
Introduction to
Bioinformatics

Esa Pitkänen
esa.pitkanen@cs.helsinki.fi

Autumn 2008, I period
www.cs.helsinki.fi/mbi/courses/08-09/itb

582606 Introduction to Bioinformatics, Autumn 2008

mailto:esa.pitkanen@cs.helsinki.fi
http://www.cs.helsinki.fi/mbi/courses/08-09/itb


Introduction to
Bioinformatics

Lecture 1:
Administrative issues

MBI Programme, Bioinformatics courses
What is bioinformatics?
Molecular biology primer



3

How to enrol for the course?
p Use the registration system of the Computer

Science department: https://ilmo.cs.helsinki.fi
n You need your user account at the IT department (“cc

account”)

p If you cannot register yet, don’t worry: attend the
lectures and exercises; just register when you are
able to do so

https://ilmo.cs.helsinki.fi
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Teachers
p Esa Pitkänen, Department of Computer Science,

University of Helsinki
p Elja Arjas, Department of Mathematics and

Statistics, University of Helsinki
p Sami Kaski, Department of Information and

Computer Science, Helsinki University of
Technology

p Lauri Eronen, Department of Computer Science,
University of Helsinki (exercises)
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Lectures and exercises
p Lectures: Tuesday and Friday 14.15-16.00

Exactum C221

p Exercises: Tuesday 16.15-18.00 Exactum
C221
n First exercise session on Tue 9 September
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Status & Prerequisites
p Advanced level course at the Department

of Computer Science, U. Helsinki
p 4 credits
p Prerequisites:
n Basic mathematics skills (probability calculus,

basic statistics)
n Familiarity with computers
n Basic programming skills recommended
n No biology background required
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Course contents
p What is bioinformatics?
p Molecular biology primer
p Biological words
p Sequence assembly
p Sequence alignment
p Fast sequence alignment using FASTA and BLAST
p Genome rearrangements
p Motif finding (tentative)
p Phylogenetic trees
p Gene expression analysis
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How to pass the course?
p Recommended method:
n Attend the lectures (not obligatory though)
n Do the exercises
n Take the course exam

p Or:
n Take a separate exam
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How to pass the course?
p Exercises give you max. 12 points

n 0% completed assignments gives you 0 points,
80% gives 12 points, the rest by linear
interpolation

n “A completed assignment” means that
p You are willing to present your solution in the

exercise session and
p You return notes by e-mail to Lauri Eronen (see

course web page for contact info) describing the main
phases you took to solve the assignment

n Return notes at latest on Tuesdays 16.15

p Course exam gives you max. 48 points
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How to pass the course?
p Grading: on the scale 0-5

n To get the lowest passing grade 1, you need to get at
least 30 points out of 60 maximum

p Course exam: Wed 15 October 16.00-19.00
Exactum A111

p See course web page for separate exams
p Note: if you take the first separate exam, the

best of the following options will be considered:
n Exam gives you 48 points, exercises 12 points
n Exam gives you 60 points

p In second and subsequent separate exams, only
the 60 point option is in use
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Literature
p Deonier, Tavaré,

Waterman: Computational
Genome Analysis, an
Introduction. Springer,
2005

p Jones, Pevzner: An
Introduction to
Bioinformatics Algorithms.
MIT Press, 2004

p Slides for some lectures
will be available on the
course web page
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Additional literature
p Gusfield: Algorithms on

strings, trees and
sequences

p Griffiths et al: Introduction
to genetic analysis

p Alberts et al.: Molecular
biology of the cell

p Lodish et al.: Molecular cell
biology

p Check the course web site
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Questions about administrative &
practical stuff?
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Master's Degree Programme in
Bioinformatics (MBI)
p Two-year MSc programme
p Admission for 2009-2010 in January 2009

n You need to have your Bachelor’s degree ready by
August 2009

www.cs.helsinki.fi/mbi

http://www.cs.helsinki.fi/mbi
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MBI programme organizers

Department of Computer Science,
Department of Mathematics and Statistics
Faculty of Science, Kumpula Campus, HY

Laboratory of Computer and
Information Science, Laboratory of

CS and Engineering,TKK

Faculty of Medicine, Meilahti Campus, HY

Faculty of Biosciences
Faculty of Agriculture and Forestry

Viikki Campus, HY
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TKK, Otaniemi

HY, Meilahti
HY, Kumpula

HY, Viikki

Four MBI campuses
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MBI highlights
p You can take courses from both HY and

TKK
p Two biology courses tailored specifically

for MBI
p Bioinformatics is a new exciting field, with

a high demand for experts in job market

p Go to www.cs.helsinki.fi/mbi/careers to
find out what a bioinformatician could do
for living

http://www.cs.helsinki.fi/mbi/careersto
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Admission
p Admission requirements

n Bachelor’s degree in a suitable field (e.g., computer
science, mathematics, statistics, biology or medicine)

n At least 60 ECTS credits in total in computer science,
mathematics and statistics

n Proficiency in English (standardized language test:
TOEFL, IELTS)

p Admission period opens in late Autumn 2009 and
closes in 2 February 2009

p Details on admission will be posted in
www.cs.helsinki.fi/mbi during this autumn

http://www.cs.helsinki.fi/mbiduringthisautumn
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Bioinformatics courses in Helsinki
region: 1st period
p Computational genomics (4-7 credits, TKK)
p Seminar: Neuroinformatics (3 credits, Kumpula)
p Seminar: Machine Learning in Bioinformatics (3

credits, Kumpula)
p Signal processing in neuroinformatics (5 credits,

TKK)
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A good biology course for computer
scientists and mathematicians?
p Biology for methodological scientists (8 credits, Meilahti)

n Course organized by the Faculties of Bioscience and Medicine
for the MBI programme

n Introduction to basic concepts of microarrays, medical genetics
and developmental biology

n Study group + book exam in I period (2 cr)
n Three lectured modules, 2 cr each
n Each module has an individual registration so you can

participate even if you missed the first module
n www.cs.helsinki.fi/mbi/courses/08-09/bfms/

http://www.cs.helsinki.fi/mbi/courses/08-09/bfms/
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Bioinformatics courses in Helsinki
region: 2nd period
p Bayesian paradigm in genetic bioinformatics (6

credits, Kumpula)
p Biological Sequence Analysis (6 credits, Kumpula)
p Modeling of biological networks (5-7 credits, TKK)
p Statistical methods in genetics (6-8 credits,

Kumpula)
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Bioinformatics courses in Helsinki
region: 3rd period
p Evolution and the theory of games (5 credits, Kumpula)
p Genome-wide association mapping (6-8 credits, Kumpula)
p High-Throughput Bioinformatics (5-7 credits, TKK)
p Image Analysis in Neuroinformatics (5 credits, TKK)
p Practical Course in Biodatabases (4-5 credits, Kumpula)
p Seminar: Computational systems biology (3 credits,

Kumpula)
p Spatial models in ecology and evolution (8 credits,

Kumpula)
p Special course in bioinformatics I (3-7 credits, TKK)
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Bioinformatics courses in Helsinki region:
4th period
p Metabolic Modeling (4 credits, Kumpula)
p Phylogenetic data analyses (6-8 credits,

Kumpula)
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1. What is bioinformatics?
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What is bioinformatics?
p Bioinformatics, n. The science of information

and information flow in biological systems,
esp. of the use of computational methods in
genetics and genomics. (Oxford English
Dictionary)

p "The mathematical, statistical and computing
methods that aim to solve biological problems
using DNA and amino acid sequences and
related information."                   -- Fredj Tekaia
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What is bioinformatics?
p "I do not think all biological computing is

bioinformatics, e.g. mathematical modelling is
not bioinformatics, even when connected with
biology-related problems. In my opinion,
bioinformatics has to do with management and
the subsequent use of biological information,
particular genetic information."
-- Richard Durbin
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What is not bioinformatics?
p Biologically-inspired computation, e.g., genetic algorithms

and neural networks
p However, application of neural networks to solve some

biological problem, could be called bioinformatics
p What about DNA computing?

http://www.wisdom.weizmann.ac.il/~lbn/new_pages/Visual_Presentation.html

http://www.wisdom.weizmann.ac.il/~lbn/new_pages/Visual_Presentation.html
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Computational biology
p Application of computing to biology (broad

definition)
p Often used interchangeably with bioinformatics
p Or: Biology that is done with computational

means
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Biometry & biophysics
p Biometry: the statistical analysis of biological

data
n Sometimes also the field of identification of individuals

using biological traits (a more recent definition)

p Biophysics: "an interdisciplinary field which
applies techniques from the physical sciences
to understanding biological structure and
function"  -- British Biophysical Society
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Mathematical biology
p Mathematical biology

“tackles biological
problems, but the methods
it uses to tackle them need
not be numerical and need
not be implemented in
software or hardware.”
-- Damian Counsell

Alan Turing
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Turing on biological complexity
p “It must be admitted that the biological examples which

it has been possible to give in the present paper are very
limited.

This can be ascribed quite simply to the fact that
biological phenomena are usually very complicated.
Taking this in combination with the relatively elementary
mathematics used in this paper one could hardly expect to
find that many observed biological phenomena would be
covered.

It is thought, however, that the imaginary biological
systems which have been treated, and the principles which
have been discussed, should be of some help in
interpreting real biological forms.”

– Alan Turing, The Chemical Basis of Morphogenesis, 1952
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Related concepts
p Systems biology

n “Biology of networks”
n Integrating different levels

of information to
understand how biological
systems work

p Computational systems biology

Overview of metabolic pathways in
KEGG database, www.genome.jp/kegg/

http://www.genome.jp/kegg/
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Why is bioinformatics important?
p New measurement techniques produce

huge quantities of biological data
n Advanced data analysis methods are needed to

make sense of the data
n Typical data sources produce noisy data with a

lot of missing values

p Paradigm shift in biology to utilise
bioinformatics in research
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Bioinformatician’s skill set
p Statistics, data analysis methods
n Lots of data
n High noise levels, missing values
n #attributes >> #data points

p Programming languages
n Scripting languages: Python, Perl, Ruby, …
n Extensive use of text file formats: need

parsers
n Integration of both data and tools

p Data structures, databases



35

Bioinformatician’s skill set
p Modelling
n Discrete vs continuous domains
n -> Systems biology

p Scientific computation packages
n R, Matlab/Octave, …

p Communication skills!
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Communication skills: case 1
Biologist presents a problem
to computer scientists /
mathematicians

?

”I am interested in finding what affects the
regulation gene x during condition y and how

that relates to the organism’s phenotype.”

”Define input and output of the problem.”
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Communication skills: case 2
Bioinformatician is a part
of a group that consists
mostly of biologists.
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Communication skills: case 2

...biologist/bioinformatician ratio is important!
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Communication skills: case 3
A group of
bioinformaticians
offers their services to
more than one group
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Bioinformatician’s skill set
p How much biology you should know?
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Computer Science
• Programming
• Databases
• Algorithmics

Mathematics and
statistics
• Calculus
• Probability calculus
• Linear algebra

Biology & Medicine
• Basics in molecular and
cell biology
• Measurement techniques

Bioinformatics
• Biological sequence analysis
• Biological databases
• Analysis of gene expression
• Modeling protein structure and
function
• Gene, protein and metabolic
networks
• …

Bioinformatician’s skill set

Prof. Juho Rousu, 2006

Where would you be in this triangle?
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A problem involving bioinformatics?

- ”I found a fruit fly that is immune to all diseases!”

- ”It was one of these”

Pertti Jarla, http://www.hs.fi/fingerpori/

http://www.hs.fi/fingerpori/
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Molecular biology primer

Molecular Biology Primer by Angela Brooks, Raymond Brown,
Calvin Chen, Mike Daly, Hoa Dinh, Erinn Hama, Robert Hinman,
Julio Ng,  Michael Sneddon,  Hoa Troung, Jerry Wang, Che Fung
Yung
Edited for Introduction to Bioinformatics (Autumn 2007, Summer
2008, Autumn 2008) by Esa Pitkänen
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Molecular biology primer
p Part 1: What is life made of?
p Part 2: Where does the variation in

genomes come from?
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Life begins with Cell

p A cell is a smallest structural unit of an
organism that is capable of independent
functioning

p All cells have some common features
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Cells
p Fundamental working units of every living system.
p Every organism is composed of one of two radically different types of

cells:
n prokaryotic cells or
n eukaryotic cells.

p Prokaryotes and Eukaryotes are descended from the same
primitive cell.
n All prokaryotic and eukaryotic cells are the result of a total of 3.5

billion years of evolution.
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Two types of cells: Prokaryotes and
Eukaryotes
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Prokaryotes and Eukaryotes
p According to the most

recent evidence, there
are three main
branches to the tree of
life

p Prokaryotes include
Archaea (“ancient
ones”) and bacteria

p Eukaryotes are
kingdom Eukarya and
includes plants,
animals, fungi and
certain algae Lecture: Phylogenetic trees
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All Cells have common Cycles

p Born, eat, replicate, and die
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Common features of organisms
p Chemical energy is stored in ATP
p Genetic information is encoded by DNA
p Information is transcribed into RNA
p There is a common triplet genetic code
p Translation into proteins involves ribosomes
p Shared metabolic pathways
p Similar proteins among diverse groups of

organisms
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All Life depends on 3 critical molecules
p DNAs (Deoxyribonucleic acid)

n Hold information on how cell works

p RNAs (Ribonucleic acid)
n Act to transfer short pieces of information to different

parts of cell
n Provide templates to synthesize into protein

p Proteins
n Form enzymes that send signals to other cells and

regulate gene activity
n Form body’s major components (e.g. hair, skin, etc.)
n “Workhorses” of the cell
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DNA: The Code of Life

p The structure and the four genomic letters code for all living
organisms

p Adenine, Guanine, Thymine, and Cytosine which pair A-T and C-G
on complimentary strands.

Lecture: Genome sequencing
and assembly
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Discovery of the structure of DNA
p 1952-1953 James D. Watson and Francis H. C. Crick

deduced the double helical structure of DNA from X-ray
diffraction images by Rosalind Franklin and data on amounts
of nucleotides in DNA

James Watson and
Francis Crick

Rosalind
Franklin

”Photo 51”
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DNA, continued
p DNA has a double helix

structure which is
composed of
n sugar molecule
n phosphate group
n and a base (A,C,G,T)

p By convention, we read
DNA strings in direction of
transcription: from 5’ end
to 3’ end
5’ ATTTAGGCC 3’
3’ TAAATCCGG 5’
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DNA is contained in chromosomes

http://en.wikipedia.org/wiki/Image:Chromatin_Structures.png

p In eukaryotes, DNA is packed into chromatids
n In metaphase, the “X” structure consists of two identical

chromatids

p In prokaryotes, DNA is usually contained in a single,
circular chromosome

http://en.wikipedia.org/wiki/Image:Chromatin_Structures.png
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Human chromosomes
p Somatic cells in humans

have 2 pairs of 22
chromosomes + XX
(female) or XY (male) =
total of 46 chromosomes

p Germline cells have 22
chromosomes + either X or
Y = total of 23
chromosomes

Karyogram of human male using Giemsa staining
(http://en.wikipedia.org/wiki/Karyotype)

http://en.wikipedia.org/wiki/Karyotype
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Length of DNA and number of chromosomes
Organism                                     #base pairs      #chromosomes (germline)

Prokayotic
Escherichia coli (bacterium)        4x106 1

Eukaryotic
Saccharomyces cerevisia (yeast) 1.35x107 17
Drosophila melanogaster (insect) 1.65x108 4
Homo sapiens (human) 2.9x109 23
Zea mays (corn / maize) 5.0x109 10
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1 atgagccaag ttccgaacaa ggattcgcgg ggaggataga tcagcgcccg agaggggtga
61 gtcggtaaag agcattggaa cgtcggagat acaactccca agaaggaaaa aagagaaagc

121 aagaagcgga tgaatttccc cataacgcca gtgaaactct aggaagggga aagagggaag
181 gtggaagaga aggaggcggg cctcccgatc cgaggggccc ggcggccaag tttggaggac
241 actccggccc gaagggttga gagtacccca gagggaggaa gccacacgga gtagaacaga
301 gaaatcacct ccagaggacc ccttcagcga acagagagcg catcgcgaga gggagtagac
361 catagcgata ggaggggatg ctaggagttg ggggagaccg aagcgaggag gaaagcaaag
421 agagcagcgg ggctagcagg tgggtgttcc gccccccgag aggggacgag tgaggcttat
481 cccggggaac tcgacttatc gtccccacat agcagactcc cggaccccct ttcaaagtga
541 ccgagggggg tgactttgaa cattggggac cagtggagcc atgggatgct cctcccgatt
601 ccgcccaagc tccttccccc caagggtcgc ccaggaatgg cgggacccca ctctgcaggg
661 tccgcgttcc atcctttctt acctgatggc cggcatggtc ccagcctcct cgctggcgcc
721 ggctgggcaa cattccgagg ggaccgtccc ctcggtaatg gcgaatggga cccacaaatc
781 tctctagctt cccagagaga agcgagagaa aagtggctct cccttagcca tccgagtgga
841 cgtgcgtcct ccttcggatg cccaggtcgg accgcgagga ggtggagatg ccatgccgac
901 ccgaagagga aagaaggacg cgagacgcaa acctgcgagt ggaaacccgc tttattcact
961 ggggtcgaca actctgggga gaggagggag ggtcggctgg gaagagtata tcctatggga

1021 atccctggct tccccttatg tccagtccct ccccggtccg agtaaagggg gactccggga
1081 ctccttgcat gctggggacg aagccgcccc cgggcgctcc cctcgttcca ccttcgaggg
1141 ggttcacacc cccaacctgc gggccggcta ttcttctttc ccttctctcg tcttcctcgg
1201 tcaacctcct aagttcctct tcctcctcct tgctgaggtt ctttcccccc gccgatagct
1261 gctttctctt gttctcgagg gccttccttc gtcggtgatc ctgcctctcc ttgtcggtga
1321 atcctcccct ggaaggcctc ttcctaggtc cggagtctac ttccatctgg tccgttcggg
1381 ccctcttcgc cgggggagcc ccctctccat ccttatcttt ctttccgaga attcctttga
1441 tgtttcccag ccagggatgt tcatcctcaa gtttcttgat tttcttctta accttccgga
1501 ggtctctctc gagttcctct aacttctttc ttccgctcac ccactgctcg agaacctctt
1561 ctctcccccc gcggtttttc cttccttcgg gccggctcat cttcgactag aggcgacggt
1621 cctcagtact cttactcttt tctgtaaaga ggagactgct ggccctgtcg cccaagttcg
1681 ag

Hepatitis delta virus, complete genome
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RNA
p RNA is similar to DNA chemically.  It is usually only a

single strand.  T(hyamine) is replaced by U(racil)
p Several types of RNA exist for different functions in

the cell.

http://www.cgl.ucsf.edu/home/glasfeld/tutorial/trna/trna.giftRNA linear and 3D view:

http://www.cgl.ucsf.edu/home/glasfeld/tutorial/trna/trna.gif
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DNA, RNA, and the Flow of
Information

TranslationTranscription

Replication ”The central dogma”

Is this true?

