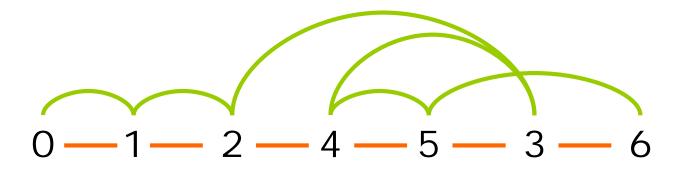
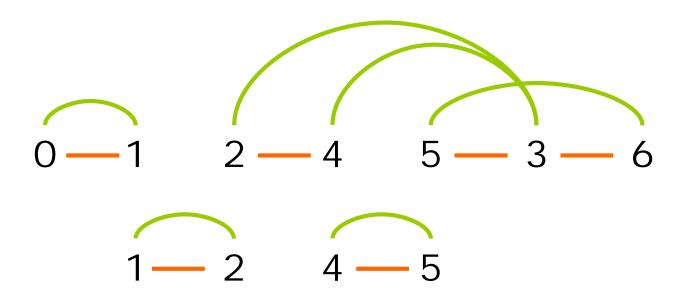
How good is simple reversal sort?


P Not so good actually

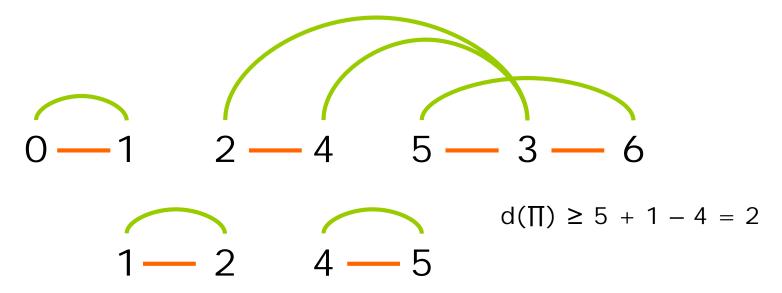
- p It has to do at most n-1 reversals with permutation of length n
- p The algorithm can return a distance that is as large as (n - 1)/2 times the correct result d(Π)
 - **n** For example, if n = 1001, result can be as bad as 500 x d(Π)

Estimating reversal distance by cycle decomposition

P We can estimate d(∏) by cycle decomposition


p Lets represent permutation $\Pi = 1 \ 2 \ 4 \ 5 \ 3$ with the following graph

where edges correspond to adjacencies (identity, permutation F)


Estimating reversal distance by cycle decomposition

p Cycle decomposition: a set of cycles that
 n have edges with alternating colors
 n do not share edges with other cycles (=cycles are edge disjoint)

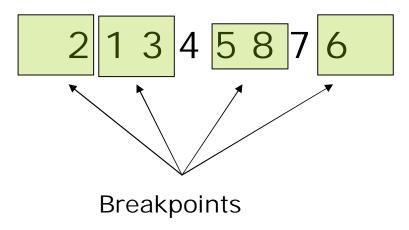
Cycle decompositions

- P Let c(∏) the maximum number of alternating, edge-disjoint cycles in the graph representation of ∏
- p The following formula allows estimation of $d(\Pi)$ n $d(\Pi) \ge n + 1 - c(\Pi)$, where n is the permutation length

Claim in Deonier: equality holds for "most of the usual and interesting biological systems.

