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Definition of a cluster

Typically either
1. A group of mutually similar samples, or

2. A mode of the distribution of the samples (more dense than the

surroundings)

The definitions depend on the similarity measure or the metric of the data

space.




Q: Why clustering? A: Exploratory (descriptive) data
analysis

Goal: To make sense of unknown, large data sets by “looking at the data”
through

e statistical descriptions

e visualizations

Often additionally: Hunt for discoveries to generate hypotheses for further
confirmatory analyses.

This means flexible model families with additional constraints set by the
discovery task, computational and modeling resources, and interpretability.




Goals of clustering

1. Compression. Because it is easy to define the cost function for
compression, there is a natural goal and criterion for clustering as well:

As effective compression as possible.

2. Discovery of ‘“natural clusters” and description of the data. There
does not exist any single well-posed and generally accepted criterion.
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Note:

Distinguish between the goal of clustering and the clustering algorithm.

The goal can be defined by
e a cost function to be optimized
e a (statistical) model

e characterizing somehow what a “good” cluster 1s like

e indirectly by introducing an algorithm

All are only partial solutions; so far nobody has proposed a globally
satisfactory definition of a cluster!

A clustering algorithm describes how the clusters are found, given the goal.




Example: Hierachical clustering of gene expression data

e Data: Expression (activity) of a set of genes measured by DNA chips in

tissue samples
e The samples are adenocarcinomas from humans

e The goal is to find sets of mutually similar tissue samples. Maybe
subcategories will be found that respond differentially to treatments.
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Variants

Agglomerative vs. divisive clustering

Different criteria for agglomeration and division:

e single linkage
e complete linkage
e average linkage (UPGMA)

e Ward etc.




Pros and cons of hierarchical clustering

The result 1s intuitive and easily interpretable.

The dendrogram can be used for both (1) displaying similarity
relationships between clusters and (11) partitioning by cutting at
different heights.

Possibly tedious to interpret for large data sets
Sensitivity to noise

Clustering has been defined by an algorithm. Can the result be
described as such? Is there a goodness criterion?




Partitional clustering

Definition of a cluster:
Assume a distance measure d(x,y) and define a cluster based on it:

A cluster consists of a set of samples having small mutual distances, that is,

Ek — d2 (X7 Y>
w(xX)=w(y)=k

is small. Here the cluster of sample x has been indexed by w(x).




Partitional clustering algorithm

A partitional clustering algorithm tries to assign the samples to clusters such

that mutual distances are small in all clusters.

In other words, the cost function

E:E&

k

1s minimized.
In the K-means algorithm the distance measure 1s Euclidean, and the

clusters are defined by a set of K cluster prototypes: Samples are assigned
to the cluster with the closest prototype.
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Pros and cons of partitional clustering

+ Fast (although not faster than hierarchical clustering)

+ The result is intuitive, although possibly tedious to interpret for large
data sets

- The number of clusters K must be chosen, which may be difficult

- Tries to find “spherical” clusters in the sense of the given distance
measure. (This may be the desired result, though.)




Model-based clustering: Mixture density model

Assume that each sample x has been generated by one generator k(x), but it
1s not known which one.

Assume that the generator k produces the probability distribution py(x;6y),
where 0; contains the parameters of the density.

Assume further that the probability that generator k produces a sample 1s py.

The probability density generated by the mixture is

p(x) = EPk(X;Gk)pk
T




The model can be fitted to the data set with basic methods of statistical

estimation:
e maximum likelihood
e maximum a posterior

Conveniently optimizable by EM-based algorithms.

Suitable model complexity (number of clusters) can be learned by Bayesian

methods, approximated by BIC (or AIC, MDL, ...)

Note that K-means 1s obtained as the limit when generators of normal
distributions sharpen.
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Pros and cons of clustering by mixture density models

+ The model 1s well-defined. It 1s based on explicit and clear assumptions
on the uncertainty within the data

+ As aresult, all tools of probabilistic inference are applicable:
+ evaluation of the generalizability and quality of the result
+ choosing the number of clusters

- Is the goal of clustering the same as the goal of density estimation? The
probabilistic tools work properly only if the assumptions are correct!