Denis Noble: The principles of Systems Biology illustrated using the virtual heart
http://velblod.videolectures.net/2007/pascal/eccs07_dresden/noble_denis/eccs07_noble_psb_01.ppt

http://velblod.videolectures.net/2007/pascal/eccs07_dresden/noble_denis/eccs07_noble_psb_01.ppt
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Proteins
p Proteins are polypeptides

(strings of amino acid
residues)

p Represented using strings
of letters from an alphabet
of 20: AEGLV…WKKLAG

p Typical length 50…1000
residues

Urease enzyme from Helicobacter pylori
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Amino acids

http://upload.wikimedia.org/wikipedia/commons/c/c5/Amino_acids_2.png

http://upload.wikimedia.org/wikipedia/commons/c/c5/Amino_acids_2.png
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How DNA/RNA codes for protein?
p DNA alphabet contains four

letters but must specify
protein, or polypeptide
sequence of 20 letters.

p Dinucleotides are not
enough: 42 = 16 possible
dinucleotides

p Trinucleotides (triplets)
allow 43 = 64 possible
trinucleotides

p Triplets are also called
codons
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How DNA/RNA codes for protein?
p Three of the possible

triplets specify ”stop
translation”

p Translation usually starts
at triplet AUG (this codes
for methionine)

p Most amino acids may be
specified by more than
triplet

p How to find a gene? Look
for start and stop codons
(not that easy though)
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Proteins: Workhorses of the Cell

p 20 different amino acids
n different chemical properties cause the protein chains to fold

up into specific three-dimensional structures that define their
particular functions in the cell.

p Proteins do all essential work for the cell
n build cellular structures
n digest nutrients
n execute metabolic functions
n mediate information flow within a cell and among cellular

communities.
p Proteins work together with other proteins or nucleic acids

as "molecular machines"
n structures that fit together and function in highly specific, lock-

and-key ways.

Lecture 8: Proteomics
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Genes
p “A gene is a union of genomic sequences encoding a

coherent set of potentially overlapping functional products”
--Gerstein et al.

p A DNA segment whose information is expressed either as
an RNA molecule or protein

5’ 3’

3’ 5’

… a t g a g t g g a …

… t a c t c a c c t …

augagugga ...

(transcription)

(translation)
MSG …

(folding)

http://fold.it

http://fold.it
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FoldIt: Protein folding game

http://fold.it

http://fold.it
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Genes & alleles
p A gene can have different variants
p The variants of the same gene are called

alleles

5’

3’

… a t g a g t g g a …

… t a c t c a c c t …

augagugga ...

MSG …

5’

3’

… a t g a g t c g a …

… t a c t c a g c t …

augagucga ...

MSR …
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Genes can be found on both strands

3’

5’

5’

3’
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Exons and introns & splicing

3’

5’

5’

3’

Introns are removed from RNA after transcription

Exons

Exons are joined:

This process is called splicing
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Alternative splicing

A 3’

5’

5’

3’

B C

Different splice variants may be generated

A B C

B C

A C

…
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Where does the variation in genomes come
from?
p Prokaryotes are typically

haploid: they have a single
(circular) chromosome

p DNA is usually inherited
vertically (parent to
daughter)

p Inheritance is clonal
n Descendants are faithful

copies of an ancestral DNA
n Variation is introduced via

mutations, transposable
elements, and horizontal
transfer of DNA

Chromosome map of S. dysenteriae, the nine rings
describe different properties of the genome
http://www.mgc.ac.cn/ShiBASE/circular_Sd197.htm

http://www.mgc.ac.cn/ShiBASE/circular_Sd197.htm
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Causes of variation
p Mistakes in DNA replication
p Environmental agents (radiation, chemical

agents)
p Transposable elements (transposons)

n A part of DNA is moved or copied to another location in
genome

p Horizontal transfer of DNA
n Organism obtains genetic material from another

organism that is not its parent
n Utilized in genetic engineering
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Biological string manipulation
p Point mutation: substitution of a base

n …ACGGCT… => …ACGCCT…

p Deletion: removal of one or more contiguous
bases (substring)
n …TTGATCA… => …TTTCA…

p Insertion: insertion of a substring
n …GGCTAG… => …GGTCAACTAG…

Lecture: Sequence alignment
Lecture: Genome rearrangements
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Meiosis
p Sexual organisms are usually

diploid
n Germline cells (gametes)

contain N chromosomes
n Somatic (body) cells have 2N

chromosomes
p Meiosis: reduction of

chromosome number from
2N to N during reproductive
cycle
n One chromosome doubling is

followed by two cell divisions

Major events in meiosis

http://en.wikipedia.org/wiki/Meiosis

http://www.ncbi.nlm.nih.gov/About/Primer

http://en.wikipedia.org/wiki/Meiosis
http://www.ncbi.nlm.nih.gov/About/Primer
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Recombination and variation
p Recap: Allele is a viable DNA

coding occupying a given locus
(position in the genome)

p In recombination, alleles from
parents become suffled in
offspring individuals via
chromosomal crossover over

p Allele combinations in
offspring are usually different
from combinations found in
parents

p Recombination errors lead into
additional variations

Chromosomal crossover as described by
T. H. Morgan in 1916
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Mitosis

http://en.wikipedia.org/wiki/Image:Major_events_in_mitosis.svg

p Mitosis: growth and development of the organism
n One chromosome doubling is followed by one cell

division

http://en.wikipedia.org/wiki/Image:Major_events_in_mitosis.svg
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Recombination frequency and linked genes
p Genetic marker: some DNA sequence of interest

(e.g., gene or a part of a gene)

p Recombination is more likely to separate two
distant markers than two close ones

p Linked markers: ”tend” to be inherited together

p Marker distances measured in centimorgans: 1
centimorgan corresponds to 1% chance that two
markers are separated in recombination
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Biological databases
p Exponential growth of

biological data
n New measurement

techniques
n Before we are able to use

the data, we need to store
it efficiently -> biological
databases

n Published data is
submitted to databases

p General vs specialised
databases

p This topic is discussed
extensively in Practical
course in biodatabases (III
period)
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10 most important biodatabases… according
to ”Bioinformatics for dummies”

p GenBank/DDJB/EMBL  www.ncbi.nlm.nih.gov Nucleotide sequences
p Ensembl www.ensembl.org Human/mouse genome
p PubMed www.ncbi.nlm.nih.gov Literature references
p NR www.ncbi.nlm.nih.gov Protein sequences
p UniProt www.expasy.org Protein sequences
p InterPro www.ebi.ac.uk Protein domains
p OMIM www.ncbi.nlm.nih.gov Genetic diseases
p Enzymes www.expasy.org Enzymes
p PDB www.rcsb.org/pdb/ Protein structures
p KEGG www.genome.ad.jp Metabolic pathways

Sophia Kossida, Introduction to Bioinformatics, Summer 2008

http://www.ncbi.nlm.nih.gov
http://www.ensembl.org
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.expasy.org
http://www.ebi.ac.uk
http://www.ncbi.nlm.nih.gov
http://www.expasy.org
http://www.rcsb.org/pdb/
http://www.genome.ad.jp
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FASTA format
p A simple format for DNA and protein sequence

data is FASTA

>Hepatitis delta virus, complete genome
atgagccaagttccgaacaaggattcgcggggaggatagatcagcgcccgagaggggtga
gtcggtaaagagcattggaacgtcggagatacaactcccaagaaggaaaaaagagaaagc
aagaagcggatgaatttccccataacgccagtgaaactctaggaaggggaaagagggaag
gtggaagagaaggaggcgggcctcccgatccgaggggcccggcggccaagtttggaggac
actccggcccgaagggttgagagtaccccagagggaggaagccacacggagtagaacaga
gaaatcacctccagaggaccccttcagcgaacagagagcgcatcgcgagagggagtagac
catagcgataggaggggatgctaggagttgggggagaccgaagcgaggaggaaagcaaag
agagcagcggggctagcaggtgggtgttccgccccccgagaggggacgagtgaggcttat
cccggggaactcgacttatcgtccccacatagcagactcccggaccccctttcaaagtga
…

Header line,
begins with >



Introduction to
Bioinformatics

Biological words
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Recap
p DNA codes information with alphabet of 4

letters: A, C, G, T
p In proteins, the alphabet size is 20
p DNA -> RNA -> Protein (genetic code)
n Three DNA bases (triplet, codon) code for one

amino acid
n Redundancy, start and stop codons
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1 atgagccaag ttccgaacaa ggattcgcgg ggaggataga tcagcgcccg agaggggtga
61 gtcggtaaag agcattggaa cgtcggagat acaactccca agaaggaaaa aagagaaagc

121 aagaagcgga tgaatttccc cataacgcca gtgaaactct aggaagggga aagagggaag
181 gtggaagaga aggaggcggg cctcccgatc cgaggggccc ggcggccaag tttggaggac
241 actccggccc gaagggttga gagtacccca gagggaggaa gccacacgga gtagaacaga
301 gaaatcacct ccagaggacc ccttcagcga acagagagcg catcgcgaga gggagtagac
361 catagcgata ggaggggatg ctaggagttg ggggagaccg aagcgaggag gaaagcaaag
421 agagcagcgg ggctagcagg tgggtgttcc gccccccgag aggggacgag tgaggcttat
481 cccggggaac tcgacttatc gtccccacat agcagactcc cggaccccct ttcaaagtga
541 ccgagggggg tgactttgaa cattggggac cagtggagcc atgggatgct cctcccgatt
601 ccgcccaagc tccttccccc caagggtcgc ccaggaatgg cgggacccca ctctgcaggg
661 tccgcgttcc atcctttctt acctgatggc cggcatggtc ccagcctcct cgctggcgcc
721 ggctgggcaa cattccgagg ggaccgtccc ctcggtaatg gcgaatggga cccacaaatc
781 tctctagctt cccagagaga agcgagagaa aagtggctct cccttagcca tccgagtgga
841 cgtgcgtcct ccttcggatg cccaggtcgg accgcgagga ggtggagatg ccatgccgac
901 ccgaagagga aagaaggacg cgagacgcaa acctgcgagt ggaaacccgc tttattcact
961 ggggtcgaca actctgggga gaggagggag ggtcggctgg gaagagtata tcctatggga

1021 atccctggct tccccttatg tccagtccct ccccggtccg agtaaagggg gactccggga
1081 ctccttgcat gctggggacg aagccgcccc cgggcgctcc cctcgttcca ccttcgaggg
1141 ggttcacacc cccaacctgc gggccggcta ttcttctttc ccttctctcg tcttcctcgg
1201 tcaacctcct aagttcctct tcctcctcct tgctgaggtt ctttcccccc gccgatagct
1261 gctttctctt gttctcgagg gccttccttc gtcggtgatc ctgcctctcc ttgtcggtga
1321 atcctcccct ggaaggcctc ttcctaggtc cggagtctac ttccatctgg tccgttcggg
1381 ccctcttcgc cgggggagcc ccctctccat ccttatcttt ctttccgaga attcctttga
1441 tgtttcccag ccagggatgt tcatcctcaa gtttcttgat tttcttctta accttccgga
1501 ggtctctctc gagttcctct aacttctttc ttccgctcac ccactgctcg agaacctctt
1561 ctctcccccc gcggtttttc cttccttcgg gccggctcat cttcgactag aggcgacggt
1621 cctcagtact cttactcttt tctgtaaaga ggagactgct ggccctgtcg cccaagttcg
1681 ag

Given a DNA sequence, we might ask a number of questions

What sort of statistics should be used to describe the sequence?

What sort of organism did this sequence come from?

Does the description of this sequence differ from
the description of other DNA in the organism?

What sort of sequence is this? What does it do?



85

Biological words
p We can try to answer questions like these

by considering the words in a sequence
p A k-word (or a k-tuple) is a string of length

k drawn from some alphabet
p A DNA k-word is a string of length k that

consists of letters A, C, G, T
n 1-words: individual nucleotides (bases)
n 2-words: dinucleotides (AA, AC, AG, AT, CA, ...)
n 3-words: codons (AAA, AAC, …)
n 4-words and beyond
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1-words: base composition
p Typically DNA exists as duplex molecule

(two complementary strands)

5’-GGATCGAAGCTAAGGGCT-3’
3’-CCTAGCTTCGATTCCCGA-5’

Top strand:             7 G, 3 C, 5 A, 3 T
Bottom strand:        3 G, 7 C, 3 A, 5 T
Duplex molecule:   10 G, 10 C, 8 A, 8 T
Base frequencies: 10/36  10/36 8/36  8/36

fr(G + C) = 20/36, fr(A + T) = 1 – fr(G + C) = 16/36

These are something
we can determine
experimentally.
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G+C content
p fr(G + C), or G+C content is a simple

statistics for describing genomes
p Notice that one value is enough

characterise fr(A), fr(C), fr(G) and fr(T)
for duplex DNA

p Is G+C content (= base composition) able
to tell the difference between genomes of
different organisms?
n Simple computational experiment, if we have

the genome sequences under study
(-> exercises)
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G+C content and genome sizes (in
megabasepairs, Mb) for various organisms
p Mycoplasma genitalium 31.6% 0.585
p Escherichia coli K-12                  50.7%   4.693
p Pseudomonas aeruginosa PAO1 66.4% 6.264
p Pyrococcus abyssi 44.6%   1.765
p Thermoplasma volcanium 39.9%   1.585
p Caenorhabditis elegans 36%     97
p Arabidopsis thaliana 35%     125
p Homo sapiens 41%    3080
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Base frequencies in duplex molecules
p Consider a DNA sequence generated randomly,

with probability of each letter being independent
of position in sequence

p You could expect to find a uniform distribution of
bases in genomes…

p This is not, however, the case in genomes,
especially in prokaryotes
n This phenomena is called GC skew

5’-...GGATCGAAGCTAAGGGCT...-3’
3’-...CCTAGCTTCGATTCCCGA...-5’
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DNA replication fork
p When DNA is replicated,

the molecule takes the
replication fork form

p New complementary
DNA is synthesised at
both strands of the
”fork”

p New strand in 5’-3’
direction corresponding
to replication fork
movement is called
leading strand and the
other lagging strand

Leading strand

Lagging strand

Replication fork

Replication fork movement
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DNA replication fork
p This process has

specific starting
points in genome
(origins of
replication)

p Observation:
Leading strands
have an excess of G
over C

p This can be
described by GC
skew statistics Lagging strand

Replication fork

Leading strand

Replication fork movement
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GC skew
p GC skew is defined as (#G - #C) / (#G +

#C)
p It is calculated at successive positions in

intervals (windows) of specific width

5’-...GGATCGAAGCTAAGGGCT...-3’
3’-...CCTAGCTTCGATTCCCGA...-5’

(3 – 2) / (3 + 2) = 1/5

(4 – 2) / (4 + 2) = 1/3



93

p G-C content &
GC skew
statistics can be
displayed with a
circular genome
map

Chromosome map of S. dysenteriae, the nine rings
describe different properties of the genome
http://www.mgc.ac.cn/ShiBASE/circular_Sd197.htm

G-C content & GC skew

G+C content

GC skew

(10kb window size)

http://www.mgc.ac.cn/ShiBASE/circular_Sd197.htm
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GC skew
p GC skew

often
changes sign
at origins
and termini
of replication

G+C content

GC skew

(10kb window size)

Nie et al., BMC Genomics, 2006
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2-words: dinucleotides
p Let’s consider a sequence L1,L2,...,Ln

where each letter Li is drawn from the
DNA alphabet {A, C, G, T}

p We have 16 possible dinucleotides lili+1:
AA, AC, AG, ..., TG, TT.
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i.i.d. model for nucleotides
p Assume that bases
n occur independently of each other
n bases at each position are identically

distributed

p Probability of the base A, C, G, T occuring
is pA, pC, pG, pT, respectively
n For example, we could use pA=pC=pG=pT=0.25

or estimate the values from known genome
data

p Probability of lili+1 is then PliPli+1
n For example, P(TG) = pT pG
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2-words: is what we see surprising?
p We can test whether a sequence is ”unexpected”,

for example, with a 2 test

p Test statistic for a particular dinucleotide r1r2 is
2 = (O – E)2 / E where
n O is the observed number of dinucleotide r1r2

n E is the expected number of dinucleotide r1r2

n E = (n – 1)pr1pr2 under i.i.d. model

p Basic idea: high values of 2 indicate deviation
from the model
n Actual procedure is more detailed -> basic statistics

courses



98

Refining the i.i.d. model
p i.i.d. model describes some organisms well

(see Deonier’s book) but fails to
characterise many others

p We can refine the model by having the
DNA letter at some position depend on
letters at preceding positions

…TCGTGACGCCG ?
Sequence context to
consider
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First-order Markov chains

p Lets assume that in sequence X the letter at
position t, Xt, depends only on the previous letter
Xt-1 (first-order markov chain)

p Probability of letter j occuring at position t given
Xt-1 = i: pij = P(Xt = j | Xt-1 = i)

p We consider homogeneous markov chains:
probability pij is independent of position t

…TCGTGACGCCG ?

