

225

The biological problem
p Global and local

alignment algoritms are
slow in practice

p Consider the scenario of
aligning a query
sequence against a large
database of sequences
n New sequence with

unknown function n NCBI GenBank size in January
2007 was 65 369 091 950
bases (61 132 599 sequences)

n Feb 2008: 85 759 586 764
bases (82 853 685 sequences)

226

Problem with large amount of sequences
p Exponential growth in both number and

total length of sequences
p Possible solution: Compare against model

organisms only
p With large amount of sequences, chances

are that matches occur by random
n Need for statistical analysis

227

Rapid alignment methods: FASTA and
BLAST
p The biological problem
p Search strategies
p FASTA
p BLAST

228

FASTA
p FASTA is a multistep algorithm for sequence

alignment (Wilbur and Lipman, 1983)
p The sequence file format used by the FASTA

software is widely used by other sequence
analysis software

p Main idea:
n Choose regions of the two sequences (query and

database) that look promising (have some degree of
similarity)

n Compute local alignment using dynamic programming in
these regions

229

FASTA outline
p FASTA algorithm has five steps:

n 1. Identify common k-words between I and J
n 2. Score diagonals with k-word matches,

identify 10 best diagonals
n 3. Rescore initial regions with a substitution

score matrix
n 4. Join initial regions using gaps, penalise for

gaps
n 5. Perform dynamic programming to find final

alignments
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Search strategies
p How to speed up the computation?

n Find ways to limit the number of pairwise
comparisons

p Compare the sequences at word level to
find out common words
n Word means here a k-tuple (or a k-word), a

substring of length k

231

Analyzing the word content
p Example query string I: TGATGATGAAGACATCAG
p For k = 8, the set of k-words (substring of length

k) of I is

TGATGATG
GATGATGA
ATGATGAA
TGATGAAG

…
GACATCAG

232

Analyzing the word content
p There are n-k+1 k-words in a string of length n

p If at least one word of I is not found from
another string J, we know that I differs from J

p Need to consider statistical significance:    I and J
might share words by chance only

p Let n=|I| and m=|J|

233

Word lists and comparison by content
p The k-words of I can be arranged into a table of

word occurences Lw(I)
p Consider the k-words when k=2 and

I=GCATCGGC:
GC, CA, AT, TC, CG, GG, GC
AT: 3
CA: 2
CG: 5
GC: 1, 7
GG: 6
TC: 4

Start indecies of k-word GC in I

Building Lw(I) takes O(n) time

234

Common k-words
p Number of common k-words in I and J can

be computed using Lw(I) and Lw(J)

p For each word w in I, there are |Lw(J)|
occurences in J

p Therefore I and J have
common words

p This can be computed in O(n + m + 4k)
time
n O(n + m) time to build the lists
n O(4k) time to calculate the sum (in DNA

strings)
235

Common k-words
p I = GCATCGGC
p J = CCATCGCCATCG

Lw(J)
AT: 3, 9
CA: 2, 8
CC: 1, 7
CG: 5, 11
GC: 6

TC: 4, 10

Lw(I)
AT: 3
CA: 2

CG: 5
GC: 1, 7
GG: 6
TC: 4

Common words
2
2
0
2
2
0
2
10 in total



7

236

Properties of the common word list
p Exact matches can be found using binary search

(e.g., where TCGT occurs in I?)
n O(log 4k) time

p For large k, the table size is too large to compute
the common word count in the previous fashion

p Instead, an approach based on merge sort can be
utilised (details skipped)

p The common k-word technique can be combined
with the local alignment algorithm to yield a rapid
alignment approach

237

FASTA outline
p FASTA algorithm has five steps:

n 1. Identify common k-words between I and J
n 2. Score diagonals with k-word matches,

identify 10 best diagonals
n 3. Rescore initial regions with a substitution

score matrix
n 4. Join initial regions using gaps, penalise for

gaps
n 5. Perform dynamic programming to find final

alignments

238

Dot matrix comparisons
p Word matches in two sequences I and J can be

represented as a dot matrix
p Dot matrix element (i, j) has ”a dot”, if the word

starting at position i in I is identical to the word
starting at position j in J

p The dot matrix can be plotted for various k

i

j

I = … ATCGGATCA …
J = … TGGTGTCGC …

i

j

239

k=1 k=4

k=8 k=16

Dot matrix (k=1,4,8,16)
for two DNA sequences
X85973.1 (1875 bp)
Y11931.1 (2013 bp)

240

k=1 k=4

k=8 k=16

Dot matrix
(k=1,4,8,16) for two
protein sequences
CAB51201.1  (531 aa)
CAA72681.1  (588 aa)

Shading indicates
now the match score
according to a
score matrix
(Blosum62 here)

