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Genome sequencing & assembly
p DNA sequencing

n How do we obtain DNA sequence information from
organisms?

p Genome assembly
n What is needed to put together DNA sequence

information from sequencing?

p First statement of sequence assembly problem
(according to G. Myers):
n Peltola, Söderlund, Tarhio, Ukkonen: Algorithms for

some string matching problems arising in molecular
genetics. Proc. 9th IFIP World Computer Congress, 1983
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?

Recovery of shredded newspaper
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DNA sequencing
p DNA sequencing: resolving a nucleotide

sequence (whole-genome or less)
p Many different methods developed
n Maxam-Gilbert method (1977)
n Sanger method (1977)
n High-throughput methods
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Sanger sequencing: sequencing by
synthesis
p A sequencing technique developed by Fred

Sanger
p Also called dideoxy sequencing
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http://en.wikipedia.org/wiki/DNA_polymerase

DNA polymerase
p A DNA polymerase is an

enzyme that catalyzes
DNA synthesis

p DNA polymerase needs
a primer
n Synthesis proceeds

always in 5’->3’ direction

http://en.wikipedia.org/wiki/DNA_polymerase
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Dideoxy sequencing
p In Sanger sequencing, chain-terminating

dideoxynucleoside triphosphates (ddXTPs)
are employed
n ddATP, ddCTP, ddGTP, ddTTP lack the 3’-OH

tail of dXTPs

p A mixture of dXTPs with small amount of
ddXTPs is given to DNA polymerase with
DNA template and primer

p ddXTPs are given fluorescent labels
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Dideoxy sequencing
p When DNA polymerase encounters a

ddXTP, the synthesis cannot proceed
p The process yields copied sequences of

different lengths
p Each sequence is terminated by a labeled

ddXTP
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Determining the sequence
p Sequences are sorted

according to length by
capillary
electrophoresis

p Fluorescent signals
corresponding to
labels are registered

p Base calling:
identifying which base
corresponds to each
position in a read
n Non-trivial problem!

Output sequences from
base calling are called reads
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Reads are short!
p Modern Sanger sequencers can produce

quality reads up to ~750 bases1

n Instruments provide you with a quality file for
bases in reads, in addition to actual sequence
data

p Compare the read length against the size
of the human genome (2.9x109 bases)

p Reads have to be assembled!

1 Nature Methods - 5, 16 - 18 (2008)
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Problems with sequencing
p Sanger sequencing error rate per base

varies from 1% to 3%1

p Repeats in DNA
n For example, ~300 base Alu sequence

repeated is over million times in human
genome

n Repeats occur in different scales

p What happens if repeat length is longer
than read length?
n We will get back to this problem later

1 Jones, Pevzner (2004)
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Shortest superstring problem
p Find the shortest string that ”explains” the

reads
p Given a set of strings (reads), find a

shortest string that contains all of them
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Example: Shortest superstring

Set of strings: {000, 001, 010, 011, 100, 101, 110, 111}

Concetenation of strings: 000001010011100101110111

010
110

011
000

Shortest superstring: 0001110100
001

111
101

100
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Shortest superstrings: issues
p NP-complete problem: unlike to have an

efficient (exact) algorithm
p Reads may be from either strand of DNA
p Is the shortest string necessarily the

correct assembly?
p What about errors in reads?
p Low coverage -> gaps in assembly
n Coverage: average number of times each base

occurs in the set of reads (e.g., 5x coverage)
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Sequence assembly and combination
locks
p What is common with sequence assembly

and opening keypad locks?
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Whole-genome shotgun sequence
p Whole-genome shotgun sequence

assembly starts with a large sample of
genomic DNA
1. Sample is randomly partitioned into inserts of

length > 500 bases
2. Inserts are multiplied by cloning them into a

vector which is used to infect bacteria
3. DNA is collected from bacteria and sequenced
4. Reads are assembled
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Assembly of reads with Overlap-Layout-
Consensus algorithm
p Overlap
n Finding potentially overlapping reads

p Layout
n Finding the order of reads along DNA

p Consensus (Multiple alignment)
n Deriving the DNA sequence from the layout

p Next, the method is described at a very
abstract level, skipping a lot of details