Xt

Xt-1
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Estimating pij

p We can estimate probabilities pij (”the probability
that j follows i”) from observed dinucleotide
frequencies

A    C   G    T
A  pAA pAC pAG pAT
C  pCA pCC pCG pCT
G  pGA pGC pGG pGT
T  pTA pTC pTG pTT

Frequency
of dinucleotide AT
in sequence

…the values pAA, pAC, ..., pTG, pTT sum to 1

+ + + Base frequency
fr(C)
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Estimating pij

p pij = P(Xt = j | Xt-1 = i) = P(Xt = j, Xt-1 = i)
P(Xt-1 = i)

Probability of transition i -> j

Dinucleotide frequency

Base frequency of nucleotide i,
fr(i)

A    C   G   T
A 0.146 0.052 0.058 0.089

C 0.063 0.029 0.010 0.056

G 0.050 0.030 0.028 0.051

T 0.086 0.047 0.063 0.140

P(Xt = j, Xt-1 = i)

A    C   G   T
A 0.423 0.151 0.168 0.258

C 0.399 0.184 0.063 0.354

G 0.314 0.189 0.176 0.321

T 0.258 0.138 0.187 0.415

P(Xt = j | Xt-1 = i)

0.052 / 0.345 0.151
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Simulating a DNA sequence
p From a transition matrix, it is easy to generate a

DNA sequence of length n:
n First, choose the starting base randomly according to

the base frequency distribution
n Then, choose next base according to the distribution

P(xt | xt-1) until n bases have been chosen

A    C   G   T
A 0.423 0.151 0.168 0.258

C 0.399 0.184 0.063 0.354

G 0.314 0.189 0.176 0.321

T 0.258 0.138 0.187 0.415

P(Xt = j | Xt-1 = i)

T T C T T C AA

Look for R code in Deonier’s
book
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Simulating a DNA sequence

ttcttcaaaataaggatagtgattcttattggcttaagggataacaatttagatcttttttcatgaatcatgtatgtcaacgttaaaagttgaactgcaataagttc
ttacacacgattgtttatctgcgtgcgaagcatttcactacatttgccgatgcagccaaaagtatttaacatttggtaaacaaattgacttaaatcgcgcacttaga
gtttgacgtttcatagttgatgcgtgtctaacaattacttttagttttttaaatgcgtttgtctacaatcattaatcagctctggaaaaacattaatgcatttaaac
cacaatggataattagttacttattttaaaattcacaaagtaattattcgaatagtgccctaagagagtactggggttaatggcaaagaaaattactgtagtgaaga
ttaagcctgttattatcacctgggtactctggtgaatgcacataagcaaatgctacttcagtgtcaaagcaaaaaaatttactgataggactaaaaaccctttattt
ttagaatttgtaaaaatgtgacctcttgcttataacatcatatttattgggtcgttctaggacactgtgattgccttctaactcttatttagcaaaaaattgtcata
gctttgaggtcagacaaacaagtgaatggaagacagaaaaagctcagcctagaattagcatgttttgagtggggaattacttggttaactaaagtgttcatgactgt
tcagcatatgattgttggtgagcactacaaagatagaagagttaaactaggtagtggtgatttcgctaacacagttttcatacaagttctattttctcaatggtttt
ggataagaaaacagcaaacaaatttagtattattttcctagtaaaaagcaaacatcaaggagaaattggaagctgcttgttcagtttgcattaaattaaaaatttat
ttgaagtattcgagcaatgttgacagtctgcgttcttcaaataagcagcaaatcccctcaaaattgggcaaaaacctaccctggcttctttttaaaaaaccaagaaa
agtcctatataagcaacaaatttcaaaccttttgttaaaaattctgctgctgaataaataggcattacagcaatgcaattaggtgcaaaaaaggccatcctctttct
ttttttgtacaattgttcaagcaactttgaatttgcagattttaacccactgtctatatgggacttcgaattaaattgactggtctgcatcacaaatttcaactgcc
caatgtaatcatattctagagtattaaaaatacaaaaagtacaattagttatgcccattggcctggcaatttatttactccactttccacgttttggggatatttta
acttgaatagttcacaatcaaaacataggaaggatctactgctaaaagcaaaagcgtattggaatgataaaaaactttgatgtttaaaaaactacaaccttaatgaa
ttaaagttgaaaaaatattcaaaaaaagaaattcagttcttggcgagtaatatttttgatgtttgagatcagggttacaaaataagtgcatgagattaactcttcaa
atataaactgatttaagtgtatttgctaataacattttcgaaaaggaatattatggtaagaattcataaaaatgtttaatactgatacaactttcttttatatcctc
catttggccagaatactgttgcacacaactaattggaaaaaaaatagaacgggtcaatctcagtgggaggagaagaaaaaagttggtgcaggaaatagtttctacta
acctggtataaaaacatcaagtaacattcaaattgcaaatgaaaactaaccgatctaagcattgattgatttttctcatgcctttcgcctagttttaataaacgcgc
cccaactctcatcttcggttcaaatgatctattgtatttatgcactaacgtgcttttatgttagcatttttcaccctgaagttccgagtcattggcgtcactcacaa
atgacattacaatttttctatgttttgttctgttgagtcaaagtgcatgcctacaattctttcttatatagaactagacaaaatagaaaaaggcacttttggagtct
gaatgtcccttagtttcaaaaaggaaattgttgaattttttgtggttagttaaattttgaacaaactagtatagtggtgacaaacgatcaccttgagtcggtgacta
taaaagaaaaaggagattaaaaatacctgcggtgccacattttttgttacgggcatttaaggtttgcatgtgttgagcaattgaaacctacaactcaataagtcatg
ttaagtcacttctttgaaaaaaaaaaagaccctttaagcaagctc

p Now we can quickly generate sequences of
arbitrary length...
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Simulating a DNA sequence

aa      0.145   0.146
ac 0.050   0.052
ag 0.055   0.058
at      0.092   0.089
ca 0.065   0.063
cc      0.028   0.029
cg      0.011   0.010
ct 0.058   0.056
ga 0.048   0.050
gc 0.032   0.030
gg 0.029   0.028
gt 0.050   0.051
ta 0.084   0.086
tc 0.052   0.047
tg 0.064   0.063
tt 0.138   0.0140

Dinucleotide frequencies
Simulated Observed

n = 10000
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Simulating a DNA sequence

ttcttcaaaataaggatagtgattcttattggcttaagggataacaatttagatcttttttcatgaatcatgtatgtcaacgttaaaagttgaactgcaataagttc
ttacacacgattgtttatctgcgtgcgaagcatttcactacatttgccgatgcagccaaaagtatttaacatttggtaaacaaattgacttaaatcgcgcacttaga
gtttgacgtttcatagttgatgcgtgtctaacaattacttttagttttttaaatgcgtttgtctacaatcattaatcagctctggaaaaacattaatgcatttaaac
cacaatggataattagttacttattttaaaattcacaaagtaattattcgaatagtgccctaagagagtactggggttaatggcaaagaaaattactgtagtgaaga
ttaagcctgttattatcacctgggtactctggtgaatgcacataagcaaatgctacttcagtgtcaaagcaaaaaaatttactgataggactaaaaaccctttattt
ttagaatttgtaaaaatgtgacctcttgcttataacatcatatttattgggtcgttctaggacactgtgattgccttctaactcttatttagcaaaaaattgtcata
gctttgaggtcagacaaacaagtgaatggaagacagaaaaagctcagcctagaattagcatgttttgagtggggaattacttggttaactaaagtgttcatgactgt
tcagcatatgattgttggtgagcactacaaagatagaagagttaaactaggtagtggtgatttcgctaacacagttttcatacaagttctattttctcaatggtttt
ggataagaaaacagcaaacaaatttagtattattttcctagtaaaaagcaaacatcaaggagaaattggaagctgcttgttcagtttgcattaaattaaaaatttat
ttgaagtattcgagcaatgttgacagtctgcgttcttcaaataagcagcaaatcccctcaaaattgggcaaaaacctaccctggcttctttttaaaaaaccaagaaa
agtcctatataagcaacaaatttcaaaccttttgttaaaaattctgctgctgaataaataggcattacagcaatgcaattaggtgcaaaaaaggccatcctctttct
ttttttgtacaattgttcaagcaactttgaatttgcagattttaacccactgtctatatgggacttcgaattaaattgactggtctgcatcacaaatttcaactgcc
caatgtaatcatattctagagtattaaaaatacaaaaagtacaattagttatgcccattggcctggcaatttatttactccactttccacgttttggggatatttta
acttgaatagttcacaatcaaaacataggaaggatctactgctaaaagcaaaagcgtattggaatgataaaaaactttgatgtttaaaaaactacaaccttaatgaa
ttaaagttgaaaaaatattcaaaaaaagaaattcagttcttggcgagtaatatttttgatgtttgagatcagggttacaaaataagtgcatgagattaactcttcaa
atataaactgatttaagtgtatttgctaataacattttcgaaaaggaatattatggtaagaattcataaaaatgtttaatactgatacaactttcttttatatcctc
catttggccagaatactgttgcacacaactaattggaaaaaaaatagaacgggtcaatctcagtgggaggagaagaaaaaagttggtgcaggaaatagtttctacta
acctggtataaaaacatcaagtaacattcaaattgcaaatgaaaactaaccgatctaagcattgattgatttttctcatgcctttcgcctagttttaataaacgcgc
cccaactctcatcttcggttcaaatgatctattgtatttatgcactaacgtgcttttatgttagcatttttcaccctgaagttccgagtcattggcgtcactcacaa
atgacattacaatttttctatgttttgttctgttgagtcaaagtgcatgcctacaattctttcttatatagaactagacaaaatagaaaaaggcacttttggagtct
gaatgtcccttagtttcaaaaaggaaattgttgaattttttgtggttagttaaattttgaacaaactagtatagtggtgacaaacgatcaccttgagtcggtgacta
taaaagaaaaaggagattaaaaatacctgcggtgccacattttttgttacgggcatttaaggtttgcatgtgttgagcaattgaaacctacaactcaataagtcatg
ttaagtcacttctttgaaaaaaaaaaagaccctttaagcaagctc

p The model is able to generate correct proportions
of 1- and 2-words in genomes...

p ...but fails with k=3 and beyond.
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3-words: codons
p We can extend the previous method to 3-

words
p k=3 is an important case in study of DNA

sequences because of genetic code

5’ 3’

3’ 5’

… a t g a g t g g a …

… t a c t c a c c t …

a u g a g u g g a ...

M S G …
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3-word probabilities
p Let’s again assume a sequence L of

independent bases
p Probability of 3-word r1r2r3 at position

i,i+1,i+2 in sequence L is
P(Li = r1, Li+1 = r2, Li+2 = r3) =

P(Li = r1)P(Li+1 = r2)P(Li+2 = r3)
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3-words in Escherichia coli genome

AAA 108924 0.02348 0.01492
AAC     82582   0.01780 0.01541
AAG     63369   0.01366 0.01537
AAT     82995   0.01789 0.01490
ACA     58637   0.01264 0.01541
ACC     74897   0.01614 0.01591
ACG     73263   0.01579 0.01588
ACT     49865   0.01075 0.01539
AGA     56621   0.01220 0.01537
AGC     80860   0.01743 0.01588
AGG     50624   0.01091 0.01584
AGT     49772   0.01073 0.01536
ATA     63697   0.01373 0.01490
ATC     86486   0.01864 0.01539
ATG     76238   0.01643 0.01536
ATT     83398   0.01797 0.01489

CAA     76614   0.01651 0.01541
CAC     66751   0.01439 0.01591
CAG     104799  0.02259 0.01588
CAT     76985   0.01659 0.01539
CCA     86436   0.01863 0.01591
CCC     47775   0.01030 0.01643
CCG     87036   0.01876 0.01640
CCT     50426   0.01087 0.01589
CGA     70938   0.01529 0.01588
CGC     115695 0.02494 0.01640
CGG     86877   0.01872 0.01636
CGT     73160   0.01577 0.01586
CTA     26764 0.00577 0.01539
CTC     42733   0.00921 0.01589
CTG     102909  0.02218 0.01586
CTT     63655   0.01372 0.01537

Word      Count Observed Expected Word      Count Observed Expected
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3-words in Escherichia coli genome

GAA     83494   0.01800 0.01537
GAC     54737   0.01180 0.01588
GAG     42465   0.00915 0.01584
GAT     86551   0.01865 0.01536
GCA     96028   0.02070 0.01588
GCC     92973   0.02004 0.01640
GCG     114632 0.02471 0.01636
GCT     80298   0.01731 0.01586
GGA     56197   0.01211 0.01584
GGC     92144   0.01986 0.01636
GGG     47495   0.01024 0.01632
GGT     74301   0.01601 0.01582
GTA     52672   0.01135 0.01536
GTC     54221   0.01169 0.01586
GTG     66117   0.01425 0.01582
GTT     82598   0.01780 0.01534

TAA     68838   0.01484 0.01490
TAC     52592   0.01134 0.01539
TAG 27243 0.00587 0.01536
TAT     63288   0.01364 0.01489
TCA     84048   0.01812 0.01539
TCC     56028   0.01208 0.01589
TCG     71739   0.01546 0.01586
TCT     55472   0.01196 0.01537
TGA     83491   0.01800 0.01536
TGC     95232   0.02053 0.01586
TGG     85141   0.01835 0.01582
TGT     58375   0.01258 0.01534
TTA     68828   0.01483 0.01489
TTC     83848   0.01807 0.01537
TTG     76975   0.01659 0.01534
TTT     109831  0.02367 0.01487

Word      Count Observed Expected Word      Count Observed Expected
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2nd order Markov Chains
p Markov chains readily generalise to higher orders
p In 2nd order markov chain, position t depends on

positions t-1 and t-2
p Transition matrix:

p Probabilistic models for DNA and amino acid
sequences will be discussed in Biological
sequence analysis course (II period)

A   C   G   T
AA
AC
AG
AT
CA
...
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Codon Adaptation Index (CAI)
p Observation: cells prefer certain codons

over others in highly expressed genes
n Gene expression: DNA is transcribed into RNA

(and possibly translated into protein)

Phe TTT   0.493     0.551     0.291
TTC   0.507     0.449     0.709

Ala    GCT   0.246     0.145     0.275
GCC   0.254     0.276     0.164
GCA   0.246     0.196     0.240
GCG   0.254     0.382     0.323

Asn AAT   0.493     0.409     0.172
AAC   0.507     0.591     0.828

Amino
acid Codon Predicted Gene class I Gene class II

Highly
expressed

Moderately
expressed

Codon frequencies for some genes in E. coli
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Codon Adaptation Index (CAI)
p CAI is a statistic used to compare the

distribution of codons observed with the
preferred codons for highly expressed
genes
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Codon Adaptation Index (CAI)
p Consider an amino acid sequence X = x1x2...xn

p Let pk be the probability that codon k is used in
highly expressed genes

p Let qk be the highest probability that a codon
coding for the same amino acid as codon k has
n For example, if codon k is ”GCC”, the

corresponding amino acid is Alanine (see genetic
code table; also GCT, GCA, GCG code for Alanine)

n Assume that pGCC = 0.164, pGCT = 0.275, pGCA =
0.240, pGCG = 0.323

n Now qGCC = qGCT = qGCA = qGCG = 0.323
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Codon Adaptation Index (CAI)
p CAI is defined as

p CAI can be given also in log-odds form:

log(CAI) = (1/n) log(pk / qk)

CAI = ( pk / qk )
k=1

n 1/n

k=1

n
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CAI: example with an E. coli gene
M    A    L    T    K    A    E    M    S    E    Y    L    …
ATG  GCG  CTT  ACA  AAA  GCT  GAA  ATG  TCA  GAA  TAT  CTG
1.00 0.47 0.02 0.45 0.80 0.47 0.79 1.00 0.43 0.79 0.19 0.02

0.06 0.02 0.47 0.20 0.06 0.21      0.32 0.21 0.81 0.02
0.28 0.04 0.04      0.28           0.03           0.04
0.20 0.03 0.05      0.20           0.01           0.03

0.01                          0.04           0.01
0.89 0.18 0.89

ATG GCT TTA  ACT AAA GCT GAA ATG TCT GAA TAT  TTA
GCC  TTG ACC AAG  GCC  GAG       TCC  GAG TAC TTG
GCA  CTT  ACA       GCA            TCA            CTT
GCG  CTC  ACG       GCG            TCG            CTC

CTA                           AGT            CTA
CTG AGC CTG

1.00 0.20 0.04 0.04 0.80 0.47 0.79 1.00 0.03 0.79 0.19 0.89…
1.00 0.47 0.89 0.47 0.80 0.47 0.79 1.00 0.43 0.79 0.81 0.89

1/n

qk
pk
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CAI: properties
p CAI = 1.0 : each codon was the most frequently

used codon in highly expressed genes
p Log-odds used to avoid numerical problems

n What happens if you multiply many values <1.0
together?

p In a sample of E.coli genes, CAI ranged from 0.2
to 0.85

p CAI correlates with mRNA levels: can be used to
predict high expression levels
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Biological words: summary
p Simple 1-, 2- and 3-word models can

describe interesting properties of DNA
sequences
n GC skew can identify DNA replication origins
n It can also reveal genome rearrangement

events and lateral transfer of DNA
n GC content can be used to locate genes:

human genes are comparably GC-rich
n CAI predicts high gene expression levels
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Biological words: summary
p k=3 models can help to identify correct

reading frames
n Reading frame starts from a start codon and

stops in a stop codon
n Consider what happens to translation when a

single extra base is introduced in a reading
frame

p Also word models for k > 3 have their
uses
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Next lecture
p Genome sequencing & assembly – where

do we get sequence data?
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Note on programming languages
p Working with probability distributions is

straightforward with R, for example
n Deonier’s book contains many computational

examples
n You can use R in CS Linux systems

p Python works too!
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#!/usr/bin/env python

import sys, random

n = int(sys.argv[1])

tm = {'a' : {'a' : 0.423, 'c' : 0.151, 'g' : 0.168, 't' : 0.258},
'c' : {'a' : 0.399, 'c' : 0.184, 'g' : 0.063, 't' : 0.354},
'g' : {'a' : 0.314, 'c' : 0.189, 'g' : 0.176, 't' : 0.321},
't' : {'a' : 0.258, 'c' : 0.138, 'g' : 0.187, 't' : 0.415}}

pi = {'a' : 0.345, 'c' : 0.158, 'g' : 0.159, 't' : 0.337}

def choose(dist):
r = random.random()
sum = 0.0
keys = dist.keys()
for k in keys:

sum += dist[k]
if sum > r:

return k
return keys[-1]

c = choose(pi)
for i in range(n - 1):

sys.stdout.write(c)
c = choose(tm[c])

sys.stdout.write(c)
sys.stdout.write("\n")

Example Python code for generating
DNA sequences with first-order
Markov chains.

Function choose(), returns a key (here ’a’, ’c’, ’g’ or
’t’) of the dictionary ’dist’ chosen randomly
according to probabilities in dictionary values.

Choose the first letter, then choose
next letter according to P(xt | xt-1).

Transition matrix
tm and initial
distribution pi.

Initialisation: use packages ’sys’ and ’random’,
read sequence length from input.



Introduction to
Bioinformatics

Genome sequencing & assembly
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Genome sequencing & assembly
p DNA sequencing

n How do we obtain DNA sequence information from
organisms?

p Genome assembly
n What is needed to put together DNA sequence

information from sequencing?

p First statement of sequence assembly problem
(according to G. Myers):
n Peltola, Söderlund, Tarhio, Ukkonen: Algorithms for

some string matching problems arising in molecular
genetics. Proc. 9th IFIP World Computer Congress, 1983
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?

