Sequence Alignment (chapter 6)

p The biological problem
p Global alignment

p Local alignment

p Multiple alignment

200

p Otherwise dissimilar proteins may have local regions of
similarity
-> Proteins may share a function

Human bone
morphogenic protein
receptor type Il
precursor (left) has a
300 aa region that
resembles 291 aa
region in TGF-f3
receptor (right).

The shared function
here is protein kinase.

201

Local alignment: rationale

: —

————

Regions of
similarity

p Global alignment would be inadequate

p Problem: find the highest scoring local alignment
between two sequences

p Previous algorithm with minor modifications solves this
problem (Smith & Waterman 1981)

202

From global to local alignment

p Modifications to the global alignment
algorithm

n Look for the highest-scoring path in the
alignment matrix (not necessarily through the
matrix), or in other words:

n Allow preceding and trailing indels without
penalty

203

Scoring local alignments

A = a,a,a;...a,, B =b;b,b;...b,

Let | and J be intervals (substrings) of A and B, respectively:
T4 J=B

Best local alignment score:
M(A,B) =max{S(I,J): I C A, J C B}

where S(1, J) is the alignment score for substrings | and J.

204

Allowing preceding and trailing

Indels

p First row and column
Initialised to zero:

Mio =Mp; =0

bl b2 b3
al

205

1 2 3 4

b, |b, |by |by,
-) C{ 0] 0]
a, \

Recursion for local alignment

p M: = max {
1j-1 + s(&, by,

o

i-1j — O
ij-1— O

Allow alignment to

start anywhere in
sequences

O I < Z¢

206

- O O 4 >

o|, O O] M
/

o] O] O] O] O] ©

| O] O »r| O O] H

O k| O] O O] O] ®

oO| | O

N O O »r| O O H

O k| O] O O] O] ®

Finding best local alignment

p Optimal score is the highest - T G G
value in the matrix

M(A,B) =max{S(I,J): I C A, J C B}

= max;; Mi,j

p Best local alignment can be

found by backtracking from the
highest value in M

R O O/O O
o] O | O] O] -

p What is the best local

o] O] O] O] O] ©
Rl O] O | O] O

4= & O 4 >

alignment in this example?

O k| O] O O] O] ®

207

Local alignment: example

M;; = max {
Mi1j1 + s(&,
bi)!
M1~ 0,
Mij1 — 0,
0
}

Scoring (for example)
Match: +2

Mismatch: -1

Indel: -2

208

0O ~NO Ol WN PO

O 1 2 3 45 6 7 8 9 1
- |G |G |C|T |C|AJA|T |C]|A
- o0 |0 |0 OO |0 |O |0 |O

34

@O > |00 |>

OO0 |0|O0O|0 0|0 |0

Local alignment: example

M;; = max {
Mi1j1 + s(&,
bi)!
M1~ 0,
Mij1 — 0,
0
}

Scoring (for example)
Match: +2

Mismatch: -1

Indel: -2

209

0O ~NO Ol WN PO

O 1 2 3 45 6 7 8 9 1

- |G |G |C|T |C|AJA|T |C]|A

- O |0 |0 |0 |0QUG |O |O |O (O
0O|0|0|O O:t_%

@O > |00 |>

OO0 |0|O0O|0 0|0 |0

S <<|olN|lOo|ldA|lNMmm|Hd|l N
i A At
o Olo|o|N|lm[-d|N|m
IR 7T
© H|lOolo|d|o|N|ldl <[] m
EEBL) S
N |O|N|[Hl OOl M < | N
vl il 1y
© <<|o|N|O|d| AT IO|Mm| A
i 7 7
1 O|o|o|N| N Mmoo
leb) i i
— 4T0001\n42000
- m O|lo|o|nNlnjo|jojo|o|N
— S _
o] N Olo|o|o|o|o|o|o ||
S 7
D - O|lo|lo|lo|lo|lolo|lo|ln|ln
71/
i o |o|lo|lo|lojlojlolo|olo
- <] O|O| << |0
@b
m O d NMSTLW O ~
- M
o | = 3
= 5. <<« S
R P o5
o © Oy ..
qu’ mm_C r_/l\n._/._h2
O 55 - o, o |
= D T~
O 6500 S5ES
1 |°F SEET .
n=S £ S
]]