Cycle decompositions

p Cycle decomposition is NP-complete


- n We cannot solve the general problem exactly for large instances
- p However, with signed data the problem becomes easy
 - n Before going into signed data, lets discuss another algorithm for the general case

Computing reversals with breakpoints

- p Lets investigate a better way to compute reversal distance
- p First, some concepts related to permutation $\Pi_1 \Pi_{2,...} \Pi_{n-1} \Pi_n$
 - n Breakpoint: two elements \prod_i and \prod_{i+1} are a *breakpoint*, if they are not consecutive numbers
 - n Adjacency: if \prod_i and \prod_{i+1} are consecutive, they are called *adjacency*

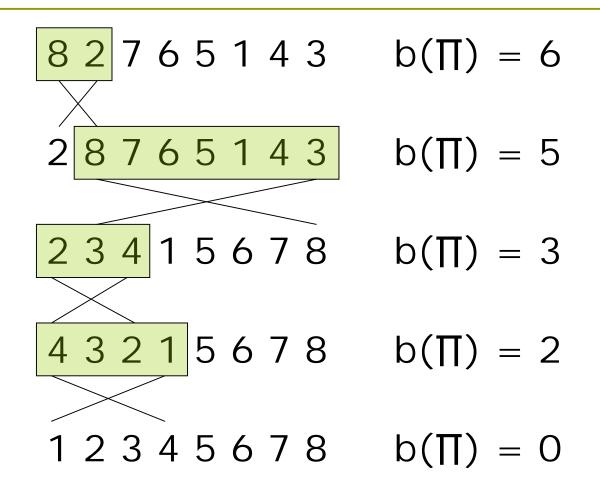
Breakpoints and adjacencies

This permutation contains four breakpoints *begin*-2, 13, 58, 6-*end* and five adjacencies 21, 34, 45, 87, 76

Breakpoints

P Each breakpoint in permutation needs to be removed to get to the identity permutation (=our target)

n Identity permutation does not contain any breakpoints


- p First and last positions special cases
- P Note that each reversal can remove at most two breakpoints
- p Denote the number of breakpoints by $b(\Pi)$

Breakpoint reversal sort

p Idea: try to remove as many breakpoints as possible (max 2) in every step

- 1. While $b(\Pi) > 0$
- 2. Choose reversal p that removes most breakpoints
- 3. Perform reversal p to Π
- 4. Output ∏
- 5. return

Breakpoint removal: example

Breakpoint removal

p The previous algorithm needs refinement to be correct

p Consider the following permutation:

15672348

- p There is no reversal that decreases the number of breakpoints!
- p See Jones & Pevzner for detailed description on this

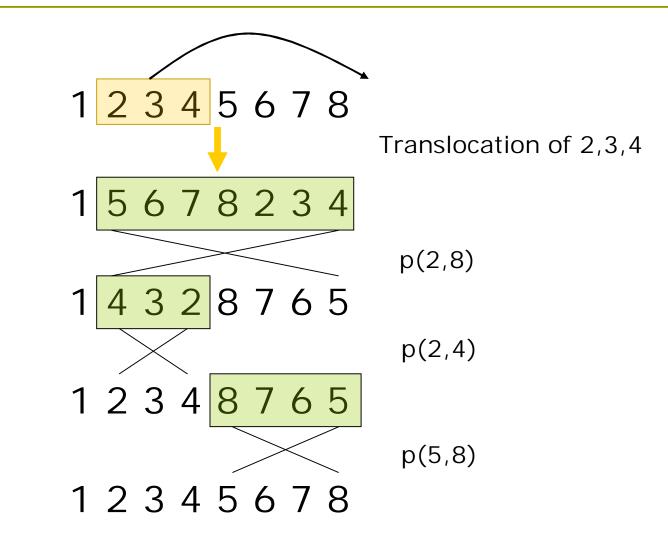
Strip: maximal segment without breakpoints

Increasing stripDecreasing strip

p Reversal can only decrease breakpoint count if permutation contains *decreasing strips*

Improved breakpoint reversal sort

- 1. While $b(\Pi) > 0$
- 2. If Π has a decreasing strip
- *3.* Do reversal p that removes most BPs
- 4. Else
- 5. Reverse an increasing strip
- 6. Output ∏
- 7. return


Is Improved BP removal enough?

p The algorithm works pretty well:

- n It produces a result that is at most four times worse than the optimal result
- n ... is this good?

p We considered only reversalsp What about translocations & duplications?