Recovery of shredded newspaper
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DNA sequencing
p DNA sequencing: resolving a nucleotide

sequence (whole-genome or less)
p Many different methods developed
n Maxam-Gilbert method (1977)
n Sanger method (1977)
n High-throughput methods
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Sanger sequencing: sequencing by
synthesis
p A sequencing technique developed by Fred

Sanger
p Also called dideoxy sequencing
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http://en.wikipedia.org/wiki/DNA_polymerase

DNA polymerase
p A DNA polymerase is an

enzyme that catalyzes
DNA synthesis

p DNA polymerase needs
a primer
n Synthesis proceeds

always in 5’->3’ direction

http://en.wikipedia.org/wiki/DNA_polymerase
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Dideoxy sequencing
p In Sanger sequencing, chain-terminating

dideoxynucleoside triphosphates (ddXTPs)
are employed
n ddATP, ddCTP, ddGTP, ddTTP lack the 3’-OH

tail of dXTPs

p A mixture of dXTPs with small amount of
ddXTPs is given to DNA polymerase with
DNA template and primer

p ddXTPs are given fluorescent labels
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Dideoxy sequencing
p When DNA polymerase encounters a

ddXTP, the synthesis cannot proceed
p The process yields copied sequences of

different lengths
p Each sequence is terminated by a labeled

ddXTP
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Determining the sequence
p Sequences are sorted

according to length by
capillary
electrophoresis

p Fluorescent signals
corresponding to
labels are registered

p Base calling:
identifying which base
corresponds to each
position in a read
n Non-trivial problem!

Output sequences from
base calling are called reads
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Reads are short!
p Modern Sanger sequencers can produce

quality reads up to ~750 bases1

n Instruments provide you with a quality file for
bases in reads, in addition to actual sequence
data

p Compare the read length against the size
of the human genome (2.9x109 bases)

p Reads have to be assembled!

1 Nature Methods - 5, 16 - 18 (2008)
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Problems with sequencing
p Sanger sequencing error rate per base

varies from 1% to 3%1

p Repeats in DNA
n For example, ~300 base Alu sequence

repeated is over million times in human
genome

n Repeats occur in different scales

p What happens if repeat length is longer
than read length?
n We will get back to this problem later

1 Jones, Pevzner (2004)
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Shortest superstring problem
p Find the shortest string that ”explains” the

reads
p Given a set of strings (reads), find a

shortest string that contains all of them



134

Example: Shortest superstring

Set of strings: {000, 001, 010, 011, 100, 101, 110, 111}

Concetenation of strings: 000001010011100101110111

010
110

011
000

Shortest superstring: 0001110100
001

111
101

100
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Shortest superstrings: issues
p NP-complete problem: unlike to have an

efficient (exact) algorithm
p Reads may be from either strand of DNA
p Is the shortest string necessarily the

correct assembly?
p What about errors in reads?
p Low coverage -> gaps in assembly
n Coverage: average number of times each base

occurs in the set of reads (e.g., 5x coverage)
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Sequence assembly and combination
locks
p What is common with sequence assembly

and opening keypad locks?
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Whole-genome shotgun sequence
p Whole-genome shotgun sequence

assembly starts with a large sample of
genomic DNA
1. Sample is randomly partitioned into inserts of

length > 500 bases
2. Inserts are multiplied by cloning them into a

vector which is used to infect bacteria
3. DNA is collected from bacteria and sequenced
4. Reads are assembled
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Assembly of reads with Overlap-Layout-
Consensus algorithm
p Overlap
n Finding potentially overlapping reads

p Layout
n Finding the order of reads along DNA

p Consensus (Multiple alignment)
n Deriving the DNA sequence from the layout

p Next, the method is described at a very
abstract level, skipping a lot of details

Kececioglu, J.D. and E.W. Myers. 1995. Combinatorial algorithms for
DNA sequence assembly. Algorithmica 13: 7-51.
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Finding overlaps
p First, pairwise overlap

alignment of reads is
resolved

p Reads can be from
either DNA strand:
The reverse
complement r* of
each read r has to be
considered

acggagtcc
agtccgcgctt

5’ 3’

3’ 5’

… a t g a g t g g a …

… t a c t c a c c t …

r1

r2

r1: tgagt, r1
*: actca

r2: tccac, r2
*: gtgga
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Example sequence to assemble

p 20 reads:

5’ – CAGCGCGCTGCGTGACGAGTCTGACAAAGACGGTATGCGCATCG
TGATTGAAGTGAAACGCGATGCGGTCGGTCGGTGAAGTTGTGCT - 3’

#   Read Read*

1 CATCGTCA    TCACGATG

2 CGGTGAAG    CTTCACCG

3 TATGCGCA    TGCGCATA

4 GACGAGTC    GACTCGTC

5 CTGACAAA    TTTGTCAG

6 ATGCGCAT    ATGCGCAT

7 ATGCGGTC GACCGCAT

8 CTGCGTGA    TCACGCAG

9 GCGTGACG    CGTCACGC

10 GTCGGTGA    TCACCGAC

#   Read Read*

11 GGTCGGTG    CACCGACC

12 ATCGTGAT    ATCACGAT

13 GCGCTGCG    CGCAGCGC

14 GCATCGTG    CACGATGC

15 AGCGCGCT    AGCGCGCT
16 GAAGTTGT    ACAACTTC

17 AGTGAAAC    GTTTCACT

18 ACGCGATG    CATCGCGT

19 GCGCATCG    CGATGCGC

20 AAGTGAAA    TTTCACTT
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Finding overlaps
p Overlap between two reads

can be found with a
dynamic programming
algorithm
n Errors can be taken into

account

p Dynamic programming will
be discussed more on next
lecture

p Overlap scores stored into
the overlap matrix
n Entries (i, j) below the

diagonal denote overlap of
read ri and rj

*

1 CATCGTCA

6 ATGCGCAT

12 ATCGTGAT

Overlap(1, 6) = 3

Overlap(1, 12) = 7

1

6 12

3 7
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Finding layout & consensus
p Method extends the

assembly greedily by
choosing the best
overlaps

p Both orientations are
considered

p Sequence is extended
as far as possible

7*    GACCGCAT
6=6*  ATGCGCAT
14        GCATCGTG
1          CATCGTGA
12          ATCGTGAT
19      GCGCATCG
13* CGCAGCGC
---------------------

CGCATCGTGAT

Ambiguous bases

Consensus sequence
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Finding layout & consensus
p We move on to next best

overlaps and extend the
sequence from there

p The method stops when
there are no more overlaps
to consider

p A number of contigs is
produced

p Contig stands for
contiguous sequence,
resulting from merging
reads

2           CGGTGAAG
10        GTCGGTGA
11       GGTCGGTG
7    ATGCGGTC
---------------------

ATGCGGTCGGTGAAG
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Whole-genome shotgun sequencing:
summary

p Ordering of the reads is initially unknown
p Overlaps resolved by aligning the reads
p In a 3x109 bp genome with 500 bp reads and 5x

coverage, there are ~107 reads and ~107(107-1)/2
= ~5x1013 pairwise sequence comparisons

… …Original genome sequence

Reads
Non-overlapping
read

Overlapping reads
=> Contig
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Repeats in DNA and genome assembly

Pop, Salzberg, Shumway (2002)

Two instances of the same repeat
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Repeats in DNA cause problems in
sequence assembly
p Recap: if repeat length exceeds read

length, we might not get the correct
assembly

p This is a problem especially in eukaryotes
n ~3.1% of genome consists of repeats in

Drosophila, ~45% in human

p Possible solutions
1. Increase read length – feasible?
2. Divide genome into smaller parts, with known

order, and sequence parts individually



147

”Divide and conquer” sequencing
approaches: BAC-by-BAC

Whole-genome shotgun sequencing

Divide-and-conquer

Genome

Genome

BAC library
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BAC-by-BAC sequencing
p Each BAC (Bacterial Artificial

Chromosome) is about 150 kbp
p Covering the human genome requires

~30000 BACs
p BACs shotgun-sequenced separately
n Number of repeats in each BAC is

significantly smaller than in the whole
genome...

n ...needs much more manual work compared
to whole-genome shotgun sequencing
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Hybrid method
p Divide-and-conquer and whole-genome

shotgun approaches can be combined
n Obtain high coverage from whole-genome

shotgun sequencing for short contigs
n Generate of a set of BAC contigs with low

coverage
n Use BAC contigs to ”bin” short contigs to

correct places

p This approach was used to sequence the
brown Norway rat genome in 2004
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Paired end sequencing
p Paired end (or mate-pair) sequencing is

technique where
n both ends of an insert are sequenced
n For each insert, we get two reads
n We know the distance between reads, and that

they are in opposite orientation

n Typically read length < insert length

kRead 1 Read 2
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Paired end sequencing
p The key idea of paired end sequencing:

n Both reads from an insert are unlikely to be in repeat
regions

n If we know where the first read is, we know also
second’s location

p This technique helps to WGSS higher organisms

kRead 1 Read 2

Repeat region
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First whole-genome shotgun sequencing
project: Drosophila melanogaster

p Fruit fly is a common
model organism in
biological studies

p Whole-genome
assembly reported in
Eugene Myers, et al.,
A Whole-Genome
Assembly of
Drosophila, Science
24, 2000

p Genome size 120 Mbp

http://en.wikipedia.org/wiki/Drosophila_melanogaster

http://en.wikipedia.org/wiki/Drosophila_melanogaster
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Sequencing of the Human Genome
p The (draft) human

genome was published
in 2001

p Two efforts:
n Human Genome Project

(public consortium)
n Celera (private

company)

p HGP: BAC-by-BAC
approach

p Celera: whole-genome
shotgun sequencing

HGP: Nature 15 February 2001
Vol 409 Number 6822

Celera: Science 16 February 2001
Vol 291, Issue 5507
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Genome assembly software
p phrap (Phil’s revised assembly program)
p AMOS (A Modular, Open-Source whole-

genome assembler)
p CAP3 / PCAP
p TIGR assembler
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Next generation sequencing techniques
p Sanger sequencing is the prominent first-

generation sequencing method
p Many new sequencing methods are

emerging

p See Lars Paulin’s slides (course web page)
for details
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Next-gen sequencing: 454
p Genome Sequencer FLX (454 Life Science

/ Roche)
n >100 Mb / 7.5 h run
n Read length 250-300 bp
n >99.5% accuracy / base in a single run
n >99.99% accuracy / base in consensus
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Next-gen sequencing: Illumina Solexa
p Illumina / Solexa Genome Analyzer
n Read length 35 - 50 bp
n 1-2 Gb / 3-6 day run
n > 98.5% accuracy / base in a single run
n 99.99% accuracy / consensus with 3x

coverage
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Next-gen sequencing: SOLiD
p SOLiD
n Read length 25-30 bp
n 1-2 Gb / 5-10 day run
n >99.94% accuracy / base
n >99.999% accuracy / consensus with 15x

coverage
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Next-gen sequencing: Helicos
p Helicos: Single Molecule Sequencer
n No amplification of sequences needed
n Read length up to 55 bp

p Accuracy does not decrease when read length is
increased

p Instead, throughput goes down

n 25-90 Mb / h
n >2 Gb / day
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Next-gen sequencing: Pacific
Biosciences
p Pacific Biosciences
n Single-Molecule Real-Time (SMRT) DNA

sequencing technology
n Read length “thousands of nucleotides”

p Should overcome most problems with repeats

n Throughput estimate: 100 Gb / hour
n First instruments in 2010?
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Exercise groups
p 1st group: Tuesdays 16.15-18.00 C221
p 2nd group: Wednesday 14.15-16.00 B120

p You can choose freely which group you
want to attend to

p Send exercise notes before the 1st group
starts (Tue 16.15), even if you go to the
2nd group



Introduction to
Bioinformatics

Lecture 3:
Sequence alignment
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Sequence alignment
p The biological problem
p Global alignment
p Local alignment
p Multiple alignment
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Background: comparative genomics
p Basic question in biology: what properties

are shared among organisms?
p Genome sequencing allows comparison of

organisms at DNA and protein levels
p Comparisons can be used to
n Find evolutionary relationships between

organisms
n Identify functionally conserved sequences
n Identify corresponding genes in human and

model organisms: develop models for human
diseases
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Homologs
p Two genes (sequences in

general) gB and gC
evolved from the same
ancestor gene gA are
called homologs

p Homologs usually exhibit
conserved functions

p Close evolutionary
relationship => expect a
high number of homologs

gB = agtgccgttaaagttgtacgtc

gC = ctgactgtttgtggttc

gA = agtgtccgttaagtgcgttc



166

p We expect homologs to be ”similar” to each other
p Intuitively, similarity of two sequences refers to

the degree of match between corresponding
positions in sequence

p What about sequences that differ in length?

Sequence similarity

agtgccgttaaagttgtacgtc

ctgactgtttgtggttc
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Similarity vs homology
p Sequence similarity is not sequence

homology
n If the two sequences gB and gC have accumulated

enough mutations, the similarity between them is likely
to be low

Homology is more difficult to detect over greater
evolutionary distances.

0 agtgtccgttaagtgcgttc
1     agtgtccgttatagtgcgttc
2     agtgtccgcttatagtgcgttc
4     agtgtccgcttaagggcgttc
8     agtgtccgcttcaaggggcgt
16    gggccgttcatgggggt
32    gcagggcgtcactgagggct

64    acagtccgttcgggctattg
128   cagagcactaccgc
256   cacgagtaagatatagct
512   taatcgtgata
1024  acccttatctacttcctggagtt
2048  agcgacctgcccaa
4096 caaac

#mutations #mutations
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Similarity vs homology (2)
p Sequence similarity can occur by chance
n Similarity does not imply homology

p Consider comparing two short sequences
against each other
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Orthologs and paralogs

p We distinguish between two types of homology
n Orthologs: homologs from two different species,

separated by a speciation event
n Paralogs: homologs within a species, separated by a

gene duplication event

gA

gB gC

Organism B Organism C

gA

gA gA’

gB gC

Organism A

Gene duplication event

Orthologs
Paralogs
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Orthologs and paralogs (2)
p Orthologs typically retain the original function
p In paralogs, one copy is free to mutate and

acquire new function (no selective pressure)

gA

gB gC

Organism B Organism C

gA

gA gA’

gB gC

Organism A
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Paralogy example: hemoglobin
p Hemoglobin is a protein

complex which transports
oxygen

p In humans, hemoglobin
consists of four protein
subunits and four non-
protein heme groups

Hemoglobin A,
www.rcsb.org/pdb/explore.do?structureId=1GZX

Sickle cell diseases
are caused by mutations

in hemoglobin genes

http://en.wikipedia.org/wiki/Image:Sicklecells.jpg

http://www.rcsb.org/pdb/explore.do?structureId=1GZX
http://en.wikipedia.org/wiki/Image:Sicklecells.jpg
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Paralogy example: hemoglobin
p In adults, three types are

normally present
n Hemoglobin A: 2 alpha and

2 beta subunits
n Hemoglobin A2: 2 alpha

and 2 delta subunits
n Hemoglobin F: 2 alpha and

2 gamma subunits
p Each type of subunit

(alpha, beta, gamma,
delta) is encoded by a
separate gene

Hemoglobin A,
www.rcsb.org/pdb/explore.do?structureId=1GZX

http://www.rcsb.org/pdb/explore.do?structureId=1GZX
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Paralogy example: hemoglobin
p The subunit genes are

paralogs of each other, i.e.,
they have a common ancestor
gene

p Exercise: hemoglobin human
paralogs in NCBI sequence
databases
http://www.ncbi.nlm.nih.gov/sites/entre
z?db=Nucleotide
n Find human hemoglobin alpha, beta,

gamma and delta
n Compare sequences

Hemoglobin A,
www.rcsb.org/pdb/explore.do?structureId=1GZX

http://www.ncbi.nlm.nih.gov/sites/entre
http://www.rcsb.org/pdb/explore.do?structureId=1GZX
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Orthology example: insulin
p The genes coding for insulin in human

(Homo sapiens) and mouse (Mus
musculus) are orthologs:
n They have a common ancestor gene in the

ancestor species of human and mouse
n Exercise: find insulin orthologs from human

and mouse in NCBI sequence databases
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Sequence alignment
p Alignment specifies which positions in two

sequences match

acgtctag
|||||

-actctag

5 matches
2 mismatches
1 not aligned

acgtctag
||
actctag-

2 matches
5 mismatches
1 not aligned

acgtctag
|| |||||
ac-tctag

7 matches
0 mismatches
1 not aligned
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Sequence alignment
p Maximum alignment length is the total length of

the two sequences

acgtctag-------

--------actctag

0 matches
0 mismatches
15 not aligned

-------acgtctag

actctag--------

0 matches
0 mismatches
15 not aligned
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Mutations: Insertions, deletions and
substitutions

p Insertions and/or deletions are called
indels
n We can’t tell whether the ancestor sequence

had a base or not at indel position!

acgtctag
|||||

-actctag

Indel: insertion or
deletion of a base
with respect to the
ancestor sequence

Mismatch: substitution
(point mutation) of
a single base
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Problems

p What sorts of alignments should be considered?
p How to score alignments?
p How to find optimal or good scoring alignments?
p How to evaluate the statistical significance of

scores?

In this course, we discuss each of these problems
briefly.
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Sequence Alignment (chapter 6)
p The biological problem
p Global alignment
p Local alignment
p Multiple alignment
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Global alignment
p Problem: find optimal scoring alignment between

two sequences (Needleman & Wunsch 1970)
p Every position in both sequences is included in

the alignment
p We give score for each position in alignment

n Identity (match)                    +1
n Substitution (mismatch)         -µ
n Indel -

p Total score: sum of position scores
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Scoring: Toy example
p Consider two sequences

with characters drawn
from the English
language alphabet:
WHAT, WHY

WHAT

||

WH-Y
S(WHAT/WH-Y) = 1 + 1 – – µ

WHAT

-WHY
S(WHAT/-WHY)  =  – – µ – µ – µ
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Dynamic programming
p How to find the optimal alignment?
p We use previous solutions for optimal

alignments of smaller subsequences
p This general approach is known as

dynamic programming
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Introduction to dynamic programming:
the money change problem
p Suppose you buy a pen for 4.23€ and pay for

with a 5€ note
p You get 77 cents in change – what coins is the

cashier going to give you if he or she tries to
minimise the number of coins?

p The usual algorithm: start with largest coin
(denominator), proceed to smaller coins until no
change is left:
n 50, 20, 5 and 2 cents

p This greedy algorithm is incorrect, in the sense
that it does not always give you the correct
answer
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The money change problem
p How else to compute the

change?
p We could consider all possible

ways to reduce the amount of
change

p Suppose we have 77 cents
change, and the following
coins: 50, 20, 5 cents

p We can compute the change
with recursion
n C(n) = min {  C(n – 50) + 1,

C(n – 20) + 1, C(n – 5) + 1 }
p Figure shows the recursion

tree for the example

77

7227 57

7 22 7 37 52 22 52 67
…

50 20 5

p Many values are computed more
than once!

p This leads to a correct but very
inefficient algorithm
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The money change problem
p We can speed the computation up by

solving the change problem for all i n
n Example: solve the problem for 9 cents with

available coins being 1, 2 and 5 cents

p Solve the problem in steps, first for 1
cent, then 2 cents, and so on

p In each step, utilise the solutions from the
previous steps
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The money change problem

0 1 2 3 4 5 6 7 8 9Amount of
change left

p Algorithm runs in time proportional to Md, where M is the
amount of change and d is the number of coin types

p The same technique of storing solutions of subproblems can
be utilised in aligning sequences

Number of
coins used

0 1 1 2 2 1 2 2 3 3
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Representing alignments and scores

Y

H

W

-

TAHW-

WHAT

||

WH-Y

Alignments can be
represented in the
following tabular form.