Kececioglu, J.D. and E.W. Myers. 1995. Combinatorial algorithms for
DNA sequence assembly. Algorithmica 13: 7-51.
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Finding overlaps
p First, pairwise overlap

alignment of reads is
resolved

p Reads can be from
either DNA strand:
The reverse
complement r* of
each read r has to be
considered

acggagtcc
agtccgcgctt

5’ 3’

3’ 5’

… a t g a g t g g a …

… t a c t c a c c t …

r1

r2

r1: tgagt, r1
*: actca

r2: tccac, r2
*: gtgga
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Example sequence to assemble

p 20 reads:

5’ – CAGCGCGCTGCGTGACGAGTCTGACAAAGACGGTATGCGCATCG
TGATTGAAGTGAAACGCGATGCGGTCGGTCGGTGAAGTTGTGCT - 3’

#   Read Read*

1 CATCGTCA    TCACGATG

2 CGGTGAAG    CTTCACCG

3 TATGCGCA    TGCGCATA

4 GACGAGTC    GACTCGTC

5 CTGACAAA    TTTGTCAG

6 ATGCGCAT    ATGCGCAT

7 ATGCGGTC GACCGCAT

8 CTGCGTGA    TCACGCAG

9 GCGTGACG    CGTCACGC

10 GTCGGTGA    TCACCGAC

#   Read Read*

11 GGTCGGTG    CACCGACC

12 ATCGTGAT    ATCACGAT

13 GCGCTGCG    CGCAGCGC

14 GCATCGTG    CACGATGC

15 AGCGCGCT    AGCGCGCT
16 GAAGTTGT    ACAACTTC

17 AGTGAAAC    GTTTCACT

18 ACGCGATG    CATCGCGT

19 GCGCATCG    CGATGCGC

20 AAGTGAAA    TTTCACTT
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Finding overlaps
p Overlap between two reads

can be found with a
dynamic programming
algorithm
n Errors can be taken into

account

p Dynamic programming will
be discussed more on next
lecture

p Overlap scores stored into
the overlap matrix
n Entries (i, j) below the

diagonal denote overlap of
read ri and rj

*

1 CATCGTCA

6 ATGCGCAT

12 ATCGTGAT

Overlap(1, 6) = 3

Overlap(1, 12) = 7

1

6 12

3 7
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Finding layout & consensus
p Method extends the

assembly greedily by
choosing the best
overlaps

p Both orientations are
considered

p Sequence is extended
as far as possible

7*    GACCGCAT
6=6*  ATGCGCAT
14        GCATCGTG
1          CATCGTGA
12          ATCGTGAT
19      GCGCATCG
13* CGCAGCGC
---------------------

CGCATCGTGAT

Ambiguous bases

Consensus sequence
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Finding layout & consensus
p We move on to next best

overlaps and extend the
sequence from there

p The method stops when
there are no more overlaps
to consider

p A number of contigs is
produced

p Contig stands for
contiguous sequence,
resulting from merging
reads

2           CGGTGAAG
10        GTCGGTGA
11       GGTCGGTG
7    ATGCGGTC
---------------------

ATGCGGTCGGTGAAG
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Whole-genome shotgun sequencing:
summary

p Ordering of the reads is initially unknown
p Overlaps resolved by aligning the reads
p In a 3x109 bp genome with 500 bp reads and 5x

coverage, there are ~107 reads and ~107(107-1)/2
= ~5x1013 pairwise sequence comparisons

… …Original genome sequence

Reads
Non-overlapping
read

Overlapping reads
=> Contig
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Repeats in DNA and genome assembly

Pop, Salzberg, Shumway (2002)

Two instances of the same repeat
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Repeats in DNA cause problems in
sequence assembly
p Recap: if repeat length exceeds read

length, we might not get the correct
assembly

p This is a problem especially in eukaryotes
n ~3.1% of genome consists of repeats in