Multiple optimal alignments
Non-optimal, good-scoring alignments

0O 1 2 3 45 6 7 8 9 %

How can you find - IglglcITICIAIAITIC A
1. Optimal O - |00 |0 |0 (O O\-O \O 0 O\‘O
alignments if 1 A |0 |0 |O _O 0 \.O 2 \2 \O \RO 2
more than one 2 C |0 |0 |02J042Yy0 |1 (1242yo
exist? a ~x “k
' 3 C |0 |0 |0 |2 ‘hl 2 |1 |0 \‘O 31
v
2. Non-optimal, 4 T |0 |0 |0 0422 \1 \EO 2 _1 \2
gc_)od—scoring 5 A|O|O0O |0 |0 |23 4 U3—»1 |1 \3
alignments? 6 AloJo]o|o o1 5;-:4 +2 [3
¥ 3‘
7 G |02 _2 O |0 (O 3* 4*; 5371
8 G|0(2|472 |0 |0 |1 |2 |3 |47T2

211

Overlap alignment

p Overlap matrix used by Overlap-Layout-
Consensus algorithm can be computed with
dynamic programming

p Initialization: O;, = Oy ; = O for all 1,]

p Recursion:

O;; = max {
Oi_1j-1 + s(&;, by,
Oi—l,j - 6,

Oi,j—l — 0,
¥

Best overlap: maximum value from rightmost
column and bottom row

212

Non-uniform mismatch penalties

p We used uniform penalty for mismatches:
S(,A,’ 1C1) —_ S(’A” 1G1) —_ o —_ S(!Gl’ 7T1) —_ u
p Transition mutations (A->G, G-=>A, C->T, T-=C) are

approximately twice as frequent than transversions (A->T,

T-=A, A-=>C, G->T)
n use non-uniform mismatch
penalties collected into a

substitution matrix A C G T
A 1 -1 -0.5| -1
C -1 1 -1 |-0.5
G |[-0.5| -1 1 -1
T -1 |-0.5| -1 1

213

Gaps In alignment

p Gap Is a succession of indels In alignment

CT|- A A
CTCGCAA

p Previous model scored a length k gap as
w(k) = -kd

p Replication processes may produce longer
stretches of insertions or deletions

n In coding regions, insertions or deletions of
codons may preserve functionality

214

Gap open and extension penalties (2)

p We can design a score that allows the
penalty opening gap to be larger than
extending the gap:

w(k) = -a—-pB(k—-1)

p Gap open cost a, Gap extension cost 3

p Alignment algorithms can be extended to
use w(k) (not discussed on this course)

215

Amino acid sequences

p We have discussed mainly DNA sequences

p AmIno acid seqguences can be aligned as
well

p However, the design of the substitution
matrix Is more involved because of the
larger alphabet

p More on the topic in the course Biological
seguence analysis

216

Demonstration of the EBI web site

p European Bioinformatics Institute (EBI)
offers many biological databases and
bioinformatics tools at
http://www.ebi.ac.uk/

n Sequence alignment: Tools -> Sequence
Analysis -=> Align

217

http://www.ebi.ac.uk/

Sequence Alignment (chapter 6)

p The biological problem
p Global alignment

p Local alignment

p Multiple alignment

218

Multiple alignment

p Consider a set of n sequences

on the right aggcgagctgcgagtgcta
n QOrthologous sequences from cgttagattgacgctgac
different organisms ttccggcectgegac
n Paralogs from multiple gacacggcgaacgga
duplications agtgtgcccgacgagcgaggac
p How can we study gcgggctgtgagegceta
relationships between these aagcggcctgtgtgeccta
sequences? atgctgctgccagtgta
agtcgagccccgagtgce
agtccgagtcc