Each alignment
corresponds to a path
through the table.
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Representing alignments and scores

Y

H

W

-

TAHW-

WHAT---

----WHY

WH-AT

||

WHY--
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Y

H

W

-

TAHW-WHAT

||

WH-Y

Global alignment
score S3,4 = 2- -µ

2- -µ

2-2

1

0

Representing alignments and scores
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Filling the alignment matrix

Y

H

W

-

TAHW-

Case 1
Case 2

Case 3

Consider the alignment process
at shaded square.

Case 1. Align H against H
(match)

Case 2. Align H in WHY against
– (indel) in WHAT

Case 3. Align H in WHAT
against – (indel) in WHY
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Filling the alignment matrix (2)

Y

H

W

-

TAHW-

Case 1
Case 2

Case 3

Scoring the alternatives.

Case 1. S2,2 = S1,1 + s(2, 2)

Case 2. S2,2 = S1,2

Case 3. S2,2 = S2,1

s(i, j) = 1 for matching positions,

s(i, j) = - µ for substitutions.

Choose the case (path) that
yields the maximum score.

Keep track of path choices.
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Global alignment: formal
development
A = a1a2a3…an,
B = b1b2b3…bm

a3

a2

a1

-

b4b3b2b1-

3

2

1

0

43210

b1 b2 b3 b4 -
- -a1 a2 a3

l Any alignment can be written
as a unique path through the
matrix

l Score for aligning A and B up
to positions i and j:

Si,j = S(a1a2a3…ai, b1b2b3…bj)



193

Scoring partial alignments
p Alignment of A = a1a2a3…ai with B = b1b2b3…bj

can be end in three possible ways
n Case 1: (a1a2…ai-1) ai

(b1b2…bj-1) bj

n Case 2: (a1a2…ai-1) ai

(b1b2…bj) -
n Case 3: (a1a2…ai) –

(b1b2…bj-1) bj
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Scoring alignments
p Scores for each case:

n Case 1: (a1a2…ai-1) ai

(b1b2…bj-1) bj

n Case 2: (a1a2…ai-1) ai

(b1b2…bj) –

n Case 3: (a1a2…ai) –
(b1b2…bj-1) bj

s(ai, bj) = { -µ otherwise

+1  if ai = bj

s(ai, -) = s(-, bj) = -
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Scoring alignments (2)
p First row and first column

correspond to initial alignment
against indels:

S(i, 0) = -i 
S(0, j) = -j 

p Optimal global alignment score
S(A, B) = Sn,m

a3

a2

a1

-

b4b3b2b1-

-33

-22

-1

-4-3-2-00

43210
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Algorithm for global alignment
Input sequences A, B, n = |A|, m = |B|
Set Si,0 := - i for all i
Set S0,j := - j for all j
for i := 1 to n

for j := 1 to m
Si,j := max{Si-1,j – , Si-1,j-1 + s(ai,bj), Si,j-1 – }

end
end

Algorithm takes O(nm) time
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Global alignment: example

?-10T
-8G
-6C
-4T
-2A

-10-8-6-4-20-
GTGGT-

µ = 1

= 2
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Global alignment: example

?-10T
-8G
-6C
-4T
-2A

-10-8-6-4-20-
GTGGT-

µ = 1

= 2 -1 -3
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Global alignment: example (2)

-20-3-4-7-10T
-4-3-1-2-5-8G
-5-5-3-2-3-6C
-6-4-4-2-1-4T
-9-7-5-3-1-2A
-10-8-6-4-20-
GTGGT-

µ = 1

= 2

ATCGT-

| ||

-TGGTG
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Sequence Alignment (chapter 6)
p The biological problem
p Global alignment
p Local alignment
p Multiple alignment
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Local alignment: rationale
p Otherwise dissimilar proteins may have local regions of

similarity
-> Proteins may share a function

Human bone
morphogenic protein
receptor type II
precursor (left) has a
300 aa region that
resembles 291 aa
region in TGF-
receptor (right).

The shared function
here is protein kinase.
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Local alignment: rationale

p Global alignment would be inadequate
p Problem: find the highest scoring local alignment

between two sequences
p Previous algorithm with minor modifications solves this

problem (Smith & Waterman 1981)

A

B
Regions of
similarity
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From global to local alignment
p Modifications to the global alignment

algorithm
n Look for the highest-scoring path in the

alignment matrix (not necessarily through the
matrix), or in other words:

n Allow preceding and trailing indels without
penalty
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Scoring local alignments
A = a1a2a3…an, B = b1b2b3…bm

Let I and J be intervals (substrings) of A and B, respectively:

Best local alignment score:

where S(I, J) is the alignment score for substrings I and J.
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Allowing preceding and trailing
indels
p First row and column

initialised to zero:
Mi,0 = M0,j = 0

a3

a2

a1

-

b4b3b2b1-

03

02

01

000000

43210

b1 b2 b3
- - a1
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Recursion for local alignment
p Mi,j =  max {

Mi-1,j-1 + s(ai, bi),
Mi-1,j – ,
Mi,j-1 – ,
0

}

020010T

101100G

000000C

010010T

000000A

000000-

GTGGT-

Allow alignment to
start anywhere in
sequences



207

Finding best local alignment
p Optimal score is the highest

value in the matrix

= maxi,j Mi,j

p Best local alignment can be
found by backtracking from the
highest value in M

p What is the best local
alignment in this example? 020010T

101100G

000000C

010010T

000000A

000000-

GTGGT-
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Local alignment: example

0G8
0G7
0A6
0A5
0T4
0C3
0C2
0A1

00000000000-0
ACTAACTCGG-

109876543210
Mi,j = max {

Mi-1,j-1 + s(ai,
bi),
Mi-1,j ,
Mi,j-1 ,
0

}

0

Scoring (for example)
Match: +2
Mismatch: -1
Indel: -2
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Local alignment: example

0G8
0G7
0A6
0A5
0T4
0C3
0C2
0A1

00000000000-0
ACTAACTCGG-

109876543210
Mi,j = max {

Mi-1,j-1 + s(ai,
bi),
Mi-1,j ,
Mi,j-1 ,
0

}

0 0 0 0 0 2

Scoring (for example)
Match: +2
Mismatch: -1
Indel: -2
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C T – A A
C T C A A

Local alignment: example

Scoring (for example)
Match: +2
Mismatch: -1
Indel: -2

Optimal local
alignment:

24321002420G8
13543000220G7

32465100000A6
31134320000A5
21201240000T4
13001212000C3
02110202000C2
20022000000A1
00000000000-0
ACTAACTCGG-

109876543210
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Multiple optimal alignments
Non-optimal, good-scoring alignments

24321002420G8
13543000220G7

32465100000A6
31134320000A5
21201240000T4
13001212000C3
02110202000C2
20022000000A1
00000000000-0
ACTAACTCGG-

109876543210
How can you find

1. Optimal
alignments if
more than one
exist?

2. Non-optimal,
good-scoring
alignments?
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Overlap alignment
p Overlap matrix used by Overlap-Layout-

Consensus algorithm can be computed with
dynamic programming

p Initialization: Oi,0 = O0,j = 0 for all i, j
p Recursion:
Oi,j =  max {

Oi-1,j-1 + s(ai, bi),
Oi-1,j – ,
Oi,j-1 – ,

}
Best overlap: maximum value from rightmost

column and bottom row
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Non-uniform mismatch penalties
p We used uniform penalty for mismatches:

s(’A’, ’C’) = s(’A’, ’G’) = … = s(’G’, ’T’) = µ
p Transition mutations (A->G, G->A, C->T, T->C) are

approximately twice as frequent than transversions (A->T,
T->A, A->C, G->T)
n use non-uniform mismatch

penalties collected into a
substitution matrix

1-1-0.5-1T
-11-1-0.5G

-0.5-11-1C
-1-0.5-11A

TGCA
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Gaps in alignment
p Gap is a succession of indels in alignment

p Previous model scored a length k gap as
w(k) = -k

p Replication processes may produce longer
stretches of insertions or deletions
n In coding regions, insertions or deletions of

codons may preserve functionality

C T – - - A A
C T C G C A A
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Gap open and extension penalties (2)
p We can design a score that allows the

penalty opening gap to be larger than
extending the gap:

w(k) = - – (k – 1)
p Gap open cost , Gap extension cost
p Alignment algorithms can be extended to

use w(k) (not discussed on this course)
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Amino acid sequences
p We have discussed mainly DNA sequences
p Amino acid sequences can be aligned as

well
p However, the design of the substitution

matrix is more involved because of the
larger alphabet

p More on the topic in the course Biological
sequence analysis
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Demonstration of the EBI web site
p European Bioinformatics Institute (EBI)

offers many biological databases and
bioinformatics tools at
http://www.ebi.ac.uk/
n Sequence alignment: Tools -> Sequence

Analysis -> Align

http://www.ebi.ac.uk/
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Sequence Alignment (chapter 6)
p The biological problem
p Global alignment
p Local alignment
p Multiple alignment
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Multiple alignment
p Consider a set of n sequences

on the right
n Orthologous sequences from

different organisms
n Paralogs from multiple

duplications
p How can we study

relationships between these
sequences?

aggcgagctgcgagtgcta
cgttagattgacgctgac
ttccggctgcgac
gacacggcgaacgga
agtgtgcccgacgagcgaggac
gcgggctgtgagcgcta
aagcggcctgtgtgcccta
atgctgctgccagtgta
agtcgagccccgagtgc
agtccgagtcc
actcggtgc
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Optimal alignment of three
sequences
p Alignment of A = a1a2…ai and B = b1b2…bj can

end either in (-, bj), (ai, bj) or (ai, -)
p 22 – 1 = 3 alternatives
p Alignment of A, B and C = c1c2…ck can end in 23 –

1 ways: (ai, -, -), (-, bj, -), (-, -, ck), (-, bj, ck),
(ai, -, ck), (ai, bj, -) or (ai, bj, ck)

p Solve the recursion using three-dimensional
dynamic programming matrix: O(n3) time and
space

p Generalizes to n sequences but impractical with
even a moderate number of sequences
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Multiple alignment in practice
p In practice, real-world multiple alignment

problems are usually solved with heuristics
p Progressive multiple alignment

n Choose two sequences and align them
n Choose third sequence w.r.t. two previous sequences

and align the third against them
n Repeat until all sequences have been aligned
n Different options how to choose sequences and score

alignments
n Note the similarity to Overlap-Layout-Consensus
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Multiple alignment in practice
p Profile-based progressive multiple

alignment: CLUSTALW
n Construct a distance matrix of all pairs of

sequences using dynamic programming
n Progressively align pairs in order of decreasing

similarity
n CLUSTALW uses various heuristics to

contribute to accuracy
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Additional material
p R. Durbin, S. Eddy, A. Krogh, G.

Mitchison: Biological sequence analysis
p N. C. Jones, P. A. Pevzner: An introduction

to bioinformatics algorithms
p Course Biological sequence analysis in

period II, 2008
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Rapid alignment methods: FASTA and
BLAST
p The biological problem
p Search strategies
p FASTA
p BLAST
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The biological problem
p Global and local

alignment algoritms are
slow in practice

p Consider the scenario of
aligning a query
sequence against a large
database of sequences
n New sequence with

unknown function n NCBI GenBank size in January
2007 was 65 369 091 950
bases (61 132 599 sequences)

n Feb 2008: 85 759 586 764
bases (82 853 685 sequences)
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Problem with large amount of sequences
p Exponential growth in both number and

total length of sequences
p Possible solution: Compare against model

organisms only
p With large amount of sequences, chances

are that matches occur by random
n Need for statistical analysis
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Rapid alignment methods: FASTA and
BLAST
p The biological problem
p Search strategies
p FASTA
p BLAST
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FASTA
p FASTA is a multistep algorithm for sequence

alignment (Wilbur and Lipman, 1983)
p The sequence file format used by the FASTA

software is widely used by other sequence
analysis software

p Main idea:
n Choose regions of the two sequences (query and

database) that look promising (have some degree of
similarity)

n Compute local alignment using dynamic programming in
these regions
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FASTA outline
p FASTA algorithm has five steps:
n 1. Identify common k-words between I and J
n 2. Score diagonals with k-word matches,

identify 10 best diagonals
n 3. Rescore initial regions with a substitution

score matrix
n 4. Join initial regions using gaps, penalise for

gaps
n 5. Perform dynamic programming to find final

alignments
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Search strategies
p How to speed up the computation?
n Find ways to limit the number of pairwise

comparisons

p Compare the sequences at word level to
find out common words
n Word means here a k-tuple (or a k-word), a

substring of length k
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Analyzing the word content
p Example query string I: TGATGATGAAGACATCAG
p For k = 8, the set of k-words (substring of length

k) of I is

TGATGATG
GATGATGA
ATGATGAA
TGATGAAG

…
GACATCAG
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Analyzing the word content
p There are n-k+1 k-words in a string of length n

p If at least one word of I is not found from
another string J, we know that I differs from J

p Need to consider statistical significance:    I and J
might share words by chance only

p Let n=|I| and m=|J|
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Word lists and comparison by content
p The k-words of I can be arranged into a table of

word occurences Lw(I)
p Consider the k-words when k=2 and

I=GCATCGGC:
GC, CA, AT, TC, CG, GG, GC
AT: 3
CA: 2
CG: 5
GC: 1, 7
GG: 6
TC: 4

Start indecies of k-word GC in I

Building Lw(I) takes O(n) time



234

Common k-words
p Number of common k-words in I and J can

be computed using Lw(I) and Lw(J)

p For each word w in I, there are |Lw(J)|
occurences in J

p Therefore I and J have
common words

p This can be computed in O(n + m + 4k)
time
n O(n + m) time to build the lists
n O(4k) time to calculate the sum (in DNA

strings)
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Common k-words
p I = GCATCGGC
p J = CCATCGCCATCG

Lw(J)
AT: 3, 9
CA: 2, 8
CC: 1, 7
CG: 5, 11
GC: 6

TC: 4, 10

Lw(I)
AT: 3
CA: 2

CG: 5
GC: 1, 7
GG: 6
TC: 4

Common words
2
2
0
2
2
0
2
10 in total
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Properties of the common word list
p Exact matches can be found using binary search

(e.g., where TCGT occurs in I?)
n O(log 4k) time

p For large k, the table size is too large to compute
the common word count in the previous fashion

p Instead, an approach based on merge sort can be
utilised (details skipped)

p The common k-word technique can be combined
with the local alignment algorithm to yield a rapid
alignment approach
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FASTA outline
p FASTA algorithm has five steps:
n 1. Identify common k-words between I and J
n 2. Score diagonals with k-word matches,

identify 10 best diagonals
n 3. Rescore initial regions with a substitution

score matrix
n 4. Join initial regions using gaps, penalise for

gaps
n 5. Perform dynamic programming to find final

alignments



238

Dot matrix comparisons
p Word matches in two sequences I and J can be

represented as a dot matrix
p Dot matrix element (i, j) has ”a dot”, if the word

starting at position i in I is identical to the word
starting at position j in J

p The dot matrix can be plotted for various k

i

j

I = … ATCGGATCA …
J = … TGGTGTCGC …

i

j
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k=1 k=4

k=8 k=16

Dot matrix (k=1,4,8,16)
for two DNA sequences
X85973.1 (1875 bp)
Y11931.1 (2013 bp)
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k=1 k=4

k=8 k=16

Dot matrix
(k=1,4,8,16) for two
protein sequences
CAB51201.1  (531 aa)
CAA72681.1  (588 aa)

Shading indicates
now the match score
according to a
score matrix
(Blosum62 here)
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Computing diagonal sums
p We would like to find high scoring diagonals of the dot

matrix
p Lets index diagonals by the offset, l = i - j

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

k=2

I

J

Diagonal l = i – j = -6
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Computing diagonal sums
p As an example, lets compute diagonal sums for

I = GCATCGGC, J = CCATCGCCATCG, k = 2
p 1. Construct k-word list Lw(J)
p 2. Diagonal sums Sl are computed into a table,

indexed with the offset and initialised to zero

l -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Sl 0  0  0  0  0  0  0  0  0  0 0 0 0 0 0 0 0
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Computing diagonal sums
p 3. Go through k-words of I, look for matches in

Lw(J) and update diagonal sums

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

I

J For the first 2-word in I,
GC, LGC(J) = {6}.

We can then update
the sum of diagonal
l = i – j = 1 – 6 = -5 to
S-5 := S-5 + 1 = 0 + 1 = 1
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Computing diagonal sums
p 3. Go through k-words of I, look for matches in

Lw(J) and update diagonal sums

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

I

J Next 2-word in I is CA,
for  which LCA(J) = {2, 8}.

Two diagonal sums are
updated:
l = i – j = 2 – 2 = 0
S0 := S0 + 1 = 0 + 1 = 1

I = i – j = 2 – 8 = -6
S-6 := S-6 + 1 = 0 + 1 = 1
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Computing diagonal sums
p 3. Go through k-words of I, look for matches in

Lw(J) and update diagonal sums

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

I

J Next 2-word in I is AT,
for  which LAT(J) = {3, 9}.