241

Computing diagonal sums
p We would like to find high scoring diagonals of the dot

matrix
p Lets index diagonals by the offset, l = i - j

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

k=2

I

J

Diagonal l = i – j = -6
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Computing diagonal sums
p As an example, lets compute diagonal sums for

I = GCATCGGC, J = CCATCGCCATCG, k = 2
p 1. Construct k-word list Lw(J)
p 2. Diagonal sums Sl are computed into a table,

indexed with the offset and initialised to zero

l -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Sl 0  0  0  0  0  0  0  0  0  0 0 0 0 0 0 0 0

243

Computing diagonal sums
p 3. Go through k-words of I, look for matches in

Lw(J) and update diagonal sums

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

I

J For the first 2-word in I,
GC, LGC(J) = {6}.

We can then update
the sum of diagonal
l = i – j = 1 – 6 = -5 to
S-5 := S-5 + 1 = 0 + 1 = 1
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Computing diagonal sums
p 3. Go through k-words of I, look for matches in

Lw(J) and update diagonal sums

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

I

J Next 2-word in I is CA,
for which LCA(J) = {2, 8}.

Two diagonal sums are
updated:
l = i – j = 2 – 2 = 0
S0 := S0 + 1 = 0 + 1 = 1

I = i – j = 2 – 8 = -6
S-6 := S-6 + 1 = 0 + 1 = 1

245

Computing diagonal sums
p 3. Go through k-words of I, look for matches in

Lw(J) and update diagonal sums

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

I

J Next 2-word in I is AT,
for which LAT(J) = {3, 9}.

Two diagonal sums are
updated:
l = i – j = 3 – 3 = 0
S0 := S0 + 1 = 1 + 1 = 2

I = i – j = 3 – 9 = -6
S-6 := S-6 + 1 = 1 + 1 = 2
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Computing diagonal sums
After going through the k-words of I, the result is:
l -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Sl 0  0  0  0  4  1  0  0  0  0 4 1 0 0 0 0 0

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

I

J

247

Algorithm for computing diagonal sum of scores

Sl := 0 for all 1 – m l n – 1
Compute Lw(J) for all words w
for i := 1 to n – k – 1 do

w := IiIi+1…Ii+k-1

for j Lw(J) do
l := i – j
Sl := Sl + 1

end
end

Match score is here 1
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FASTA outline
p FASTA algorithm has five steps:

n 1. Identify common k-words between I and J
n 2. Score diagonals with k-word matches,

identify 10 best diagonals
n 3. Rescore initial regions with a substitution

score matrix
n 4. Join initial regions using gaps, penalise for

gaps
n 5. Perform dynamic programming to find final

alignments

249

Rescoring initial regions
p Each high-scoring diagonal chosen in the

previous step is rescored according to a score
matrix

p This is done to find subregions with identities
shorter than k

p Non-matching ends of the diagonal are trimmed

I: C C A T C G C C A T C G
J: C C A A C G C A A T C A

I’: C C A T C G C C A T C G
J’: A C A T C A A A T A A A

75% identity, no 4-word identities

33% identity, one 4-word identity

250

Joining diagonals
p Two offset diagonals can be joined with a gap, if

the resulting alignment has a higher score
p Separate gap open and extension are used
p Find the best-scoring combination of diagonals

High-scoring
diagonals

Two diagonals
joined by a gap
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FASTA outline
p FASTA algorithm has five steps:

n 1. Identify common k-words between I and J
n 2. Score diagonals with k-word matches,

identify 10 best diagonals
n 3. Rescore initial regions with a substitution

score matrix
n 4. Join initial regions using gaps, penalise for

gaps
n 5. Perform dynamic programming to find final

alignments
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Local alignment in the highest-scoring
region
p Last step of FASTA: perform local

alignment using dynamic
programming around the highest-
scoring

p Region to be aligned covers –w and
+w offset diagonal to the highest-
scoring diagonals

p With long sequences, this region is
typically very small compared to the
whole n x m matrix w

w

Dynamic programming matrix
M filled only for the green region

253

Properties of FASTA
p Fast compared to local alignment using dynamic

programming only
n Only a narrow region of the full matrix is aligned

p Increasing parameter k decreases the number of
hits:
n Increases specificity
n Decreases sensitivity
n Decreases running time

p FASTA can be very specific when identifying long
regions of low similarity
n Specific method does not find many incorrect results
n Sensitive method finds many of the correct results
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Properties of FASTA
p FASTA looks for initial exact matches to

query sequence
n Two proteins can have very different amino

acid sequences and still be biologically similar
n This may lead into a lack of sensitivity with

diverged sequences

255

Demonstration of FASTA at EBI
p http://www.ebi.ac.uk/fasta/
p Note that parameter ktup in the software

corresponds to parameter k in lectures

http://www.ebi.ac.uk/fasta/

