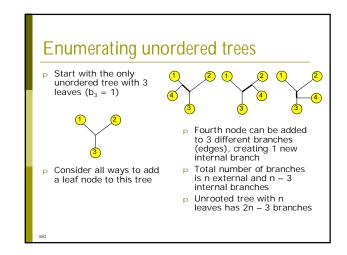

Introduction to Bioinformatics

Phylogenetic trees

Inferring the Past: Phylogenetic Trees

- p The biological problem
- p Parsimony and distance methods
- p Models for mutations and estimation of distances
- p Maximum likelihood methods



Questions

- p Can we enumerate all possible phylogenetic trees for *n* species (or sequences?)
- P How to score a phylogenetic tree with respect to data?
- P How to find the best phylogenetic tree given data?

Finding the best phylogenetic tree: naive method

- P How can we find the phylogenetic tree that best represents the data?
- p Naive method: enumerate all possible trees
- P How many different trees are there of n species?
- p Denote this number by b_n

Enumerating unordered trees

p Thus, we get the number of unrooted trees $b_{n} = (2(n-1) - 3)b_{n-1} = (2n - 5)b_{n-1}$ $= (2n - 5) * (2n - 7) * \dots * 3 * 1$ $= (2n - 5)! / ((n-3)!2^{n-3}), n > 2$ **p** Number of rooted trees b'_n is $b'_{n} = (2n - 3)b_{n} = (2n - 3)! / ((n-2)!2^{n-2}),$ n > 2that is, the number of unrooted trees times the number of branches in the trees

Number of possible rooted and unrooted trees

n	Bn	b'n
3	1	3
4	3	15
5	15	105
6	105	945
7	954	10395
8	10395	135135
9	135135	2027025
10	2027025	34459425
20	2.22E+020	8.20E+021
30	8.69E+036	4.95E+038

Too many trees?

- P We can't construct and evaluate every phylogenetic tree even for a smallish number of species
- p Better alternative is to
 - n Devise a way to evaluate an individual tree against the data
 - n Guide the search using the evaluation criteria to reduce the search space