Introduction to Bioinformatics

Lecture 3: Sequence alignment

Sequence alignment

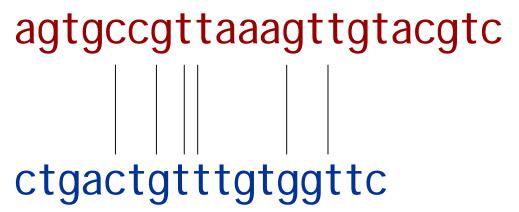
- p The biological problem
- p Global alignment
- p Local alignment
- Multiple alignment

Background: comparative genomics

- P Basic question in biology: what properties are shared among organisms?
- p Genome sequencing allows comparison of organisms at DNA and protein levels
- p Comparisons can be used to
 - n Find evolutionary relationships between organisms
 - n Identify functionally conserved sequences
 - n Identify corresponding genes in human and model organisms: develop models for human diseases

Homologs

- Two genes (sequences in general) g_B and g_C evolved from the same ancestor gene g_A are called homologs
- P Homologs usually exhibit conserved functions
- Close evolutionary relationship => expect a high number of homologs


 $g_A = agtgtccgttaagtgcgttc$

 $g_B = agtgccgttaaagttgtacgtc$

 $g_C = ctgactgtttgtggttc$

Sequence similarity

- We expect homologs to be "similar" to each other
- p Intuitively, similarity of two sequences refers to the degree of match between corresponding positions in sequence

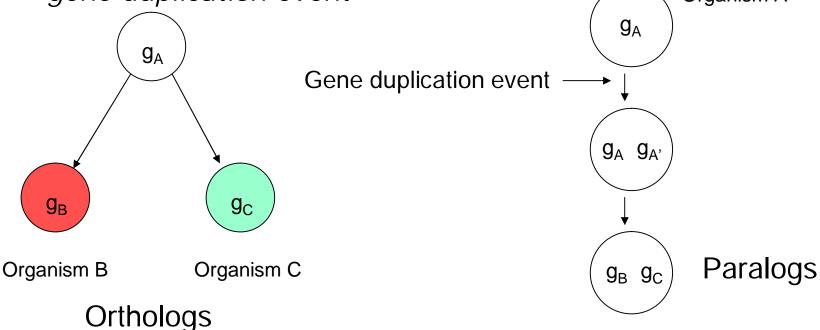
What about sequences that differ in length?

Similarity vs homology

- Sequence similarity is not sequence homology
 - n If the two sequences g_B and g_C have accumulated enough mutations, the similarity between them is likely to be low

#mutation	าร	#mutations
0	agtgtccgttaagtgcgttc	64 acagtccgttcgggctattg
1	agtgtccgttatagtgcgttc	128 cagagcactaccgc
2	agtgtccgcttatagtgcgttc	256 cacgagtaagatatagct
4	agtgtccgcttaagggcgttc	512 taatcgtgata
8	agtgtccgcttcaaggggcgt	1024 accettatetactteetggagtt
16	gggccgttcatgggggt	2048 agcgacctgcccaa
32	gcagggcgtcactgagggct	4096 caaac

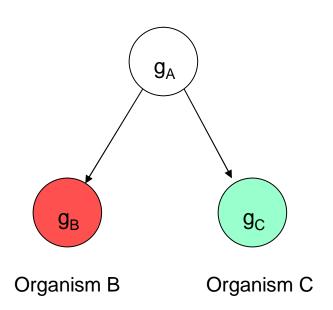
Homology is more difficult to detect over greater evolutionary distances.