Two diagonal sums are
updated:
l = i – j = 3 – 3 = 0
S0 := S0 + 1 = 1 + 1 = 2

I = i – j = 3 – 9 = -6
S-6 := S-6 + 1 = 1 + 1 = 2
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Computing diagonal sums
After going through the k-words of I, the result is:
l -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Sl 0  0  0  0  4  1  0  0  0  0 4 1 0 0 0 0 0

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

I

J
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Algorithm for computing diagonal sum of scores

Sl := 0 for all 1 – m l n – 1
Compute Lw(J) for all words w
for i := 1 to n – k – 1 do

w := IiIi+1…Ii+k-1

for j Lw(J) do
l := i – j
Sl := Sl + 1

end
end

Match score is here 1
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FASTA outline
p FASTA algorithm has five steps:
n 1. Identify common k-words between I and J
n 2. Score diagonals with k-word matches,

identify 10 best diagonals
n 3. Rescore initial regions with a substitution

score matrix
n 4. Join initial regions using gaps, penalise for

gaps
n 5. Perform dynamic programming to find final

alignments
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Rescoring initial regions
p Each high-scoring diagonal chosen in the

previous step is rescored according to a score
matrix

p This is done to find subregions with identities
shorter than k

p Non-matching ends of the diagonal are trimmed

I: C C A T C G C C A T C G
J: C C A A C G C A A T C A

I’: C C A T C G C C A T C G
J’: A C A T C A A A T A A A

75% identity, no 4-word identities

33% identity, one 4-word identity
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Joining diagonals
p Two offset diagonals can be joined with a gap, if

the resulting alignment has a higher score
p Separate gap open and extension are used
p Find the best-scoring combination of diagonals

High-scoring
diagonals

Two diagonals
joined by a gap
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FASTA outline
p FASTA algorithm has five steps:
n 1. Identify common k-words between I and J
n 2. Score diagonals with k-word matches,

identify 10 best diagonals
n 3. Rescore initial regions with a substitution

score matrix
n 4. Join initial regions using gaps, penalise for

gaps
n 5. Perform dynamic programming to find final

alignments



252

Local alignment in the highest-scoring
region
p Last step of FASTA: perform local

alignment using dynamic
programming around the highest-
scoring

p Region to be aligned covers –w and
+w offset diagonal to the highest-
scoring diagonals

p With long sequences, this region is
typically very small compared to the
whole n x m matrix w

w

Dynamic programming matrix
M filled only for the green region
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Properties of FASTA
p Fast compared to local alignment using dynamic

programming only
n Only a narrow region of the full matrix is aligned

p Increasing parameter k decreases the number of
hits:
n Increases specificity
n Decreases sensitivity
n Decreases running time

p FASTA can be very specific when identifying long
regions of low similarity
n Specific method does not find many incorrect results
n Sensitive method finds many of the correct results
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Properties of FASTA
p FASTA looks for initial exact matches to

query sequence
n Two proteins can have very different amino

acid sequences and still be biologically similar
n This may lead into a lack of sensitivity with

diverged sequences
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Demonstration of FASTA at EBI
p http://www.ebi.ac.uk/fasta/
p Note that parameter ktup in the software

corresponds to parameter k in lectures

http://www.ebi.ac.uk/fasta/
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Note on sequences and alignment
matrices in exercises
p Example solutions to alignment problems

will have sequences arranged like this:
n Perform global alignment of the sequences

p s = AGCTGCGTACT
p t = ATGAGCGTTA

A
G

C
T
G

C
G

T
A
C
T

ATGAGCGTTA

So if you want to be able to
compare your solution easily
against the example, use this
convention.
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Rapid alignment methods: FASTA and
BLAST
p The biological problem
p Search strategies
p FASTA
p BLAST
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BLAST: Basic Local Alignment Search
Tool
p BLAST (Altschul et al., 1990) and its variants are

some of the most common sequence search tools
in use

p Roughly, the basic BLAST has three parts:
n 1. Find segment pairs between the query sequence and

a database sequence above score threshold (”seed hits”)
n 2. Extend seed hits into locally maximal segment pairs
n 3. Calculate p-values and a rank ordering of the local

alignments

p Gapped BLAST introduced in 1997 allows for gaps
in alignments
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Finding seed hits
p First, we generate a set of neighborhood

sequences for given k, match score matrix and
threshold T

p Neighborhood sequences of a k-word w include
all strings of length k that, when aligned against
w, have the alignment score at least T

p For instance, let I = GCATCGGC, J =
CCATCGCCATCG and k = 5, match score be 1,
mismatch score be 0 and T = 4
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Finding seed hits
p I = GCATCGGC, J = CCATCGCCATCG, k = 5,

match score 1, mismatch score 0, T = 4
p This allows for one mismatch in each k-word
p The neighborhood of the first k-word of I, GCATC,

is GCATC and the 15 sequences

A       A       C       A       A

CCATC,G GATC,GC GTC,GCA CC,GCAT G

T       T       T       G       T
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Finding seed hits
p I = GCATCGGC has 4 k-words and thus 4x16 =

64 5-word patterns to locate in J
n Occurences of patterns in J are called seed hits

p Patterns can be found using exact search in time
proportional to the sum of pattern lengths +
length of J + number of matches (Aho-Corasick
algorithm)
n Methods for pattern matching are developed on course

58093 String processing algorithms

p Compare this approach to FASTA
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Extending seed hits: original BLAST
p Initial seed hits are extended into

locally maximal segment pairs
or High-scoring Segment Pairs
(HSP)

p Extensions do not add gaps to the
alignment

p Sequence is extended until the
alignment score drops below the
maximum attained score minus a
threshold parameter value

p All statistically significant HSPs
reported

AACCGTTCATTA
| || || ||
TAGCGATCTTTT

Initial seed hit

Extension

Altschul, S.F., Gish, W., Miller, W., Myers, E. W. and
Lipman, D. J., J. Mol. Biol., 215, 403-410, 1990
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Extending seed hits: gapped BLAST
p In a later version of BLAST, two

seed hits have to be found on the
same diagonal
n Hits have to be non-overlapping
n If the hits are closer than A

(additional parameter), then they
are joined into a HSP

p Threshold value T is lowered to
achieve comparable sensitivity

p If the resulting HSP achieves a
score at least Sg, a gapped
extension is triggered

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, and
Lipman DJ, Nucleic Acids Res. 1;25(17), 3389-402, 1997
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Gapped extensions of HSPs
p Local alignment is performed

starting from the HSP
p Dynamic programming matrix

filled in ”forward” and
”backward” directions (see
figure)

p Skip cells where value would
be Xg below the best
alignment score found so far

Region potentially searched
by the alignment algorithm

HSP

Region searched with score
above cutoff parameter
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Estimating the significance of results
p In general, we have a score S(D, X) = s for a

sequence X found in database D
p BLAST rank-orders the sequences found by p-

values
p The p-value for this hit is P(S(D, Y) s) where Y

is a random sequence
n Measures the amount of ”surprise” of finding sequence X

p A smaller p-value indicates more significant hit
n A p-value of 0.1 means that one-tenth of random

sequences would have as large score as our result
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Estimating the significance of results
p In BLAST, p-values are computed roughly as

follows
p There are nm places to begin an optimal

alignment in the n x m alignment matrix
p Optimal alignment is preceded by a mismatch

and has t matching (identical) letters
n (Assume match score 1 and mismatch/indel score - )

p Let p = P(two random letters are equal)
p The probability of having a mismatch and then t

matches is (1-p)pt
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Estimating the significance of results
p We model this event by a Poisson distribution

(why?) with mean = nm(1-p)pt

p P(there is local alignment t or longer)
1 – P(no such event)

=  1  – e- = 1 – exp(-nm(1-p)pt)
p An equation of the same form is used in Blast:
p E-value = P(S(D, Y) s) 1 – exp(-nm t) where

> 0 and 0 < < 1
p Parameters and are estimated from data
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Scoring amino acid
alignments
p We need a way to compute the

score S(D, X) for aligning the
sequence X against database D

p Scoring DNA alignments was
discussed previously

p Constructing a scoring model for
amino acids is more challenging
n 20 different amino acids vs. 4

bases
p Figure shows the molecular

structures of the 20 amino acids

http://en.wikipedia.org/wiki/List_of_standard_amino_acids

http://en.wikipedia.org/wiki/List_of_standard_amino_acids
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Scoring amino acid
alignments
p Substitutions between chemically

similar amino acids are more
frequent than between dissimilar
amino acids

p We can check our scoring model
against this

http://en.wikipedia.org/wiki/List_of_standard_amino_acids

http://en.wikipedia.org/wiki/List_of_standard_amino_acids
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Score matrices
p Scores s = S(D, X) are obtained from score

matrices
p Let A = A1a2…an and B = b1b2…bn be sequences

of equal length (no gaps allowed to simplify
things)

p To obtain a score for alignment of A and B, where
ai is aligned against bi, we take the ratio of two
probabilities
n The probability of having A and B where the characters

match (match model M)
n The probability that A and B were chosen randomly

(random model R)
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Score matrices: random model
p Under the random model, the probability

of having X and Y is

where qxi is the probability of occurence of
amino acid type xi

p Position where an amino acid occurs does
not affect its type
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Score matrices: match model
p Let pab be the probability of having amino acids

of type a and b aligned against each other given
they have evolved from the same ancestor c

p The probability is
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Score matrices: log-odds ratio score
p We obtain the score S by taking the ratio

of these two probabilities

and taking a logarithm of the ratio
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Score matrices: log-odds ratio score

p The score S is obtained by summing over
character pair-specific scores:

p The probabilities qa and pab are extracted
from data
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Calculating score matrices for amino
acids
p Probabilities qa are in

principle easy to obtain:
n Count relative frequencies of

every amino acid in a sequence
database
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p To calculate pab we can use a
known pool of aligned sequences

p BLOCKS is a database of highly
conserved regions for proteins

p It lists multiply aligned, ungapped
and conserved protein segments

p Example from BLOCKS shows
genes related to human gene
associated with DNA-repair
defect xeroderma pigmentosum

Calculating score matrices for amino
acids

Block PR00851A
ID XRODRMPGMNTB; BLOCK
AC PR00851A; distance from previous block=(52,131)
DE Xeroderma pigmentosum group B protein signature
BL adapted; width=21; seqs=8; 99.5%=985; strength=1287
XPB_HUMAN|P19447 ( 74)   RPLWVAPDGHIFLEAFSPVYK 54
XPB_MOUSE|P49135 ( 74)   RPLWVAPDGHIFLEAFSPVYK 54
P91579 ( 80)             RPLYLAPDGHIFLESFSPVYK 67
XPB_DROME|Q02870 ( 84)   RPLWVAPNGHVFLESFSPVYK 79
RA25_YEAST|Q00578 ( 131) PLWISPSDGRIILESFSPLAE 100
Q38861 ( 52)             RPLWACADGRIFLETFSPLYK 71
O13768 ( 90)             PLWINPIDGRIILEAFSPLAE 100
O00835 ( 79)             RPIWVCPDGHIFLETFSAIYK 86

http://blocks.fhcrc.org

http://blocks.fhcrc.org


277

BLOSUM matrix
p BLOSUM is a score matrix

for amino acid sequences
derived from BLOCKS data

p First, count pairwise
matches fx,y for every amino
acid type pair (x, y)

p For example, for column 3
and amino acids L and W,
we find 8 pairwise matches:
fL,W = fW,L = 8

RPLWVAPD
RPLWVAPR
RPLWVAPN
PLWISPSD
RPLWACAD
PLWINPID
RPIWVCPD
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p Probability pab is obtained by
dividing fab with the total
number of pairs (note
difference with course book):

p We get probabilities qa by

RPLWVAPD
RPLWVAPR
RPLWVAPN
PLWISPSD
RPLWACAD
PLWINPID
RPIWVCPD

Creating a BLOSUM matrix
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Creating a BLOSUM matrix
p The probabilities pab and qa can now be plugged

into

to get a 20 x 20 matrix of scores s(a, b).
p Next slide presents the BLOSUM62 matrix

n Values scaled by factor of 2 and rounded to integers
n Additional step required to take into account expected

evolutionary distance
n Described in Deonier’s book in more detail
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BLOSUM62
A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V  B Z  X  *

A  4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1  1  0 -3 -2  0 -2 -1  0 -4
R -1  5  0 -2 -3  1  0 -2  0 -3 -2  2 -1 -3 -2 -1 -1 -3 -2 -3 -1  0 -1 -4
N -2  0  6  1 -3  0  0  0  1 -3 -3 0 -2 -3 -2  1  0 -4 -2 -3  3  0 -1 -4
D -2 -2 1  6 -3  0  2 -1 -1 -3 -4 -1 -3 -3 -1  0 -1 -4 -3 -3 4  1 -1 -4
C  0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4
Q -1  1  0  0 -3  5  2 -2  0 -3 -2  1  0 -3 -1  0 -1 -2 -1 -2  0  3 -1 -4
E -1  0  0  2 -4  2  5 -2  0 -3 -3 1 -2 -3 -1  0 -1 -3 -2 -2 1  4 -1 -4
G  0 -2  0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2  0 -2 -2 -3 -3 -1 -2 -1 -4
H -2  0  1 -1 -3  0  0 -2  8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3  0  0 -1 -4
I -1 -3 -3 -3 -1 -3 -3 -4 -3  4  2 -3  1  0 -3 -2 -1 -3 -1  3 -3 -3 -1 -4
L -1 -2 -3 -4 -1 -2 -3 -4 -3  2  4 -2  2  0 -3 -2 -1 -2 -1  1 -4 -3 -1 -4
K -1  2  0 -1 -3  1  1 -2 -1 -3 -2  5 -1 -3 -1  0 -1 -3 -2 -2 0  1 -1 -4
M -1 -1 -2 -3 -1  0 -2 -3 -2  1  2 -1  5  0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4
F -2 -3 -3 -3 -2 -3 -3 -3 -1  0  0 -3  0  6 -4 -2 -2 1  3 -1 -3 -3 -1 -4
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4  7 -1 -1 -4 -3 -2 -2 -1 -2 -4
S  1 -1  1  0 -1  0  0  0 -1 -2 -2 0 -1 -2 -1  4  1 -3 -2 -2 0  0  0 -4
T  0 -1  0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1  1  5 -2 -2 0 -1 -1 0 -4
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1  1 -4 -3 -2 11  2 -3 -4 -3 -2 -4
Y -2 -2 -2 -3 -2 -1 -2 -3  2 -1 -1 -2 -1  3 -3 -2 -2 2  7 -1 -3 -2 -1 -4
V  0 -3 -3 -3 -1 -2 -2 -3 -3 3  1 -2  1 -1 -2 -2 0 -3 -1  4 -3 -2 -1 -4
B -2 -1  3  4 -3  0  1 -1  0 -3 -4  0 -3 -3 -2  0 -1 -4 -3 -3 4  1 -1 -4
Z -1  0  0  1 -3  3  4 -2  0 -3 -3 1 -1 -3 -1  0 -1 -3 -2 -2 1  4 -1 -4
X  0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2  0  0 -2 -1 -1 -1 -1 -1 -4
* -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 1
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Using BLOSUM62 matrix
MQLEANADTSV

|  | |

LQEQAEAQGEM

= 2 + 5 – 3 – 4 + 4 + 0 + 4 + 0 – 2 + 0 +
1

= 7
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Demonstration of BLAST at NCBI
p http://www.ncbi.nlm.nih.gov/BLAST/

http://www.ncbi.nlm.nih.gov/BLAST/


Introduction to
Bioinformatics

Lecture 4:
Genome rearrangements
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Why study genome rearrangements?
p Provide insight into evolution of species
p Fun algorithmic problem!

p Structure of this lecture:
n The biological phenomenon
n How to computationally model it?
n How to compute interesting things?
n Studying the phenomenon using existing tools

(continued in exercises)
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Genome rearrangements as an
algorithmic problem
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Background
p Genome sequencing enables us to

compare genomes of two or more
different species
n -> Comparative genomics

p Basic observation:
n Closely related species (such as human and

mouse) can be almost identical in terms of
genome contents...

n ...but the order of genomic segments can be
very different between species
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Synteny blocks and segments
p Synteny – derived from Greek ’on the

same ribbon’ – means genomic segments
located on the same chromosome
n Genes, markers (any sequence)

p Synteny block (or syntenic block)
n A set of genes or markers that co-occur

together in two species

p Synteny segment (or syntenic segment)
n Syntenic block where the order of genes or

markers is preserved
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Synteny blocks and segments
Chromosome i, species B

Chromosome j, species C

Synteny segment

Synteny block

Homologs
of the same
gene
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Observations from sequencing
1. Large chromosome inversions and

translocations (we’ll get to these shortly)
are common
n ...Even between closely related species

2. Chromosome inversions are usually
symmetric around the origin of DNA
replication

3. Inversions are less common within
species...



290

What causes rearrangements?
p RecA, Recombinase A,

is a protein used to
repair chromosomal
damage

p It uses a duplicate
copy of the damaged
sequence as template

p Template is usually a
homologous sequence
on a sister
chromosome

Diarmaid Hughes: Evaluating genome dynamics: the constraints on
rearrangements within bacterial genomes, Genome Biology 2000, 1
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Chromosomes: recap
p Linear chromosomes
n Eukaryotes (mostly)

p Circular chromosomes
n Prokaryotes (mostly)
n Mitochondria

chromatid

centromere

gene 1

gene 3

gene 2

Also double-stranded: genes can be
found on both strands (orientations)
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What effects does RecA have on
genome?
p Repeated sequences cause RecA to fail to

choose correct recombination start
position

p This leads to
n Tandem duplications
n Translocations
n Inversions

Repeat 1 Repeat 2

RecA

?

Damaged sequence
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Diarmaid Hughes: Evaluating genome dynamics: the constraints on
rearrangements within bacterial genomes, Genome Biology 2000, 1

X, Y, Z and W are repeats of
the same sequence.

a, b, c and d are sequences on genome
bounded by repeats.

In a tandem duplication example,
RecA recombines a sequence that
starts from Y instead of Z after Z.