actcggtgc

219

Optimal alignment of three
sequences

p Alignment of A = a,;a,..a; and B = b,b,...b; can
end either in (-, b;), (a;, b;) or (a;, -)
p 22 — 1 = 3 alternatives

p Alignment of A, B and C = c¢,C,...c, can end in 23—
1 ways: (&, -, -), (-, b, =), (=, -, €, (= by, ¢,
(&, -, ¢, (&, by, -) or (&, by, ¢,)

p Solve the recursion using three-dimensional
dynamic programming matrix: O(n3) time and
space

p Generalizes to n sequences but impractical with
even a moderate number of sequences

220

Multiple alignment In practice

p In practice, real-world multiple alignment
problems are usually solved with heuristics

p Progressive multiple alignment

n

n

221

Choose two sequences and align them

Choose third sequence w.r.t. two previous sequences
and align the third against them

Repeat until all sequences have been aligned

Different options how to choose sequences and score
alignments

Note the similarity to Overlap-Layout-Consensus

Multiple alignment In practice

p Profile-based progressive multiple
alignment: CLUSTALW

n Construct a distance matrix of all pairs of
sequences using dynamic programming

n Progressively align pairs in order of decreasing
similarity

n CLUSTALW uses various heuristics to
contribute to accuracy

222

Additional material

p R. Durbin, S. Eddy, A. Krogh, G.
Mitchison: Biological sequence analysis

p N. C. Jones, P. A. Pevzner: An introduction
to bioinformatics algorithms

p Course Biological sequence analysis In
period Il, 2008

223

Rapid alignment methods: FASTA and
BLAST

p The biological problem
p Search strategies

p FASTA

p BLAST

224

The biological problem

p GIObaI and Iocal International Nuclentidfr??::t:‘ef:: BDatabase Collaboration
alignment algoritms are
slow in practice

p Consider the scenario of
aligning a query
sequence against a large
database of sequences

n New seqguence with

unknown function n NCBI GenBank size in January
2007 was 65 369 091 950
bases (61 132 599 sequences)

n Feb 2008: 85 759 586 764
bases (82 853 685 sequences)

SUDNIIG Ul BNEg SR G

Base Pars conlributed by GenBarkf—8 EMBL=— DOE)=N

225

Problem with large amount of sequences

p Exponential growth in both number and
total length of sequences

p Possible solution: Compare against model
organisms only

p With large amount of sequences, chances
are that matches occur by random

n Need for statistical analysis

226

Rapid alignment methods: FASTA and
BLAST

p The biological problem
p Search strategies

p FASTA

p BLAST

227

FASTA

p FASTA is a multistep algorithm for sequence
alignment (Wilbur and Lipman, 1983)

p The sequence file format used by the FASTA
software iIs widely used by other sequence
analysis software

p Main idea:

n Choose regions of the two sequences (query and
database) that look promising (have some degree of
similarity)

n Compute local alignment using dynamic programming in
these regions

228

FASTA outline

p FASTA algorithm has five steps:
n 1. ldentify common k-words between | and J

n 2. Score diagonals with k-word matches,
iIdentify 10 best diagonals

n 3. Rescore Initial regions with a substitution
score matrix

n 4. Join initial regions using gaps, penalise for
gaps

n 5. Perform dynamic programming to find final
alignments

229

Search strategies

p How to speed up the computation?

n Find ways to limit the number of pairwise
comparisons

p Compare the sequences at word level to
find out common words

n Word means here a k-tuple (or a k-word), a
substring of length k

230

Analyzing the word content

p Example query string I: TGATGATGAAGACATCAG

p For k = 8, the set of k-words (substring of length
k) of I is

TGATGATG
GATGATGA
ATGATGAA
TGATGAAG

GACATCAG

231

Analyzing the word content

p There are n-k+1 k-words in a string of length n

p If at least one word of | is not found from
another string J, we know that | differs from J

p Need to consider statistical significance: | and J
might share words by chance only

p Let n=|I| and m=|J|

232

Word lists and comparison by content

p The k-words of | can be arranged into a table of
word occurences L, (1)

p Consider the k-words when k=2 and
I=GCATCGGC:

GC, CA, AT, TC, CG, GG, GC
AT: 3

CA: 2

CG:5

GC: 1,7~ Start indecies of k-word GC in |
GG: 6

TC: 4 Building L, (1) takes O(n) time

233

Common k-words

p Number of common k-words in | and J can
be computed using L, (1) and L,(J)

p For each word w in I, there are |L,(J)]
occurences in J

p Therefore 1 and J have 2_., [Luw(I)||Lw(J)]
common words

p This can be computed in O(n + m + 4k)
time
n O(n + m) time to build the lists

n O(4K) time to calculate the sum (in DNA
strings)

234

Common k-words

pl = GCATCGGC
pdJd = CCATCGCCATCG

L.(1) L,(J)

AT: 3 AT:3,9

CA: 2 CA: 2, 8
CC:1,7

CG: 5 CG: 5,11

GC: 1,7 GC: 6

GG: 6

TC: 4 TC: 4,10

235

Common words
2
2
0
2
2
0
2
1

O in total

Properties of the common word list

p Exact matches can be found using binary search
(e.g., where TCGT occurs in 1?)
n O(log 4%) time

p For large k, the table size is too large to compute
the common word count in the previous fashion

p Instead, an approach based on merge sort can be
utilised (details skipped)

p The common k-word technique can be combined
with the local alignment algorithm to yield a rapid

alignment approach

236

FASTA outline

p FASTA algorithm has five steps:
n 1. ldentify common k-words between | and J

N

n 3. Rescore Initial regions with a substitution
score matrix

n 4. Join initial regions using gaps, penalise for
gaps

n 5. Perform dynamic programming to find final
alignments

237

Dot matrix comparisons

p Word matches in two sequences | and J can be
represented as a dot matrix

p Dot matrix element (i, jJ) has "a dot”, if the word
starting at position i in | is identical to the word
starting at position j in J

p The dot matrix can be plotted for various k

i
...ATCCQ\TCA

.. TGGIGICAC ...
J

238

0] S00 1000 1500

Dot matrix (k=1,4,8,16) -
for two DNA sequences ..
X85973.1 (1875 bp)
Y11931.1 (2013 bp)

1200

1400

1600

1800

2000

500

PR S S S S S S

o soo 1000 1500

k_]6 P PSS AU S S A RS S A AT SR A AT AR

1000

1z00—

1400 — . 8 5

1600

16800

2000 —

Dot matrix
(k=1,4,8,16) for two
protein sequences
CAB51201.1 (531 aa)
CAA72681.1 (588 aa)

k=8 k=16

Shading indicates
now the match score
according to a

score matrix
(Blosum62 here)

Computing diagonal sums

p We would like to find high scoring diagonals of the dot
matrix

p Lets index diagonals by the offset, | =i -]

J
CCATCGCCATCG
*

k=2

\ Diagonal | =i—)=-6

OO0OOO0O1>00

241

Computing diagonal sums

p As an example, lets compute diagonal sums for
| = GCATCGGC, J = CCATCGCCATCG, k=2

p 1. Construct k-word list L, (J)

p 2. Diagonal sums S, are computed into a table,
Indexed with the offset and initialised to zero

|‘—10-9-8—7-6-5—4-3-2-10123456

&‘OOOOOOOOOOOOOOOOO

242

Computing diagonal sums

p 3. Go through k-words of I, look for matches in
L, (J) and update diagonal sums

For the first 2-word in |,
GC, Lgc(Jd) = {6}.

CCATCIGCICATCG

We can then update

the sum of diagonal

* * l=i—j=1-6=-5t0

* * S, =S.+1=0+1=1

OOO0-d>00
*
*

243

Computing diagonal sums

p 3. Go through k-words of I, look for matches in
L, (J) and update diagonal sums

Next 2-word in | is CA,
for which L-,(J) = {2, 8}.