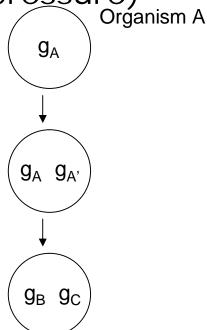

Similarity vs homology (2)

- Sequence similarity can occur by chance
 - n Similarity does not imply homology
- Consider comparing two short sequences against each other

Orthologs and paralogs

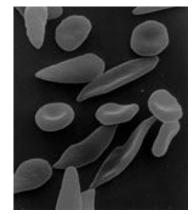
- We distinguish between two types of homology
 - n Orthologs: homologs from two different species, separated by a speciation event


n Paralogs: homologs within a species, separated by a *gene duplication* event Organism A



Orthologs and paralogs (2)

Orthologs typically retain the original function


p In paralogs, one copy is free to mutate and acquire new function (no selective pressure)

Paralogy example: hemoglobin

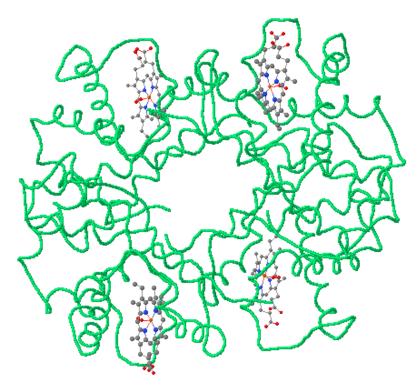
- Hemoglobin is a protein complex which transports oxygen
- In humans, hemoglobin consists of four protein subunits and four nonprotein heme groups

Sickle cell diseases are caused by mutations in hemoglobin genes

Hemoglobin A, www.rcsb.org/pdb/explore.do?structureId=1GZX

Paralogy example: hemoglobin

- p In adults, three types are normally present
 - n Hemoglobin A: 2 alpha and2 beta subunits
 - n Hemoglobin A2: 2 alpha and 2 delta subunits
 - n Hemoglobin F: 2 alpha and2 gamma subunits
- Each type of subunit (alpha, beta, gamma, delta) is encoded by a separate gene

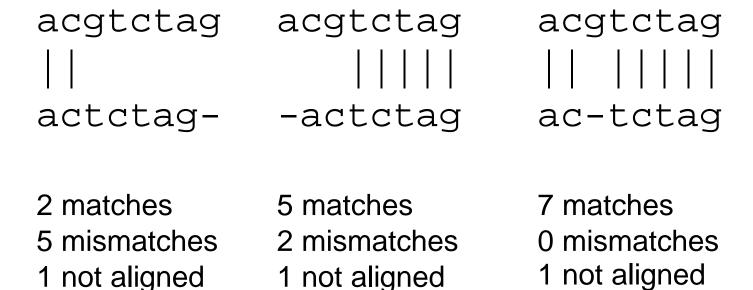

Hemoglobin A, www.rcsb.org/pdb/explore.do?structureId=1GZX

Paralogy example: hemoglobin

- The subunit genes are paralogs of each other, i.e., they have a common ancestor gene
- Exercise: hemoglobin human paralogs in NCBI sequence databases

http://www.ncbi.nlm.nih.gov/sites/entre z?db=Nucleotide

- n Find human hemoglobin alpha, beta, gamma and delta
- n Compare sequences


Hemoglobin A, www.rcsb.org/pdb/explore.do?structureId=1GZX

Orthology example: insulin

- The genes coding for insulin in human (Homo sapiens) and mouse (Mus musculus) are orthologs:
 - n They have a common ancestor gene in the ancestor species of human and mouse
 - n Exercise: find insulin orthologs from human and mouse in NCBI sequence databases

Sequence alignment

Alignment specifies which positions in two sequences match

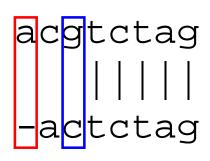
Sequence alignment

Maximum alignment length is the total length of the two sequences

0 matches

0 mismatches

15 not aligned


0 matches

0 mismatches

15 not aligned

Mutations: Insertions, deletions and substitutions

Indel: insertion or deletion of a base with respect to the ancestor sequence

Mismatch: substitution (point mutation) of a single base

- p Insertions and/or deletions are called indels
 - n We can't tell whether the ancestor sequence had a base or not at indel position!

Problems

- What sorts of alignments should be considered?
- P How to score alignments?
- P How to find optimal or good scoring alignments?
- P How to evaluate the statistical significance of scores?

In this course, we discuss each of these problems briefly.

