Inferring the Past. Phylogenetic
Trees (chapter 12)

p The biological problem
p Parsimony and distance methods

p Models for mutations and estimation of
distances

p Maximum likelihood methods



Parsimony method

p The parsimony method finds the tree that
explains the observed sequences with a
minimal number of substitutions

p Method has two steps

n Compute smallest number of substitutions for
a given tree with a parsimony algorithm

n Search for the tree with the minimal number of
substitutions
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Parsimony: an example

p Consider the following short sequences

1ACTTT
2 ACATT
3 AACGT
4 AATGT
SO AATTT

p There are 105 possible rooted trees for 5
seguences

p Example: which of the following trees
explains the sequences with least number
of substitutions?
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9 AATTT

A->C
T5G 7 AATTT
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TosC ‘6 AATGT ‘ T->A ‘8 ACTTT ‘

3 4 S) 2 1
AACGT AATGT AATTT ACATT ACTTT

This tree explains the sequences
with 4 substitutions



9 AATTT

ubstitutions... oG S AATTT

First tree Is
AsC  more

TosC ‘GAATGT ‘

parsimonious!

T-5A ‘8 ACTTT ‘

3 4 5 2 1
AACGT AATGT  AATTT  ACATT  ACTTT
T-G 9 AATTT
6 o Asc | T-C 8 AATGT
substitutions... g>T| 7 AACGT
C->T ‘GACCTT ‘ C->A
1 2 3 4 5
ACTTT  ACATT  AACGT AATGT  AATTT
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Computing parsimony

p Parsimony treats each site (position in a
sequence) independently

p IS the sum of parsimony
costs (=required substitutions) of each site

p We can compute the minimal parsimony cost for
a given tree by

n First finding out possible assignments at each node,
starting from leaves and proceeding towards the root

n Then, starting from the root, assign a letter at each
node, proceeding towards leaves
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Labelling tree nodes

p An unrooted tree with n leaves contains 2n-1
nodes altogether
p Assign the following labels to nodes in a rooted

tree

n leaf nodes: 1, 2, ..., n

n Internal nodes: n+1, n+2, ..., 2n-1 9
n root node: 2n-1

p The label of a child node is always
smaller than the label of the

parent node

6 7

O @ 6® @0 6
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Parsimony algorithm: first phase

p Find out possible assignments at every node for each
site u independently. Denote site u in sequence | by

Si,u.

Fori:=1, ..,ndo
Fi = {Si,u} % possible assignments at node |
L,:=0 % number of substitutions up to node i

Fori:=n+l, .., 2n-1do
Let j and k be the children of node i
IfFNF =0
thenl; =L+ L +1, F:=FUF
elsel;:=L;+L,F:=FnkF
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Parsimony algorithm: first phase

Choose u = 3 (for example, in general we do this for all sites)
F, = {T}
L, = |

9
F, = {A}
L, := ;
i T
Fai= ATk bas 3 4 5 2 1
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Parsimony algorithm: first phase

Fe:=F,UF,={C, T}
L=l +L,+1=1

9T
F, = FsnFy = {T} -
L=l +Llg=1 [AK
6 {C,T}> S1A, TJ-
Foi=F UF,={A T} £ | BITH|
Ly =L +L,+1=1 3 4 5 2 1

AACGT  AATGT  AATTT  ACATT  ACTTT
Fo = F, nFg={T}

= + = ) . .
Lo =ly+lg=2 = Parsimony cost for site 3 is 2
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Parsimony algorithm: second phase

p Backtrack from the root and assign X < F,
at each node

p If we assigned y at parent of node | and y
e F, then assigny

p Else assign x  F; by random
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Parsimony algorithm: second phase

At node 6, the |

algorithm assigns T oT

because T was

assigned to parent [al

node7and T € Fy,. 5 {QT}{ ‘ 8 AT) ‘

T is assigned to node 8

for the same reason. 3 4 = 2 1

AACGT AATGT AATTT ACATT ACTTT

The other nodes have
only one possible letter
to assign
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Parsimony algorithm

First and second phase are

repeated for each site in

the sequences,
summing the parsimony
costs at each site
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Properties of parsimony algorithm

p Parsimony algorithm requires that the sequences
are of same length

n First align the sequences against each other and,
optionally, remove indels

n Then compute parsimony for the resulting sequences
n Indels (if present) considered as characters

p Is the most parsimonious tree the correct tree?

n Not necessarily but it explains the sequences with least
number of substitutions

n We can assume that the probability of having fewer
mutations is higher than having many mutations
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Finding the most parsimonious tree

p Parsimony algorithm calculates the
parsimony cost for a given tree...

p ...but we still have the problem of finding
the tree with the lowest cost

p Exhaustive search (enumerating all trees)
IS In general impossible
p More efficient methods exist, for example

n Probabilistic search
n Branch and bound
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Branch and bound In parsimony

p We can exploit the fact that adding edges
to a tree can only increase the parsimony

cost T
i}
g -
1 2 3 1 2
AATGT AATTT AACGT AATGT AATTT

cost O cost 1
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Branch and bound In parsimony

Branch and bound is
a general search
strategy where

p Each solution is
potentially generated

p Track is kept of the
best solution found

p If a partial solution
cannot achieve better
score, we abandon
the current search
path
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In parsimony...

o)

Start from a tree with 1
sequence

p Add a sequence to the tree

o)

and calculate parsimony
cost

If the tree is complete,
check if found the best tree
so far

If tree is not complete and
cost exceeds best tree
cost, do not continue
adding edges to this tree