This leads to duplication of segment Y-Z.
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Diarmaid Hughes: Evaluating genome dynamics: the constraints on
rearrangements within bacterial genomes, Genome Biology 2000, 1

Recombination of two
repeat sequences in the
same chromosome can
lead to a fragment translocation

Here sequence d is translocated
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Diarmaid Hughes: Evaluating genome dynamics: the constraints on
rearrangements within bacterial genomes, Genome Biology 2000, 1

Inversion happens when two
sequences of opposite orientations
are recombined.
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Example: human vs mouse genome
p Human and mouse genomes share

thousands of homologous genes, but they
are
n Arranged in different order
n Located in different chromosomes

p Examples
n Human chromosome 6 contains elements from

six different mouse chromosomes
n Analysis of X chromosome indicates that

rearrangements have happened primarily
within chromosome
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Representing genome rearrangments
p When comparing two genomes, we can

find homologous sequences in both using
BLAST, for example

p This gives us a map between sequences in
both genomes
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Representing genome rearrangments
p We assign numbers 1,...,n to

the found homologous
sequences

p By convention, we number the
sequences in the first genome
by their order of appearance
in chromosomes

p If the homolog of i is in
reverse orientation, it receives
number –i (signed data)

p For example, consider human
vs mouse gene numbering on
the right

(il10)9

(at3)-6(pdc)8
(lamc1)-7(lamc1)7
(pdc)-8(at3)6
(il10)-9(pklr)5
(pax3)15(gba)4
(fn1)14(ngfb)3
(cd28)13(nras)2
(inpp1)12(gnat2)1

MouseHuman

List order corresponds to
physical order on chromosomes!
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Permutations
p The basic data structure in the study of

genome rearrangements is permutation
p A permutation of a sequence of n numbers

is a reordering of the sequence
p For example, 4 1 3 2 5 is a permutation of

1 2 3 4 5
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Genome rearrangement problem
p Given two genomes (set of markers), how

many
n duplications,
n inversions and
n translocations

do we need to do to transform the first
genome to the second?

Minimum number of operations?
What operations? Which order?
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Genome rearrangement problem

6 1 2 3 4 5 1 2 3 4 5 6

#duplications?
#inversions?
#translocations?
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Genome rearrangement problem

6 1 2 3 4 5 1 2 3 4 5 6

1 2 3 4 5 6

Keep in mind, that the two genomes
have been evolved from a common
ancestor genome!

Permutation
of 1,...,6
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Genome rearrangements using reversals
(=inversions) only
p Lets consider a simpler problem where we just

study reversals with unsigned data
p A reversal p(i, j) reverses the order of the

segment i i+1 ... j-1 j (indexing starts from 1)
p For example, given permutation

6 1 2 3 4 5 and reversal p(3, 5) we get
permutation 6 1 4 3 2 5

...note that we do not care about exact positions on the genome

p(3, 5)
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Reversal distance problem
p Find the shortest series of reversals that, given

a permutation , transforms it to the identity
permutation (1, 2, ..., n)

p This quantity is denoted by d( )

p Reversal distance for a pair of chromosomes:
n Find synteny blocks in both
n Number blocks in the first chromosome to identity
n Set to correspond matching of second chromosome’s

blocks against the first
n Find reversal distance
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Reversal distance problem: discussion
p If we can find the minimal series of

reversals for some pair of genomes
n Is that what happened during evolution?
n If not, is it the correct number of reversals?

p In any case, reversal distance gives us a
measure of evolutionary distance between
the two genomes and species
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Solving the problem by sorting
p Our first approach to solve the reversal

distance problem:
n Examine each position i of the permutation
n At each position, if i i, do a reversal such

that i = i

p This is a greedy approach: we try to
choose the best option at each step
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Simple reversal sort: example

6 1 2 3 4 5  ->  1 6 2 3 4 5  ->  1 2 6 3 4 5  ->  1 2 3 4 6 5

->  1 2 3 4 5 6

Reversal series: p(1,2), p(2,3), p(3,4), p(5,6)

Is d(6 1 2 3 4 5) then 4?

6 1 2 3 4 5 -> 5 4 3 2 1 6 -> 1 2 3 4 5 6

D(6 1 2 3 4 5) = 2
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Pancake flipping problem
p No pancake made by

the chef is of the
same size

p Pancakes need to be
rearranged before
delivery

p Flipping operation:
take some from the
top and flip them over

p This corresponds to
always reversing the
sequence prefix

1 2 3 6 4 5 -> 6 3 2 1 4 5 ->

5 4 1 2 3 6 -> 3 2 1 4 5 6 ->

1 2 3 4 5 6
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How good is simple reversal sort?
p Not so good actually
p It has to do at most n-1 reversals with

permutation of length n
p The algorithm can return a distance that is

as large as (n – 1)/2 times the correct
result d( )
n For example, if n = 1001, result can be as bad

as 500 x d( )
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Estimating reversal distance by cycle
decomposition
p We can estimate d( ) by cycle

decomposition
p Lets represent permutation = 1 2 4 5 3

with the following graph

where edges correspond to adjacencies
(identity, permutation F)

1 2 4 5 30 6
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Estimating reversal distance by cycle
decomposition
p Cycle decomposition: a set of cycles that
n have edges with alternating colors
n do not share edges with other cycles (=cycles

are edge disjoint)

1 2 4 5 30 6

1 2 4 5
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Cycle decompositions
p Let c( ) the maximum number of alternating,

edge-disjoint cycles in the graph representation
of 

p The following formula allows estimation of d( )
n d( ) n + 1 – c( ), where n is the permutation length

1 2 4 5 30 6

1 2 4 5
d( ) 5 + 1 – 4 = 2

Claim in Deonier: equality holds for ”most of the usual and
interesting biological systems.
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Cycle decompositions
p Cycle decomposition is NP-complete
n We cannot solve the general problem exactly

for large instances

p However, with signed data the problem
becomes easy
n Before going into signed data, lets discuss

another algorithm for the general case
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Computing reversals with breakpoints
p Lets investigate a better way to compute

reversal distance
p First, some concepts related to

permutation 1 2,,, n-1 n
n Breakpoint: two elements i and i+1 are a

breakpoint, if they are not consecutive
numbers

n Adjacency: if i and i+1 are consecutive, they
are called adjacency
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Breakpoints and adjacencies

2 1 3 4 5 8 7 6

This permutation contains
four breakpoints begin-2, 13, 58, 6-end and
five adjacencies 21, 34, 45, 87, 76

Breakpoints
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Breakpoints
p Each breakpoint in permutation needs to be

removed to get to the identity permutation (=our
target)
n Identity permutation does not contain any breakpoints

p First and last positions special cases
p Note that each reversal can remove at most two

breakpoints

p Denote the number of breakpoints by b( )

2 1 3 4 5 8 7 6 b( ) = 4
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Breakpoint reversal sort
p Idea: try to remove as many breakpoints

as possible (max 2) in every step

1. While b( ) > 0
2. Choose reversal p that removes most breakpoints
3. Perform reversal p to 
4. Output 
5. return
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Breakpoint removal: example
8 2 7 6 5 1 4 3     b( ) = 6

2 8 7 6 5 1 4 3     b( ) = 5

2 3 4 1 5 6 7 8     b( ) = 3

4 3 2 1 5 6 7 8     b( ) = 2

1 2 3 4 5 6 7 8     b( ) = 0
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Breakpoint removal
p The previous algorithm needs refinement

to be correct
p Consider the following permutation:

1 5 6 7 2 3 4 8

p There is no reversal that decreases the
number of breakpoints!

p See Jones & Pevzner for detailed
description on this



322

Breakpoint removal
p Reversal can only decrease breakpoint

count if permutation contains decreasing
strips

1 5 6 7 2 3 4 8

1 5 6 7 4 3 2 8

1 2 3 4 7 6 5 8

Increasing strip

Decreasing strip

Strip: maximal segment without breakpoints
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Improved breakpoint reversal sort
1. While b( ) > 0
2. If has a decreasing strip
3. Do reversal p that removes most BPs
4. Else
5. Reverse an increasing strip
6. Output 
7. return



324

Is Improved BP removal enough?
p The algorithm works pretty well:
n It produces a result that is at most four times

worse than the optimal result
n ...is this good?

p We considered only reversals
p What about translocations & duplications?
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Translocations via reversals

1 2 3 4 5 6 7 8

1 5 6 7 8 2 3 4

1 4 3 2 8 7 6 5

1 2 3 4 8 7 6 5

1 2 3 4 5 6 7 8

Translocation of 2,3,4

p(2,8)

p(2,4)

p(5,8)
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Genome rearrangements with reversals
p With unsigned data, the problem of finding

minimum reversal distances is NP-
complete
n Why is this so if sorting is easy?

p An algorithm has been developed that
achieves 1.375-approximation

p However, reversal distance in signed data
can be computed quickly!
n It takes linear time w.r.t. the length of

permutation (Bader, Moret, Yan, 2001)
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Cycle decomposition with signed data
p Consider the following two permutations

that include orientation of markers
n J: +1 +5 -2 +3 +4
n K: +1 -3 +2 +4 -5

p We modify this representation a bit to
include both endpoints of each marker:
n J’: 0 1a 1b 5a 5b 2b 2a 3a 3b 4a 4b 6
n K’: 0 1a 1b 3b 3a 2a 2b 4a 4b 5b 5a 6
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Graph representation of J’ and K’
p Drawn online in lecture!
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Multiple chromosomes
p In unichromosomal genomes, inversion

(reversal) is the most common operation
p In multichromosomal genomes,

inversions, translocations, fissions and
fusions are most common
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Multiple chromosomes
p Lets represent multichromosomal genome

as a set of permutations, with $ denoting
the boundary of a chromosome:

5 9 $
1 3 2 8 $
7 6 4 $

This notation is frequently used in software
used to analyse genome rearrangements.

Chr 1

Chr 2

Chr 3
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Multiple chromosomes
p Note that when dealing with multiple

chromosomes, you need to specify
numbering for elements on both genomes
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Reversals & translocations
p Reversal p( , i, j)
p Translocation p( , , i, j)

i

j

Translocation
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Fusions & fissions
p Fusion: merging of two chromosomes
p Fission: chromosome is split into two

chromosomes
p Both events can be represented with a

translocation
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Fusion
p Fusion by translocation p( , , n+1, 1)

i = n + 1

j = 1

Fusion
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Fission
p Fission by translocation p( , , i, 1)

i

Empty chromosome

Fission



336

Algorithms for general genomic distance
problem
p Hannenhalli, Pevzner: Transforming Men into

Mice (polynomial algorithm for genomic distance
problem), 36th Annual IEEE Symposium on
Foundations of Computer Science, 1995
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Human & mouse revisited
p Human and mouse are separated by about

75-83 million years of evolutionary history
p Only a few hundred rearrangements have

happened after speciation from the
common ancestory

p Pevzner & Tesler identified in 2003 for 281
synteny blocks a rearrangement from
mouse to human with
n 149 inversions
n 93 translocations
n 9 fissions
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Discussion
p Genome rearrangement events are very

rare compared to, e.g., point mutations
n We can study rearrangement events further

back in the evolutionary history

p Rearrangements are easier to detect in
comparison to many other genomic events

p We cannot detect homologs 100%
correctly so the input permutation can
contain errors
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Discussion
p Genome rearrangement is to some degree

constrained by the number and size of
repeats in a genome
n Notice how the importance of genomic repeats

pops up once again

p Sequencing gives us (usually) signed data
so we can utilize faster algorithms

p What if there are more than one optimal
solution?
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Two different genome rearrangement scenarios
giving the same result.
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GRIMM demonstration

Glenn Tesler, GRIMM: genome rearrangements web server.
Bioinformatics, 2002,
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GRIMM file format

# useful comment about first genome
# another useful comment about it
>name of first genome
1 -4 2 $ # chromosome 1
-3 5 6 # chromosome 2
>name of second genome
5 -3  $
6 $
2 -4 1 $

http://grimm.ucsd.edu/GRIMM/grimm_instr.html

GRIMM supports analysis of
one, two or more genomes

http://grimm.ucsd.edu/GRIMM/grimm_instr.html


Introduction to
Bioinformatics

Phylogenetic trees
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Inferring the Past: Phylogenetic
Trees
p The biological problem
p Parsimony and distance methods
p Models for mutations and estimation of

distances
p Maximum likelihood methods
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Phylogeny
p We want to study ancestor-

descendant relationships, or
phylogeny, among groups of
organisms

p Groups are called taxa (singular:
taxon)

p Organisms are usually called
operational taxonomic units or
OTUs in the context of
phylogeny
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Phylogenetic trees
p Leaves (external nodes)

~ species, observed
(OTUs)

p Internal nodes ~
ancestral
species/divergence
events, not observed

p Unrooted tree does not
specify ancestor-
descendant relationships
beyond the observation
”leaves are not
ancestors”

1

2

3

4

5

6

7
8

Unrooted tree with 5
leaves and 3 internal
nodes.

Is node 7 ancestor of node
6?
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Phylogenetic trees
p Rooting a tree specifies all

ancestor-descendant
relationships in the tree

p Root is the ancestor to the
other species

p There are n-1 ways to root
a tree with n nodes

1

2

3

4

5

6

7
8

R1 R2

2 3 4 51

6

7

8

R1

2 3 451

6

7
8

R2

roo
t(R

1)

root(R
2 )
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Questions
p Can we enumerate all possible

phylogenetic trees for n species (or
sequences?)

p How to score a phylogenetic tree with
respect to data?

p How to find the best phylogenetic tree
given data?
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Finding the best phylogenetic tree:
naive method
p How can we find the phylogenetic tree

that best represents the data?
p Naive method: enumerate all possible

trees
p How many different trees are there of n

species?
p Denote this number by bn
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Enumerating unordered trees
p Start with the only

unordered tree with 3
leaves (b3 = 1)

p Consider all ways to add
a leaf node to this tree

p Fourth node can be added
to 3 different branches
(edges), creating 1 new
internal branch

p Total number of branches
is n external and n – 3
internal branches

p Unrooted tree with n
leaves has 2n – 3 branches

1 2

3

1 2

3

4

1 2

3

4

1 2

3
4
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Enumerating unordered trees
p Thus, we get the number of unrooted trees

bn = (2(n – 1) – 3)bn-1 = (2n – 5)bn-1

= (2n – 5) * (2n – 7) * …* 3 * 1
= (2n – 5)! / ((n-3)!2n-3), n > 2

p Number of rooted trees b’n is
b’n = (2n – 3)bn = (2n – 3)! / ((n-2)!2n-2),

n > 2

that is, the number of unrooted trees times the
number of branches in the trees
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Number of possible rooted and
unrooted trees

8.20E+0212.22E+02020
4.95E+0388.69E+03630

34459425202702510
20270251351359
135135103958
103959547
9451056
105155
1534
313
b’nBnn
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Too many trees?
p We can’t construct and evaluate every

phylogenetic tree even for a smallish
number of species

p Better alternative is to
n Devise a way to evaluate an individual tree

against the data
n Guide the search using the evaluation criteria

to reduce the search space
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Inferring the Past: Phylogenetic
Trees (chapter 12)
p The biological problem
p Parsimony and distance methods
p Models for mutations and estimation of

distances
p Maximum likelihood methods
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Parsimony method
p The parsimony method finds the tree that

explains the observed sequences with a
minimal number of substitutions

p Method has two steps
n Compute smallest number of substitutions for

a given tree with a parsimony algorithm
n Search for the tree with the minimal number of

substitutions
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Parsimony: an example
p Consider the following short sequences

1 ACTTT
2 ACATT
3 AACGT
4 AATGT
5 AATTT

p There are 105 possible rooted trees for 5
sequences

p Example: which of the following trees
explains the sequences with least number
of substitutions?
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3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 AATGT

7 AATTT

8 ACTTT

9 AATTT

T->C

T->G

T->A

A->C

This tree explains the sequences
with 4 substitutions
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3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 AATGT

7 AATTT

8 ACTTT

9 AATTT

T->C

T->G

T->A

A->C

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 ACCTTC->T

7 AACGT
8 AATGT

9 AATTT

G->T
T->C

T->G

A->C

C->A

6
substitutions…

First tree is
more
parsimonious!

4
substitutions…
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Computing parsimony
p Parsimony treats each site (position in a

sequence) independently
p Total parsimony cost is the sum of parsimony

costs (=required substitutions) of each site
p We can compute the minimal parsimony cost for

a given tree by
n First finding out possible assignments at each node,

starting from leaves and proceeding towards the root
n Then, starting from the root, assign a letter at each

node, proceeding towards leaves



360

Labelling tree nodes
p An unrooted tree with n leaves contains 2n-1

nodes altogether
p Assign the following labels to nodes in a rooted

tree
n leaf nodes: 1, 2, …, n
n internal nodes: n+1, n+2, …, 2n-1
n root node: 2n-1

p The label of a child node is always
smaller than the label of the
parent node

2 3 4 51

6

8

7

9
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Parsimony algorithm: first phase
p Find out possible assignments at every node for each

site u independently. Denote site u in sequence i by
si,u.

For i := 1, …, n do
Fi := {si,u} % possible assignments at node i
Li := 0 % number of substitutions up to node i

For i := n+1, …, 2n-1 do
Let j and k be the children of node i
If Fj Fk =

then Li := Lj + Lk + 1, Fi := Fj Fk
else Li := Lj + Lk, Fi := Fj Fk
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Parsimony algorithm: first phase

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

Choose u = 3 (for example, in general we do this for all sites)
F1 := {T}
L1 := 0
F2 := {A}
L2 := 0

F3 := {C}, L3 := 0

F4 := {T}, L4 := 0

F5 := {T}, L5 := 0

6

7

8

9



363

Parsimony algorithm: first phase

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 {C,T}

7 T

8 {A, T}

9 T

F8 := F1 F2 = {A, T}
L8 := L1 + L2 + 1 = 1

F6 := F3 F4 = {C, T}

L6 := L3 + L4 + 1 = 1

F7 := F5 F6 = {T}
L7 := L5 + L6 = 1

F9 := F7 F8 = {T}
L9 := L7 + L8 = 2 Parsimony cost for site 3 is 2
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Parsimony algorithm: second phase
p Backtrack from the root and assign x Fi

at each node
p If we assigned y at parent of node i and y

Fi, then assign y
p Else assign x Fi by random



365

Parsimony algorithm: second phase

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 {C,T}

7 T

8 {A,T}

9 T

At node 6, the
algorithm assigns T
because T was
assigned to parent
node 7 and T F6.

T is assigned to node 8
for the same reason.