Sequence Alignment (chapter 6)

- p The biological problem
- p Global alignment
- p Local alignment
- Multiple alignment

Global alignment

- Problem: find optimal scoring alignment between two sequences (Needleman & Wunsch 1970)
- Every position in both sequences is included in the alignment
- We give score for each position in alignment

```
n Identity (match) +1
```

- n Substitution (mismatch) -μ
- n Indel -δ
- p Total score: sum of position scores

Scoring: Toy example

Consider two sequences with characters drawn from the English language alphabet: WHAT, WHY

WHAT

WH-Y

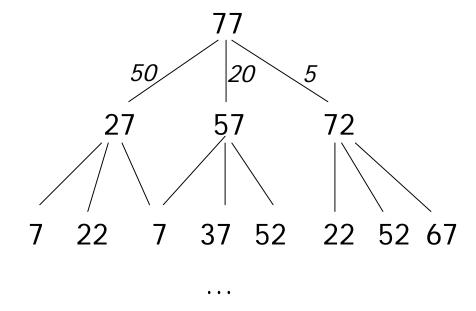
 $S(WHAT/WH-Y) = 1 + 1 - \delta - \mu$

WHAT

-WHY

 $S(WHAT/-WHY) = -\delta - \mu - \mu - \mu$

Dynamic programming

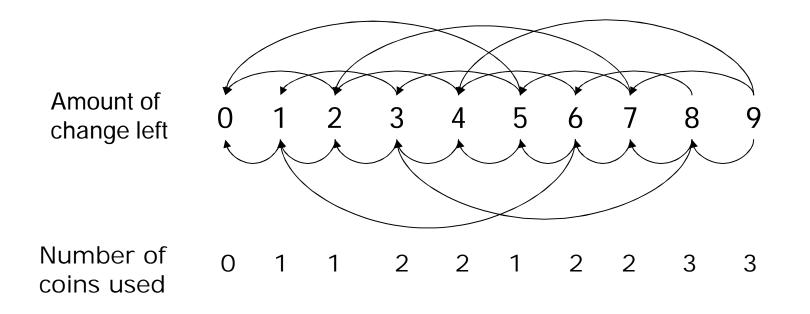

- P How to find the optimal alignment?
- We use previous solutions for optimal alignments of smaller subsequences
- P This general approach is known as dynamic programming

Introduction to dynamic programming: the money change problem

- Suppose you buy a pen for 4.23€ and pay for with a 5€ note
- P You get 77 cents in change what coins is the cashier going to give you if he or she tries to minimise the number of coins?
- p The usual algorithm: start with largest coin (denominator), proceed to smaller coins until no change is left:
 - n 50, 20, 5 and 2 cents
- p This greedy algorithm is incorrect, in the sense that it does not always give you the correct answer

The money change problem

- P How else to compute the change?
- We could consider all possible ways to reduce the amount of change
- Suppose we have 77 cents change, and the following coins: 50, 20, 5 cents
- We can compute the change with recursion
 - n $C(n) = min \{ C(n-50) + 1, C(n-20) + 1, C(n-5) + 1 \}$
- Figure shows the recursion tree for the example

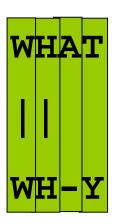


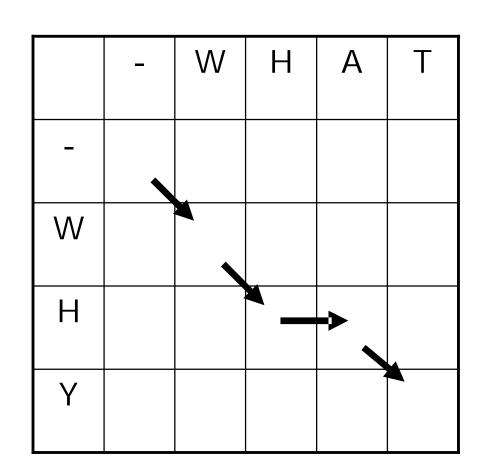
- Many values are computed more than once!
- This leads to a correct but very inefficient algorithm