Translocations via reversals

Genome rearrangements with reversals

- P With unsigned data, the problem of finding minimum reversal distances is NPcomplete
 - n Why is this so if sorting is easy?
- P An algorithm has been developed that achieves 1.375-approximation
- p However, reversal distance in signed data can be computed quickly!
 - n It takes linear time w.r.t. the length of permutation (Bader, Moret, Yan, 2001)

Cycle decomposition with signed data

p Consider the following two permutations that include *orientation* of markers n J: +1 +5 -2 +3 +4 n K: +1 -3 +2 +4 -5

We modify this representation a bit to include both endpoints of each marker:
n J': 0 1a 1b 5a 5b 2b 2a 3a 3b 4a 4b 6
n K': 0 1a 1b 3b 3a 2a 2b 4a 4b 5b 5a 6

Graph representation of J' and K'

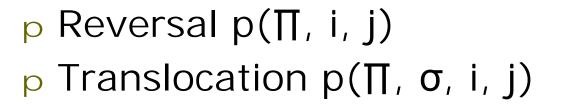
p Drawn online in lecture!

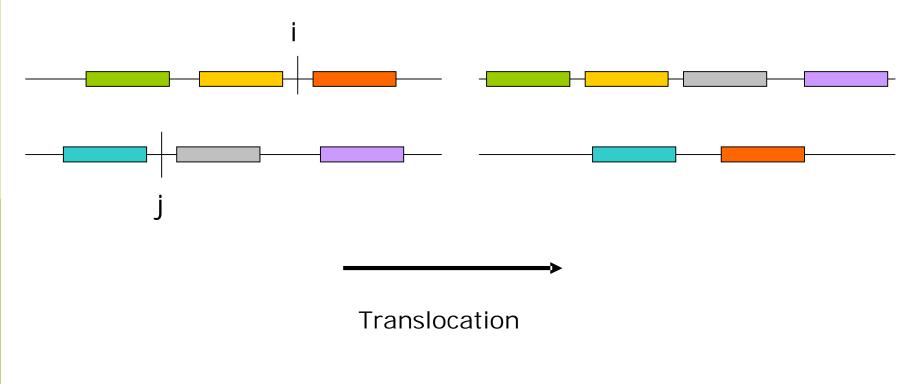
Multiple chromosomes

- In unichromosomal genomes, inversion (reversal) is the most common operation
- p In multichromosomal genomes, inversions, translocations, *fissions* and *fusions* are most common

Multiple chromosomes

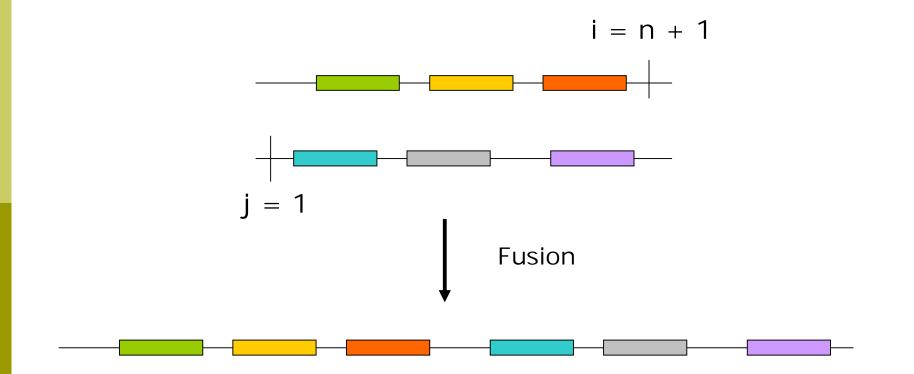
p Lets represent multichromosomal genome as a set of permutations, with \$ denoting the boundary of a chromosome:

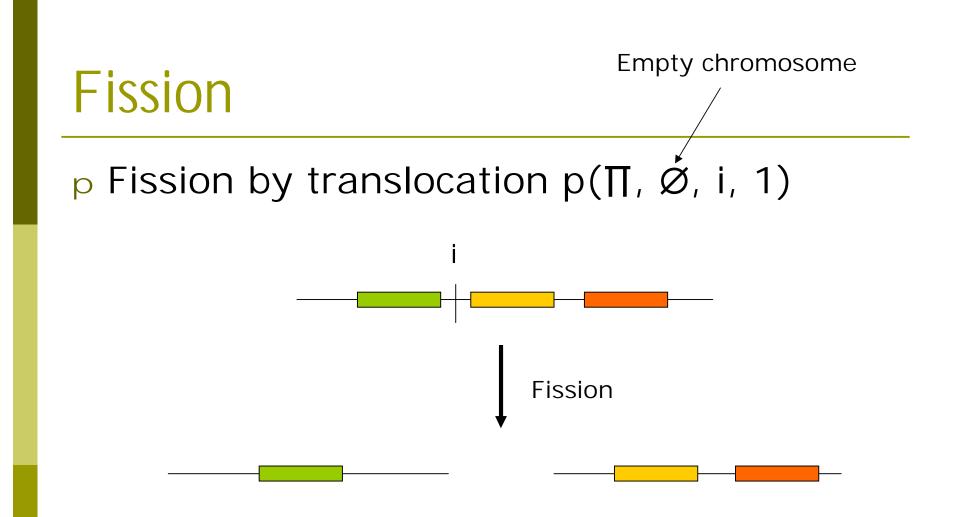

59\$	Chr 1
1328	\$ Chr 2
764\$	Chr 3


This notation is frequently used in software used to analyse genome rearrangements.

Multiple chromosomes

p Note that when dealing with multiple chromosomes, you need to specify numbering for elements on both genomes




Fusions & fissions

- p Fusion: merging of two chromosomes
- p Fission: chromosome is split into two chromosomes
- p Both events can be represented with a translocation

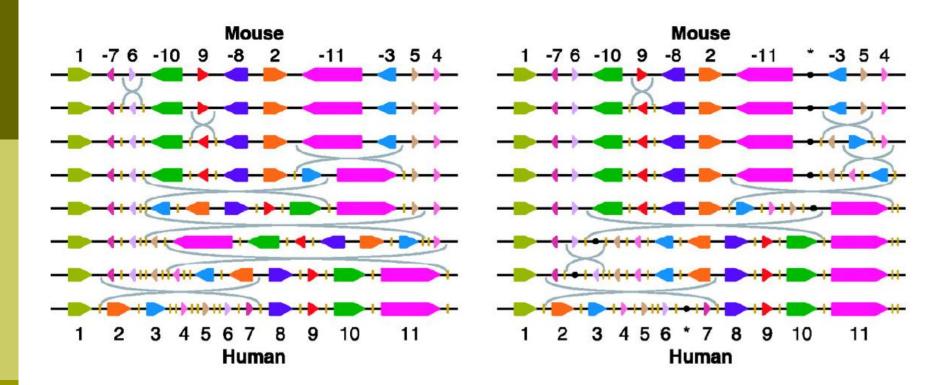
Fusion

p Fusion by translocation p(Π , σ , n+1, 1)

Algorithms for general genomic distance problem

P Hannenhalli, Pevzner: Transforming Men into Mice (polynomial algorithm for genomic distance problem), 36th Annual IEEE Symposium on Foundations of Computer Science, 1995

Human & mouse revisited


- P Human and mouse are separated by about
 75-83 million years of evolutionary history
- p Only a few hundred rearrangements have happened after speciation from the common ancestory
- p Pevzner & Tesler identified in 2003 for 281 synteny blocks a rearrangement from mouse to human with
 - n 149 inversions
 - n 93 translocations
 - n 9 fissions

Discussion

- p Genome rearrangement events are very rare compared to, e.g., point mutations
 n We can study rearrangement events further back in the evolutionary history
- P Rearrangements are easier to detect in comparison to many other genomic events
- P We cannot detect homologs 100% correctly so the input permutation can contain errors

Discussion

- p Genome rearrangement is to some degree constrained by the number and size of repeats in a genome
 - n Notice how the importance of genomic repeats pops up once again
- p Sequencing gives us (usually) signed data so we can utilize faster algorithms
- p What if there are more than one optimal solution?