The other nodes have
only one possible letter
to assign
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Parsimony algorithm

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 T

7 T

8 T

9 T

First and second phase are
repeated for each site in
the sequences,
summing the parsimony
costs at each site
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Properties of parsimony algorithm
p Parsimony algorithm requires that the sequences

are of same length
n First align the sequences against each other and,

optionally, remove indels
n Then compute parsimony for the resulting sequences
n Indels (if present) considered as characters

p Is the most parsimonious tree the correct tree?
n Not necessarily but it explains the sequences with least

number of substitutions
n We can assume that the probability of having fewer

mutations is higher than having many mutations
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Finding the most parsimonious tree
p Parsimony algorithm calculates the

parsimony cost for a given tree…
p …but we still have the problem of finding

the tree with the lowest cost
p Exhaustive search (enumerating all trees)

is in general impossible
p More efficient methods exist, for example
n Probabilistic search
n Branch and bound
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Branch and bound in parsimony
p We can exploit the fact that adding edges

to a tree can only increase the parsimony
cost

1

AATGT

2

AATTT

3

AACGT

1

AATGT

2

AATTT

{T}
{T}

{C, T}

cost 0 cost 1
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Branch and bound in parsimony
Branch and bound is
a general search
strategy where

p Each solution is
potentially generated

p Track is kept of the
best solution found

p If a partial solution
cannot achieve better
score, we abandon
the current search
path

In parsimony…
p Start from a tree with 1

sequence
p Add a sequence to the tree

and calculate parsimony
cost

p If the tree is complete,
check if found the best tree
so far

p If tree is not complete and
cost exceeds best tree
cost, do not continue
adding edges to this tree
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Branch and bound example

1 1 2 31 2 31 2 4

…

Complete tree:
compute parsimony
cost

Example with 4 sequences

Partial tree:
Compute parsimony cost
and compare against best
so far;
Do not continue expansion
if above cost of the best tree

31 2 4
21 3 4

21 3 4

1 3
21 3
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Distance methods
p The parsimony method works on sequence

(character string) data
p We can also build phylogenetic trees in a

more general setting
p Distance methods work on a set of

pairwise distances dij for the data
p Distances can be obtained from

phenotypes as well as from genotypes
(sequences)
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Distances in a phylogenetic tree
p Distance matrix D = (dij)

gives pairwise distances
for leaves of the
phylogenetic tree

p In addition, the
phylogenetic tree will
now specify distances
between leaves and
internal nodes
n Denote these with dij as

well

2 3 4 51

6

7

8

Distance dij states how
far apart species i and j
are evolutionary (e.g.,
number of mismatches in
aligned sequences)
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Distances in evolutionary context
p Distances dij in evolutionary context

satisfy the following conditions
n Symmetry: dij = dji for each i, j
n Distinguishability: dij 0 if and only if i j
n Triangle inequality: dij dik + dkj for each i, j, k

p Distances satisfying these conditions are called
metric

p In addition, evolutionary mechanisms may
impose additional constraints on the distances

additive and ultrametric distances
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Additive trees
p A tree is called additive, if the distance

between any pair of leaves (i, j) is the
sum of the distances between the leaves
and a node k on the shortest path from i
to j in the tree

dij = dik + djk

p ”Follow the path from the leaf i to the leaf
j to find the exact distance dij between the
leaves.”
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Additive trees: example

0244D

2044C

4402B

4420A

DCBA
A

B

C

D

1

1

2 1

1
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Ultrametric trees
p A rooted additive tree is called an ultrametric

tree, if the distances between any two leaves i
and j, and their common ancestor k are equal

dik = djk

p Edge length dij corresponds to the time elapsed
since divergence of i and j from the common
parent

p In other words, edge lengths are measured by a
molecular clock with a constant rate
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Identifying ultrametric data
p We can identify distances to be ultrametric

by the three-point condition:
D corresponds to an ultrametric tree if
and only if for any three species i, j and
k, the distances satisfy dij max(dik, dkj)

p If we find out that the data is ultrametric, we can
utilise a simple algorithm to find the
corresponding tree
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Ultrametric trees
9

8

7

5 4 3 2 1

6

Observation time

Ti
m

e
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Ultrametric trees
9

8

7

5 4 3 2 1

6

Observation time

Ti
m

e

Only vertical segments of the
tree have correspondence to
some distance dij:

Horizontal segments act as
connectors.

d8,9



381

Ultrametric trees
9

8

7

5 4 3 2 1

6

Observation time

Ti
m

e

dik = djk for any two leaves
i, j and any ancestor k of
i and j
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Ultrametric trees
9

8

7

5 4 3 2 1

6

Observation time

Ti
m

e

Three-point condition: there are
no leafs i, j for which dij > max(dik, djk)
for some leaf k.
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UPGMA algorithm
p UPGMA (unweighted pair group method

using arithmetic averages) constructs a
phylogenetic tree via clustering

p The algorithm works by at the same time
n Merging two clusters
n Creating a new node on the tree

p The tree is built from leaves towards the
root

p UPGMA produces a ultrametric tree
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Cluster distances
p Let distance dij between clusters Ci and Cj

be

that is, the average distance between
points (species) in the cluster.
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UPGMA algorithm
p Initialisation

n Assign each point i to its own cluster Ci

n Define one leaf for each sequence, and place it at height
zero

p Iteration
n Find clusters i and j for which dij is minimal
n Define new cluster k by Ck = Ci Cj, and define dkl for  all l
n Define a node k with children i and j. Place k at height dij/2
n Remove clusters i and j

p Termination:
n When only two clusters i and j remain, place root at height dij/2
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1 2

3

4

5
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1 2

3

4

5
1 2

6
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1 2

3

4

5
1 2 4 5

6 7
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1 2

3

4

5
1 2 4 5

6 7

8

3
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1 2

3

4

5
1 2 4 5

6 7

8

3

9
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UPGMA implementation
p In naive implementation, each iteration

takes O(n2) time with n sequences =>
algorithm takes O(n3) time

p The algorithm can be implemented to take
only O(n2) time (see Gronau & Moran,
2006, for a survey)
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Problem solved?
p We now have a simple algorithm which finds a

ultrametric tree
n If the data is ultrametric, then there is exactly one

ultrametric tree corresponding to the data (we skip the
proof)

n The tree found is then the ”correct” solution to the
phylogeny problem, if the assumptions hold

p Unfortunately, the data is not ultrametric in
practice
n Measurement errors distort distances
n Basic assumption of a molecular clock does not hold

usually very well
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Incorrect reconstruction of non-
ultrametric data by UPGMA

1

2 3

4
1 2 34

Tree which corresponds
to non-ultrametric
distances

Incorrect ultrametric reconstruction
by UPGMA algorithm
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Checking for additivity
p How can we check if our data is additive?
p Let i, j, k and l be four distinct species

p Compute 3 sums: dij + dkl, dik + djl, dil
+ djk
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Four-point condition
i

j l

k i

j l

k i

j l

kdik

djl

dil

djk

dij dkl

p The sums are represented by the three figures
n Left and middle sum cover all edges, right sum does not

p Four-point condition: i, j, k and l satisfy the four-
point condition if two of the sums dij + dkl, dik +
djl, dil + djk are the same, and the third one is
smaller than these two
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Checking for additivity
p An n x n matrix D is additive if and only if

the four point condition holds for every 4
distinct elements 1 i, j, k, l n
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Finding an additive phylogenetic tree
p Additive trees can be found with, for example,

the neighbor joining method (Saitou & Nei, 1987)
p The neighbor joining method produces unrooted

trees, which have to be rooted by other means
n A common way to root the tree is to use an outgroup
n Outgroup is a species that is known to be more distantly

related to every other species than they are to each
other

n Root node candidate: position where the outgroup would
join the phylogenetic tree

p However, in real-world data, even additivity
usually does not hold very well
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Neighbor joining algorithm
p Neighbor joining works in a similar fashion

to UPGMA
n Find clusters C1 and C2 that minimise a

function f(C1, C2)
n Join the two clusters C1 and C2 into a new

cluster C
n Add a node to the tree corresponding to C
n Assign distances to the new branches

p Differences in
n The choice of function f(C1, C2)
n How to assign the distances
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Neighbor joining algorithm
p Recall that the distance dij for clusters Ci and Cj

was

p Let u(Ci) be the separation of cluster Ci from
other clusters defined by

where n is the number of clusters.



400

Neighbor joining algorithm
p Instead of trying to choose the clusters Ci

and Cj closest to each other, neighbor
joining at the same time
n Minimises the distance between clusters Ci and

Cj and
n Maximises the separation of both Ci and Cj

from other clusters
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Neighbor joining algorithm
p Initialisation as in UPGMA
p Iteration

n Find clusters i and j for which dij – u(Ci) – u(Cj) is minimal
n Define new cluster k by Ck = Ci Cj, and define dkl for  all l
n Define a node k with edges to i and j. Remove clusters i and j
n Assign length ½ dij + ½ (u(Ci) – u(Cj)) to the edge i -> k
n Assign length ½ dij + ½ (u(Cj) – u(Ci)) to the edge j -> k

p Termination:
n When only one cluster remains
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Neighbor joining algorithm: example
a  b  c  d

a  0  6  7  5
b     0 11  9
c        0  6
d           0

i  u(i)
a  (6+7+5)/2 = 9
b  (6+11+9)/2 = 13
c  (7+11+6)/2 = 12
d  (5+9+6)/2 = 10

i,j dij – u(Ci) – u(Cj)
a,b 6  - 9   - 13 = -16
a,c 7  - 9   - 12 = -14
a,d 5  - 9   - 10 = -14
b,c 11  - 13   - 12 = -14
b,d 9  - 13   - 10 = -14
c,d 6  - 12   - 10 = -16

Choose either pair
to join
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Neighbor joining algorithm: example
a  b  c  d

a  0  6  7  5
b     0 11  9
c        0  6
d           0

i  u(i)
a  (6+7+5)/2 = 9
b  (6+11+9)/2 = 13
c  (7+11+6)/2 = 12
d  (5+9+6)/2 = 10

i,j dij – u(Ci) – u(Cj)
a,b 6  - 9   - 13 = -16
a,c 7  - 9   - 12 = -14
a,d 5  - 9   - 10 = -14
b,c 11  - 13   - 12 = -14
b,d 9  - 13   - 10 = -14
c,d 6  - 12   - 10 = -16

a    b    c    d

e

dae = ½ 6 + ½ (9 – 13) = 1
dbe = ½ 6 + ½ (13 – 9) = 5

dbedae

This is the first step only…
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Inferring the Past: Phylogenetic
Trees (chapter 12)
p The biological problem
p Parsimony and distance methods
p Models for mutations and estimation of

distances
p Maximum likelihood methods
n These parts of the book is skipped on this

course (see slides of 2007 course for material
on these topics)

n No questions in exams on these topics!
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Problems with tree-building
p Assumptions
n Sites evolve independently of one other
n (Sites evolve according to the same stochastic

model; not really covered this year)
n The tree is rooted
n The sequences are aligned
n Vertical inheritance
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Additional material on phylogenetic
trees
p Durbin, Eddy, Krogh, Mitchison: Biological

sequence analysis
p Jones, Pevzner: An introduction to

bioinformatics algorithms
p Gusfield: Algorithms on strings, trees, and

sequences

p Course on phylogenetic analyses in Spring
2009



Introduction to
Bioinformatics

Wrap-up
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Topics

Sequencing
-Sanger
-High-throughput

atgagccaag ttccgaacaa ggattcgcgg
gtcggtaaag agcattggaa cgtcggagat
aagaagcgga tgaatttccc cataacgcca
gtggaagaga aggaggcggg cctcccgatc
actccggccc gaagggttga gagtacccca
gaaatcacct ccagaggacc ccttcagcga
catagcgata ggaggggatg ctaggagttg

Biodatabases

BLAST query

gtggaagagaaggaggcgg…

gaagggttgagagtacccca...
ccagaggaccccttcagcga…
ggaggggatgctaggagttg…

Sequence
assembler

Contigs
=> Genomes

Reads

Similar
sequences = homologs?

Proteomics

Gene expression
analysis

DNA chips

Protein gels
MS/MS techniques

Comparative genomics
- Phylogenetics
- Genome rearrangements
- …

Systems
Biology

2010: Human genome

in 15 minutes!

atgagccaag
aagaagcgga
cagcggaaga
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Exams
p Course exam Wednesday 15 October

16.00-19.00 Exactum A111
p Separate exams
n Tue 18 November 16.00-20.00 Exactum A111
n Fri 16 January 16.00-20.00 Exactum A111
n Tue 31 March 16.00-20.00 Exactum A111

p Check exam date and place before taking
the exam! (previous week or so)
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Exam regulations
p If you are late more than 30 min, you

cannot take the exam
p You are not allowed to bring material such

as books or lecture notes to the exam
p Allowed stuff: blank paper (distributed in

the exam), pencils, pens, erasers,
calculators, snacks

p Bring your student card or other id!
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Grading
p Grading: on the scale 0-5

n To get the lowest passing grade 1, you need to get at
least 30 points out of 60 maximum

p Course exam gives you maximum of 48 points
p Note: if you take the first separate exam, the

best of the following options will be considered:
n Exam gives you max 48 points, exercises max 12 points
n Exam gives you max 60 points

p In second and subsequent separate exams, only
the 60 point option is in use
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Exercise points
p Max. marks: 31
p 80% of 31 ~= 24 marks -> 12 points
p 2 marks = 1 point
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Topics covered by exams
p Exams cover everything presented in lectures

(exception: biological background not covered)

p Word distributions and occurrences (course book
chapters 2-3)

p Genome rearrangements (chapter 5)
p Sequence alignment (chapter 6)
p Rapid alignment methods: FASTA and BLAST

(chapter 7)
p Sequencing and sequence assembly (chapter 8)
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Topics covered by exams
p Similarity, distance and clustering

(chapter 10)
p Expression data analysis (chapter 11)
p Phylogenetic trees (chapter 12)
p Systems biology: modelling biological

networks (no chapter in course book)
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Bioinformatics courses in 2008
p Biological sequence analysis (II period,

Kumpula)
n Focus on probabilistic methods: Hidden Markov

Models, Profile HMMs, finding regulatory
elements, …

p Modeling of biological networks (20-
24.10., TKK)
n Biochemical network modelling and parameter

estimation in biochemical networks using
mechanistic differential equation models.
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Bioinformatics courses in autumn 2008
p Bayesian paradigm in genetic

bioinformatics (II period, Kumpula)
n Applications of Bayesian approach in computer

programs and data analysis of
p genetic past,
p phylogenetics,
p coalescence,
p relatedness,
p haplotype structure,
p disease gene associations.
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Bioinformatics courses in autumn 2008
p Statistical methods in genetics (II period,

Kumpula)
n Introduction to statistical methods in gene

mapping and genetic epidemiology.
n Basic concepts of linkage and association

analysis as well as some concepts of
population genetics will be covered.
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Bioinformatics courses in Spring 2009
p Practical Course in Biodatabases (III

period, Kumpula)
p High-throughput bioinformatics (III-IV

periods, TKK)
p Phylogenetic data analyses (IV period,

Kumpula)
n Maximum likelihood methods, Bayesian

methods, program packages

p Metabolic modelling (IV period, Kumpula)
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Genomes sequenced – all done?
pSequencing is just the beginning
nWhat do genes and proteins do?

pFunctional genomics

n How do they interact with other genes
and proteins?
pSystems biology

Two sides of the same question!
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Bioinformatics (at least mathematical
biology)  can exist outside molecular biology

The metapopulation capacity of a fragmented landscape
Ilkka Hanski and Otso Ovaskainen

Nature 404, 755-758(13 April 2000)

Melitaea cinxia, Glanville Fritillary butterfly
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Metagenomics
p Metagenomics or environmental genomics

n ”At the last count 1.8 million species were known to
science. That sounds like a lot, but in truth it's no big
deal. We may have done a reasonable job of describing
the larger stuff, but the fact remains that an average
teaspoon of water, soil or ice contains millions of micro-
organisms that have never been counted or named. ”

-- Henry Nicholls
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Omics
p Phenome
p Exposome
p Textome
p Receptorome
p Kinome
p Neurome
p Cytome
p Predictome
p Omeome
p Reactome
p Connectome

p Genome
p Transcriptome
p Metabolome
p Metallome
p Lipidome
p Glycome
p Interactome
p Spliceome
p ORFeome
p Speechome
p Mechanome

http://en.wikipedia.org/wiki/-omics

http://en.wikipedia.org/wiki/-omics
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Take-home messages
p Don’t trust biodatabases blindly!

n Annotation errors tend to accumulate

p Consider
n Statistical significance
n Sensitivity

of your results
p Think about the whole ”bioinformatics workflow”:

n Biological phenomenon -> Modelling -> Computation ->
Validation of results

p Results from bioinformatics tools and methods
must be validated!

p Actively seek cooperation with experts
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Bioinformatics journals
p Bioinformatics, http://bioinformatics.oupjournals.org/
p BMC Bioinformatics,

http://www.biomedcentral.com/bmcbioinformatics
p Journal of Bioinformatics and Computational Biology

(JBCB), http://www.worldscinet.com/jbcb/jbcb.shtml
p Journal of Computational Biology,

http://www.liebertpub.com/CMB/
p IEEE/ACM Transactions on Computational Biology and

Bioinformatics , http://www.computer.org/tcbb/
p PLoS Computational Biology, www.ploscompbiol.org
p In Silico Biology, http://www.bioinfo.de/isb/
p Nature, Science (bedtime reading)

http://bioinformatics.oupjournals.org/
http://www.biomedcentral.com/bmcbioinformatics
http://www.worldscinet.com/jbcb/jbcb.shtml
http://www.liebertpub.com/CMB/
http://www.computer.org/tcbb/
http://www.ploscompbiol.org
http://www.bioinfo.de/isb/
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Bioinformatics conferences
p ISMB, Intelligent Systems for

Molecular Biology (Toronto, July 2008)
p ICSB, International Conference on

Systems Biology (Göteborg, Sweden;
22-28 August)

p RECOMB, Research in Computational
Molecular Biology

p ECCB, European Conference on
Computational Biology

p WABI, Workshop on Algorithms in
Bioinformatics

p PSB, Pacific Symposium on
Biocomputing

January 5-9, 2009
The Big Island of Hawaii
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Master’s degree in bioinformatics?
p You can apply to MBI during the

application period November ’08 – 2
February ’09
n Bachelor’s degree in suitable field
n At least 60 ECTS credits in CS or mathstat
n English language certificate

p Passing this course gives you the first 4
credits for Bioinformatics MSc!
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Information session on MBI
p Wednesday 19.11. 13.00-15.00 Exactum

D122
p www.cs.helsinki.fi/mbi/events/info08
p Talks in Finnish

http://www.cs.helsinki.fi/mbi/events/info08
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Mailing list for bioinformatics courses
and events
p MBI maintains a mailing list for

announcement on bioinformatics courses
and events

p Send email to bioinfo a t cs.helsinki.fi if
you want to subscribe to the list (you can
unsubscribe in the same way)

p List is moderated
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Computer Science Mathematics
and Statistics

Biology & Medicine

Bioinformatics

The aim of this course

Where would you be in this triangle?

Has your position shifted during the course?
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Feedback
p Please give feedback on the course!
n https://ilmo.cs.helsinki.fi/kurssit/servlet/Valint

a?kieli=en

p Don’t worry about your grade – you can
give feedback anonymously

https://ilmo.cs.helsinki.fi/kurssit/servlet/Valint


431

Thank you!
p I hope you enjoyed the course!

taivasalla.net

Halichoerus grypus, Gray seal or harmaahylje in Finnish