The money change problem

- P We can speed the computation up by solving the change problem for all i ≤ n
 - n Example: solve the problem for 9 cents with available coins being 1, 2 and 5 cents
- Solve the problem in steps, first for 1 cent, then 2 cents, and so on
- p In each step, utilise the solutions from the previous steps

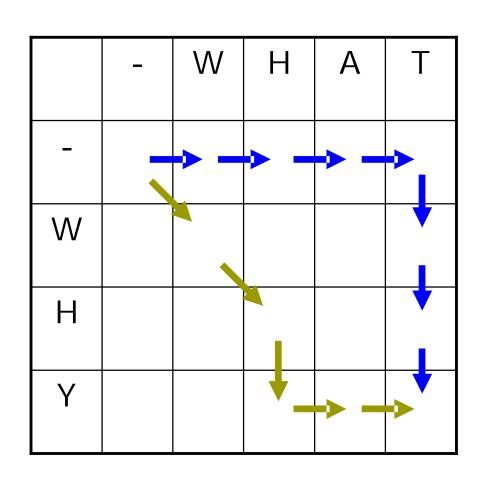
The money change problem




- Algorithm runs in time proportional to Md, where M is the amount of change and d is the number of coin types
- p The same technique of storing solutions of subproblems can be utilised in aligning sequences

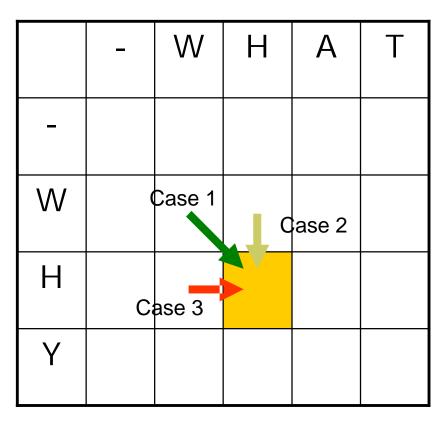
Representing alignments and scores

Alignments can be represented in the following tabular form.


Each alignment corresponds to a path through the table.

Representing alignments and scores

Representing alignments and scores

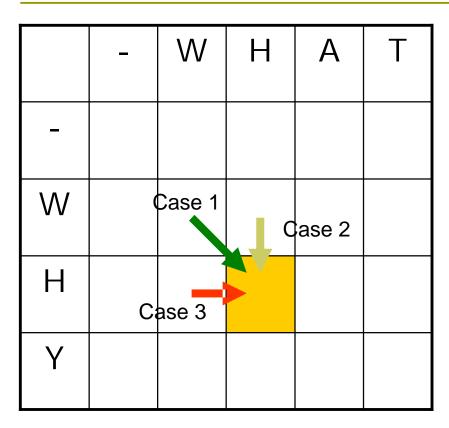

WHAT

WH-Y

Global alignment score $S_{3,4} = 2-\delta-\mu$

	-	W	Н	А	Т
_	0				
W		1			
Н			2	2-δ	
Υ					2-δ-μ

Filling the alignment matrix


Consider the alignment process at shaded square.

Case 1. Align H against H (match)

Case 2. Align H in WHY against– (indel) in WHAT

Case 3. Align H in WHAT against – (indel) in WHY

Filling the alignment matrix (2)

Scoring the alternatives.

Case 1.
$$S_{2,2} = S_{1,1} + s(2, 2)$$

Case 2.
$$S_{2,2} = S_{1,2} - \delta$$

Case 3.
$$S_{2,2} = S_{2,1} - \delta$$

s(i, j) = 1 for matching positions,

 $s(i, j) = -\mu$ for substitutions.

Choose the case (path) that yields the maximum score.

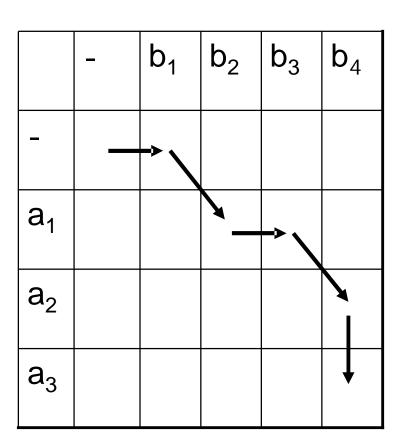
Keep track of path choices.