Pitfalls
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Clusteredness depends on scaling
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GIGO Principle

Supervised learning:

Garbage in = weaker results out

Unsupervised learning:

Garbage 1n = garbage out




(Successful) unsupervised learning is always implicitly
supervised

by
e feature extraction
e variable selection

e model selection
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Distance measures

Zero

Absolute ™ level
maghnitudes Reliable Unreliable

Euclidean (Euclidean with

Interestin :
9 metric mean subtracted)

Inner

Not interesting
product

Correlation

Accoding to some studies (including ours) the correlation may be best.




About metrics

Euclidean metric:

di(x,y) = [x—y|* = (x—y) ' I(x—y)
Becomes (essentially) inner products for normalized vectors,
Ix[| =yl = 1
42 _ 2 2 _oxTv—9(1 —xT
Exy) = [Ix[I"+ ]yl —2x" y=2(1-x"y)

Correlation (with vector components interpreted as samples of the same
random variable, and o, being standard deviation of x)

(x—%)"(y-¥)
OOy

p(X,y) =

becomes inner products by Z-score normalization, z = (X — X) /Ox.




Global metric for A = S”S is

dx(x,y) = (x—y)"A(x—y) = [|Sx— Sy||”

Local (Riemannian) metric for y = X+ dXx 18

di ) (x,y) = (x—y) A(x)(x—y)




Number of clusters?

In principle: Use the normal model complexity selection methods.

[Lots of more or less heuristic solutions exist.

One possible solution: Visualization




Cluster validation

(Selecting the number of clusters is a sub-problem of this.)

Since the data exploration process necessarily 1s partly subjective, the
results must be validated: Are the clusters/other findings real?

Fundamentally boils down to generalizability to new data (which can be
assessed by measuring more datal!)

Bayesian averaging over models 1s hard because of

e label switching

e the end result will be discovery or “understanding of data.” Since we do
not know how humans do that, it is hard to assign proper priors
(=choose model families) for the analysis.

A temporary solution is to use cross-validation or bootstrap.




Bhattacharjee et al: Similarity of samples from a mixture
model

Quantize the robustness of the clustering results to random variations in the
observed data:

e Construct lots of (200) bootstrapped data sets by sampling with
replacement from the original data

e Cluster each new set

e For each pair of samples (x,y), compute the strength of association as

the percentage of times they become clustered into the same cluster
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Discussion

e Strengthens the faith to the hierarchical clustering
e Not a very illustrative visualization without the hierarchical clustering

e Would there exist a better clustering in the new similarity measure
induced by the bootstrapping procedure?

e Is robustness to variation a good indication of clusteredness? The

robust features may not be biologically interesting? (= external criteria
might be better)




Conclusions

I1l-defined problem with lost of proposed solutions.
Words of advice:

e The reason 1s that there actually are lots of different clustering tasks
with different goals and not enough prior knowledge to define the
problem exactly.

e This does not imply that sloppy application of clustering methods

would be acceptable!

e In contrast, you have to understand the principles and key 1deas, in
order to use your prior knowledge to choose suitable methods to your
specific task.

e Check the validity of the results somehow.




Material

A.K. Jain, M.N. Murty and P.J. Flynn. Data Clustering: A Review. ACM
Computing Surveys, 31(3):264-323, 1999. (A good review.)

V. Estivill-Castro. Why so many clustering algorithms— A position paper.
SIGKDD Explorations, 4(1):65-75. (I do not agree with everything but

describes many of the problems in defining clusters.)




These papers contain some of the case studies discussed in the lectures:

A. Bhattacharjee, W. G. Richards, and J. S. et al. Classification of human

lung carcinomas by mRNA expression profiling reveals distinct
adenocarcinoma subclasses. PNAS, 98:13790-13795, 2001.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P.
Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D.
Bloomfield, and E. S. Lander. Molecular classification of cancer: Class

discovery and class prediction by gene expression monitoring. Science,
286:531-537, 1999.

Computational
Genome Analysis