Two different genome rearrangement scenarios giving the same result.

GRIMM demonstration

GRIMM - Genome rearrangement algorithms

	Multiple genome form			
Source genome:				
Destination genome	<u>.</u>			
Chromosomes:	⊂circular ⊂linear (directed) ⊙r	multichromosomal or undirector	4	
Signs:	 Signed ○unsigned 	numerican of the sound of the second	A	
	run undo clear form	Or, choose sample	e data 🔽	
Formatting options				
Formatting o	ptions			
Formatting o Report Style:	One line per genome	One column	Two column before & after	
•	One line per genome (chromosomes concatenated)	(chromosomes separated)	(chromosomes separated)	
•	One line per genome			
•	One line per genome (chromosomes concatenated) ⊚ Horizontal	(chromosomes separated) O Yes	(chromosomes separated) O Show all chromosomes	
•	One line per genome (chromosomes concatenated) ◎ Horizontal ◎ Vertical	(chromosomes separated) O Yes of optimal scenarios O	 (chromosomes separated) Show all chromosomes Only affected chromosomes 	
<u>Report Style:</u> <u>Highlighting style:</u>	One line per genome (chromosomes concatenated) Horizontal Vertical Show all possible initial steps of Should operations (reversal, translet) before after between/bott 	(chromosomes separated) Yes of optimal scenarios O ocation, fission, fusion) be high O no highlighting	 (chromosomes separated) Show all chromosomes Only affected chromosomes 	
Report Style:	One line per genome (chromosomes concatenated) Horizontal Vertical Show all possible initial steps of Should operations (reversal, transleters)	(chromosomes separated) Yes of optimal scenarios O ocation, fission, fusion) be high O no highlighting	 (chromosomes separated) Show all chromosomes Only affected chromosomes 	
<u>Report Style:</u> <u>Highlighting style:</u> <u>Chromosome end</u>	One line per genome (chromosomes concatenated) Horizontal Vertical Show all possible initial steps of Should operations (reversal, translet) before after between/bott 	(chromosomes separated) ○ Yes of optimal scenarios ○ ocation, fission, fusion) be high n ○ no highlighting n) ○ omit	(chromosomes separated) Show all chromosomes Only affected chromosomes lighted, and when?	
<u>Report Style:</u> <u>Highlighting style:</u> <u>Chromosome end</u> <u>format:</u>	One line per genome (chromosomes concatenated) Horizontal Vertical Show all possible initial steps of Should operations (reversal, translet) before after between/bott numeric (10) subscripts (C10) 	(chromosomes separated) ○ Yes of optimal scenarios ○ ocation, fission, fusion) be high n ○ no highlighting n) ○ omit	(chromosomes separated) Show all chromosomes Only affected chromosomes lighted, and when?	

GRIMM 1.04 by <u>Glenn Tesler</u>, University of California, San Diego.

Copyright © 2001-2005, The University of California.

Contains code from GRAPPA, © 2000-2001, The University of New Mexico and The University of Texas at Austin.

Glenn Tesler, GRIMM: genome rearrangements web server. Bioinformatics, 2002,

GRIMM file format

useful comment about first genome # another useful comment about it >name of first genome 1 -4 2 \$ # chromosome 1 -3 5 6 # chromosome 2 >name of second genome 5 -3 \$ 6 \$ 2 -4 1 \$

GRIMM supports analysis of one, two or more genomes