CICAITCGCICAIT CG
*0

G - Two diagonal sums are
& * *’.‘ updated:
A i *o,. l1=i-j=2-2=0

T i) Spi=S,+1=0+1=1
C + *.‘
G “| 1=i-j=2-8=-6
G * Sg=S5+1=0+1=1
C

244

Computing diagonal sums

p 3. Go through k-words of I, look for matches in
L, (J) and update diagonal sums

Next 2-word in | is AT,
for which L,+(J) = {3, 9}.

CCIATICGCCIATICG
*0

G - Two diagonal sums are
C * *’.‘ updated:
A i Yo, 1=i-j=3-3=0

il *) Spi=Sy+1=1+1=2
C + *0‘
G “| 1=i-j=3-9=-6
G * Sgi=Sg+l=1+1=2
C

245

Computing diagonal sums

After going through the k-words of I, the result is:
I ’-10-9-8-7-6-5-4-3-2-10123456

3‘00004100004100000

J
CCATCGCCATCG
*

* *

OO0OOO0O1>00
*
*

246

Algorithm for computing diagonal sum of scores

S :=0foralll—-m=<l<n-1
Compute L, (J) for all words w
fori:=1ton—-k—-1do
W = Bkl
for j e L,(J) do
| :=i—]
S:=S,+1 = Match score is here 1
end
end

247

FASTA outline

p FASTA algorithm has five steps:
n 1. ldentify common k-words between | and J

n 2. Score diagonals with k-word matches,
iIdentify 10 best diagonals

N

N

n 5. Perform dynamic programming to find final
alignments

248

Rescoring Initial regions

p Each high-scoring diagonal chosen in the
previous step Is rescored according to a score

matrix

p This is done to find subregions with identities
shorter than k

p Non-matching ends of the diagonal are trimmed

| :
J:

CCATCGCCATCG L S
CCAACGCAATCA 75% identity, no 4-word identities

|": CCATCIGCCATCG 339 identit 4-word identit
- AICATCIAAATAAA o identity, one 4-word identity

249

Joining diagonals

p Two offset diagonals can be joined with a gap, if
the resulting alignment has a higher score

p Separate gap open and extension are used
p Find the best-scoring combination of diagonals

— High-scoring \
diagonals \

- / \\\\\
Twodiagonals | \.....
joined by a gap \

250

FASTA outline

p FASTA algorithm has five steps:
n 1. ldentify common k-words between | and J

n 2. Score diagonals with k-word matches,
iIdentify 10 best diagonals

n 3. Rescore Initial regions with a substitution
score matrix

n 4. Join initial regions using gaps, penalise for
gaps

N

251

Local alignment in the highest-scoring
region

p

252

Last step of FASTA: perform local
alignment using dynamic
programming around the highest-
scoring

Region to be aligned covers —w and
+w offset diagonal to the highest-
scoring diagonals

With long sequences, this region is
typically very small compared to the
whole n x m matrix

Dynamic programming matrix
M filled only for the green region

Properties of FASTA

p Fast compared to local alignment using dynamic
programming only
n Only a narrow region of the full matrix is aligned

p Increasing parameter k decreases the number of
hits:
n Increases specificity
n Decreases sensitivity
n Decreases running time

p FASTA can be very specific when identifying long
regions of low similarity
n Specific method does not find many incorrect results
n Sensitive method finds many of the correct results

253

Properties of FASTA

p FASTA looks for initial exact matches to
query seguence

n Two proteins can have very different amino
acid sequences and still be biologically similar

n This may lead into a lack of sensitivity with
diverged seqguences

254

Demonstration of FASTA at EBI

p http://www.ebi.ac.uk/fasta/

p Note that parameter ktup in the software
corresponds to parameter Kk in lectures

255

http://www.ebi.ac.uk/fasta/

