
1

311

How good is simple reversal sort?
p Not so good actually
p It has to do at most n-1 reversals with

permutation of length n
p The algorithm can return a distance that is

as large as (n – 1)/2 times the correct
result d( )
n For example, if n = 1001, result can be as bad

as 500 x d( )

312

Estimating reversal distance by cycle
decomposition
p We can estimate d( ) by cycle

decomposition
p Lets represent permutation = 1 2 4 5 3

with the following graph

where edges correspond to adjacencies
(identity, permutation F)

1 2 4 5 30 6

313

Estimating reversal distance by cycle
decomposition
p Cycle decomposition: a set of cycles that

n have edges with alternating colors
n do not share edges with other cycles (=cycles

are edge disjoint)

1 2 4 5 30 6

1 2 4 5

314

Cycle decompositions
p Let c( ) the maximum number of alternating,

edge-disjoint cycles in the graph representation
of 

p The following formula allows estimation of d( )
n d( ) n + 1 – c( ), where n is the permutation length

1 2 4 5 30 6

1 2 4 5
d( ) 5 + 1 – 4 = 2

Claim in Deonier: equality holds for ”most of the usual and
interesting biological systems.

315

Cycle decompositions
p Cycle decomposition is NP-complete

n We cannot solve the general problem exactly
for large instances

p However, with signed data the problem
becomes easy
n Before going into signed data, lets discuss

another algorithm for the general case

316

Computing reversals with breakpoints
p Lets investigate a better way to compute

reversal distance
p First, some concepts related to

permutation 1 2,,, n-1 n

n Breakpoint: two elements i and i+1 are a
breakpoint, if they are not consecutive
numbers

n Adjacency: if i and i+1 are consecutive, they
are called adjacency



2

317

Breakpoints and adjacencies

2 1 3 4 5 8 7 6

This permutation contains
four breakpoints begin-2, 13, 58, 6-end and
five adjacencies 21, 34, 45, 87, 76

Breakpoints

318

Breakpoints
p Each breakpoint in permutation needs to be

removed to get to the identity permutation (=our
target)
n Identity permutation does not contain any breakpoints

p First and last positions special cases
p Note that each reversal can remove at most two

breakpoints
p Denote the number of breakpoints by b( )

2 1 3 4 5 8 7 6 b( ) = 4

319

Breakpoint reversal sort
p Idea: try to remove as many breakpoints

as possible (max 2) in every step

1. While b( ) > 0
2. Choose reversal p that removes most breakpoints
3. Perform reversal p to 
4. Output 
5. return

320

Breakpoint removal: example
8 2 7 6 5 1 4 3     b( ) = 6

2 8 7 6 5 1 4 3     b( ) = 5

2 3 4 1 5 6 7 8     b( ) = 3

4 3 2 1 5 6 7 8     b( ) = 2

1 2 3 4 5 6 7 8     b( ) = 0

321

Breakpoint removal
p The previous algorithm needs refinement

to be correct
p Consider the following permutation:

1 5 6 7 2 3 4 8

p There is no reversal that decreases the
number of breakpoints!

p See Jones & Pevzner for detailed
description on this

322

Breakpoint removal
p Reversal can only decrease breakpoint

count if permutation contains decreasing
strips

1 5 6 7 2 3 4 8

1 5 6 7 4 3 2 8

1 2 3 4 7 6 5 8

Increasing strip

Decreasing strip

Strip: maximal segment without breakpoints



3

323

Improved breakpoint reversal sort
1. While b( ) > 0
2. If has a decreasing strip
3. Do reversal p that removes most BPs
4. Else
5. Reverse an increasing strip
6. Output 
7. return

324

Is Improved BP removal enough?
p The algorithm works pretty well:

n It produces a result that is at most four times
worse than the optimal result

n ...is this good?

p We considered only reversals
p What about translocations & duplications?