Drosophila, ~45% in human

p Possible solutions
1. Increase read length – feasible?
2. Divide genome into smaller parts, with known

order, and sequence parts individually
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”Divide and conquer” sequencing
approaches: BAC-by-BAC

Whole-genome shotgun sequencing

Divide-and-conquer

Genome

Genome

BAC library
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BAC-by-BAC sequencing
p Each BAC (Bacterial Artificial

Chromosome) is about 150 kbp
p Covering the human genome requires

~30000 BACs
p BACs shotgun-sequenced separately
n Number of repeats in each BAC is

significantly smaller than in the whole
genome...

n ...needs much more manual work compared
to whole-genome shotgun sequencing
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Hybrid method
p Divide-and-conquer and whole-genome

shotgun approaches can be combined
n Obtain high coverage from whole-genome

shotgun sequencing for short contigs
n Generate of a set of BAC contigs with low

coverage
n Use BAC contigs to ”bin” short contigs to

correct places

p This approach was used to sequence the
brown Norway rat genome in 2004
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Paired end sequencing
p Paired end (or mate-pair) sequencing is

technique where
n both ends of an insert are sequenced
n For each insert, we get two reads
n We know the distance between reads, and that

they are in opposite orientation

n Typically read length < insert length

kRead 1 Read 2
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Paired end sequencing
p The key idea of paired end sequencing:

n Both reads from an insert are unlikely to be in repeat
regions

n If we know where the first read is, we know also
second’s location

p This technique helps to WGSS higher organisms

kRead 1 Read 2

Repeat region
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First whole-genome shotgun sequencing
project: Drosophila melanogaster

p Fruit fly is a common
model organism in
biological studies

p Whole-genome
assembly reported in
Eugene Myers, et al.,
A Whole-Genome
Assembly of
Drosophila, Science
24, 2000

p Genome size 120 Mbp

http://en.wikipedia.org/wiki/Drosophila_melanogaster

http://en.wikipedia.org/wiki/Drosophila_melanogaster
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Sequencing of the Human Genome
p The (draft) human

genome was published
in 2001

p Two efforts:
n Human Genome Project

(public consortium)
n Celera (private

company)

p HGP: BAC-by-BAC
approach

p Celera: whole-genome
shotgun sequencing

HGP: Nature 15 February 2001
Vol 409 Number 6822

Celera: Science 16 February 2001
Vol 291, Issue 5507



154

Genome assembly software
p phrap (Phil’s revised assembly program)
p AMOS (A Modular, Open-Source whole-

genome assembler)
p CAP3 / PCAP
p TIGR assembler



155

Next generation sequencing techniques
p Sanger sequencing is the prominent first-

generation sequencing method
p Many new sequencing methods are

emerging

p See Lars Paulin’s slides (course web page)
for details
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Next-gen sequencing: 454
p Genome Sequencer FLX (454 Life Science

/ Roche)
n >100 Mb / 7.5 h run
n Read length 250-300 bp
n >99.5% accuracy / base in a single run
n >99.99% accuracy / base in consensus
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Next-gen sequencing: Illumina Solexa
p Illumina / Solexa Genome Analyzer
n Read length 35 - 50 bp
n 1-2 Gb / 3-6 day run
n > 98.5% accuracy / base in a single run
n 99.99% accuracy / consensus with 3x

coverage
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Next-gen sequencing: SOLiD
p SOLiD
n Read length 25-30 bp
n 1-2 Gb / 5-10 day run
n >99.94% accuracy / base
n >99.999% accuracy / consensus with 15x

coverage
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Next-gen sequencing: Helicos
p Helicos: Single Molecule Sequencer
n No amplification of sequences needed
n Read length up to 55 bp

p Accuracy does not decrease when read length is
increased

p Instead, throughput goes down

n 25-90 Mb / h
n >2 Gb / day
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Next-gen sequencing: Pacific
Biosciences
p Pacific Biosciences
n Single-Molecule Real-Time (SMRT) DNA

sequencing technology
n Read length “thousands of nucleotides”

p Should overcome most problems with repeats

n Throughput estimate: 100 Gb / hour
n First instruments in 2010?