Global alignment: formal development

0

$$A = a_1 a_2 a_3 ... a_n$$

$$B = b_1 b_2 b_3 ... b_m$$


$$b_1 \quad b_2 \quad b_3 \quad b_4 \quad -$$

$$- a_1 - a_2 a_3$$

- Any alignment can be written as a unique path through the matrix
- Score for aligning A and B up to positions i and j:

$$S_{i,j} = S(a_1 a_2 a_3 ... a_i, b_1 b_2 b_3 ... b_i)$$

0 1 2 3 4

Scoring partial alignments

P Alignment of $A = a_1 a_2 a_3 ... a_i$ with $B = b_1 b_2 b_3 ... b_j$ can be end in three possible ways

```
n Case 1: (a_1a_2...a_{i-1}) a_i

(b_1b_2...b_{j-1}) b_j

n Case 2: (a_1a_2...a_{i-1}) a_i

(b_1b_2...b_j) -

n Case 3: (a_1a_2...a_i) —

(b_1b_2...b_{i-1}) b_i
```

Scoring alignments

Scores for each case:

n Case 1:
$$(a_1 a_2 ... a_{i-1}) a_i$$

 $(b_1 b_2 ... b_{i-1}) b_i$

n Case 2:
$$(a_1 a_2 ... a_{i-1}) a_i$$

 $(b_1 b_2 ... b_i) -$

n Case 3:
$$(a_1a_2...a_i)$$
 – $(b_1b_2...b_{j-1})$ b_j

$$s(a_i, b_j) = \begin{cases} +1 & \text{if } a_i = b_j \\ -\mu & \text{otherwise} \end{cases}$$

$$s(a_i, -) = s(-, b_j) = -\delta$$

Scoring alignments (2)

First row and first column correspond to initial alignment against indels:

$$S(i, 0) = -i \delta$$

$$S(0, j) = -j \delta$$

p Optimal global alignment score $S(A, B) = S_{n.m}$

0 1 2 3 4

	-	b ₁	b ₂	b ₃	b ₄
_	O	-δ	-2δ	-3δ	-4δ
a ₁	-δ				
a_2	-2δ				
a_3	-3δ				

Algorithm for global alignment

```
Input sequences A, B, n = |A|, m = |B|

Set S_{i,0} := -\delta i for all i

Set S_{0,j} := -\delta j for all j

for i := 1 to n

for j := 1 to m

S_{i,j} := max\{S_{i-1,j} - \delta, S_{i-1,j-1} + s(a_i,b_j), S_{i,j-1} - \delta\}

end

end
```

Algorithm takes O(nm) time

Global alignment: example

 $\mu = 1$

 $\delta = 2$

	_	Т	G	G	Т	G
-	O	-2	-4	-6	-8	-10
Α	-2					
Т	-4					
С	-6					
G	-8					
Т	-10					?

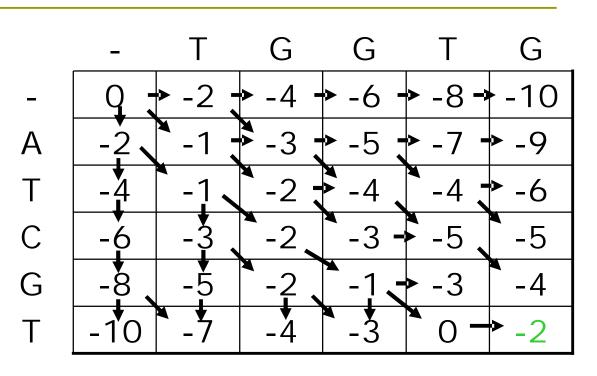
Global alignment: example

	-
	1
м	

$$\delta = 2$$

	_	Т	G	G	Т	G
_	0	-2	-4	-6	-8	-10
Α	-2 -	- *-	→ -3			
Т	-4					
С	-6					
G	-8					
Т	-10					?

Global alignment: example (2)


$$\mu = 1$$

$$\delta = 2$$

ATCGT-

-TGGTG