325

Translocations via reversals

1 2 3 4 5 6 7 8

1 5 6 7 8 2 3 4

1 4 3 2 8 7 6 5

1 2 3 4 8 7 6 5

1 2 3 4 5 6 7 8

Translocation of 2,3,4

p(2,8)

p(2,4)

p(5,8)

326

Genome rearrangements with reversals
p With unsigned data, the problem of finding

minimum reversal distances is NP-
complete
n Why is this so if sorting is easy?

p An algorithm has been developed that
achieves 1.375-approximation

p However, reversal distance in signed data
can be computed quickly!
n It takes linear time w.r.t. the length of

permutation (Bader, Moret, Yan, 2001)

327

Cycle decomposition with signed data
p Consider the following two permutations

that include orientation of markers
n J: +1 +5 -2 +3 +4
n K: +1 -3 +2 +4 -5

p We modify this representation a bit to
include both endpoints of each marker:
n J’: 0 1a 1b 5a 5b 2b 2a 3a 3b 4a 4b 6
n K’: 0 1a 1b 3b 3a 2a 2b 4a 4b 5b 5a 6

328

Graph representation of J’ and K’
p Drawn online in lecture!



4

329

Multiple chromosomes
p In unichromosomal genomes, inversion

(reversal) is the most common operation
p In multichromosomal genomes,

inversions, translocations, fissions and
fusions are most common

330

Multiple chromosomes
p Lets represent multichromosomal genome

as a set of permutations, with $ denoting
the boundary of a chromosome:

5 9 $
1 3 2 8 $
7 6 4 $

This notation is frequently used in software
used to analyse genome rearrangements.

Chr 1

Chr 2

Chr 3

331

Multiple chromosomes
p Note that when dealing with multiple

chromosomes, you need to specify
numbering for elements on both genomes

332

Reversals & translocations
p Reversal p( , i, j)
p Translocation p( , , i, j)

i

j

Translocation

333

Fusions & fissions
p Fusion: merging of two chromosomes
p Fission: chromosome is split into two

chromosomes
p Both events can be represented with a

translocation

334

Fusion
p Fusion by translocation p( , , n+1, 1)

i = n + 1

j = 1

Fusion



5

335

Fission
p Fission by translocation p( , , i, 1)

i

Empty chromosome

Fission

336

Algorithms for general genomic distance
problem
p Hannenhalli, Pevzner: Transforming Men into

Mice (polynomial algorithm for genomic distance
problem), 36th Annual IEEE Symposium on
Foundations of Computer Science, 1995

337

Human & mouse revisited
p Human and mouse are separated by about

75-83 million years of evolutionary history
p Only a few hundred rearrangements have

happened after speciation from the
common ancestory

p Pevzner & Tesler identified in 2003 for 281
synteny blocks a rearrangement from
mouse to human with
n 149 inversions
n 93 translocations
n 9 fissions

338

Discussion
p Genome rearrangement events are very

rare compared to, e.g., point mutations
n We can study rearrangement events further

back in the evolutionary history

p Rearrangements are easier to detect in
comparison to many other genomic events

p We cannot detect homologs 100%
correctly so the input permutation can
contain errors

339

Discussion
p Genome rearrangement is to some degree

constrained by the number and size of
repeats in a genome
n Notice how the importance of genomic repeats

pops up once again

p Sequencing gives us (usually) signed data
so we can utilize faster algorithms

p What if there are more than one optimal
solution?

340

Two different genome rearrangement scenarios
giving the same result.



6

341

GRIMM demonstration

Glenn Tesler, GRIMM: genome rearrangements web server.
Bioinformatics, 2002, 342

GRIMM file format

# useful comment about first genome
# another useful comment about it
>name of first genome
1 -4 2 $ # chromosome 1
-3 5 6 # chromosome 2
>name of second genome
5 -3  $
6 $
2 -4 1 $

http://grimm.ucsd.edu/GRIMM/grimm_instr.html

GRIMM supports analysis of
one, two or more genomes

http://grimm.ucsd.edu/GRIMM/grimm_instr.html