Complete tree:

Branch and bound example [&@ =

Example with 4 sequences

EN ﬁl}fﬂ D [

N N el afrs

a
1 2 3 4

Ha--

Y
w

@

Partial tree:

Compute parsimony cost

‘ and compare against best
so far;

4 Do not continue expansion

if above cost of the best tree
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Distance methods

p The parsimony method works on sequence
(character string) data

p We can also build phylogenetic trees in a
more general setting

p Distance methods work on a set of
pairwise distances d; for the data

p Distances can be obtained from
ohenotypes as well as from genotypes
(seguences)
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Distances In a phylogenetic tree

p Distance matrix D = (dj)
gives pairwise distances
for leaves of the

phylogenetic tree !
p In addition, the ° 8
phylogenetic tree will 0 » @ @ 6

now specify distances

between leaves and Distance d; states how

internal nodes | far apart species i and j
n Denote these with d;; as are evolutionary (e.g.,
well number of mismatches in

aligned sequences)
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Distances In evolutionary context

p Distances d;; in evolutionary context
satisfy the following conditions

n Symmetry: d; = d;; for each i, j
n Distinguishability: d; # O if and only if i #]
n Triangle inequality: d; < d;, + d,; for each i, J, k
p Distances satisfying these conditions are called
metric

p In addition, evolutionary mechanisms may
Impose additional constraints on the distances

> additive and ultrametric distances
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Additive trees

p A tree Is called additive, If the distance

p

375

between any pair of leaves (i, j) is the
sum of the distances between the leaves

and a node k on the shortest path from i
to J In the tree

djj = djy + dj,

"Follow the path from the leaf | to the leaf
J to find the exact distance d; between the

leaves.”



Additive trees: example

A B C D

A |0 2 4 4

B |12 0 4 4



Ultrametric trees

p A rooted additive tree is called an ultrametric
tree, If the distances between any two leaves i
and j, and their common ancestor k are equal

dy = djk

p Edge length d; corresponds to the time elapsed
since divergence of i and j from the common
parent

p In other words, edge lengths are measured by a
molecular clock with a constant rate
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|dentifying ultrametric data

p We can identify distances to be ultrametric
by the three-point condition:

D corresponds to an ultrametric tree if
and only If for any three species i, j and
k, the distances satisfy d;; = max(d;, dy)

p If we find out that the data is ultrametric, we can
utilise a simple algorithm to find the
corresponding tree
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Ultrametric trees

Time
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Ultrametric trees

9
d8 9 .
! Only vertical segments of the
S tree have correspondence to
S 8 some distance d;:
- 7 Horizontal segments act as
connectors.
6
..... Ve b D DSETVALION time
5 4 3 2 1
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Ultrametric trees

9 |

di = d; for any two leaves

I, ] and any ancestor k of

| and j
O 8
=
" 7

6
..... VObservatlon tlme
5 4 3 2 1
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Ultrametric trees

Three-point condition: there are

O 8 no leafs i, j for which d; > max(d,, d;)
£ for some leaf k.
|_
2
6
..... Vo) OlSETVALION time
5 4 3 2 1
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UPGMA algorithm

p UPGMA (unweighted pair group method
using arithmetic averages) constructs a
phylogenetic tree via clustering

p The algorithm works by at the same time
n Merging two clusters
n Creating a new node on the tree

p The tree is built from leaves towards the
root

p UPGMA produces a ultrametric tree
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Cluster distances

p Let distance d;; between clusters C; and C;

be 1
di; = _ d
J |Ci||'-':j| Z rgq

peCigel;

that is, the average distance between
points (species) Iin the cluster.
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UPGMA algorithm

p Initialisation
n Assign each point i to its own cluster C,

n Define one leaf for each sequence, and place it at height
Zero

p lteration
n Find clusters 1 and j for which d;; is minimal
n Define new cluster k by C, = C; u C;, and define d,, for all |
n Define a node k with children i and J. Place k at height d;;/2
n Remove clusters i and j

p Termination:
n When only two clusters I and j remain, place root at height d;;/2
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UPGMA implementation

p IN naive implementation, each iteration
takes O(n2) time with n sequences ==
algorithm takes O(n3) time

p The algorithm can be implemented to take
only O(n?) time (see Gronau & Moran,
2006, for a survey)
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Problem solved?

p We now have a simple algorithm which finds a
ultrametric tree

n If the data is ultrametric, then there is exactly one

ultrametric tree corresponding to the data (we skip the
proof)

n The tree found is then the ”correct” solution to the
phylogeny problem, if the assumptions hold

p Unfortunately, the data is not ultrametric in
practice
n Measurement errors distort distances

n Basic assumption of a molecular clock does not hold
usually very well
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Incorrect reconstruction of non-
ultrametric data by UPGMA

5 3
4
1 1 4 2 3
Tree which corresponds Incorrect ultrametric reconstruction
to non-ultrametric by UPGMA algorithm

distances
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Checking for additivity

p How can we check if our data i1s additive?

p Let 1, J, k and | be four distinct species

p Compute 3 sums: d;; + dy, d; + d
+ oljk

dil

i
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Four-point condition
|~ dliy

N

p The sums are represented by the three figures
n Left and middle sum cover all edges, right sum does not

p Four-point condition: i, j, k and | satisfy the four-
point condition if two of the sums d;; + d, dy +

d;, d; + d;  are the same, and the third one is
smaller than these two
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Checking for additivity

p An N X n matrix D Is additive if and only if
the four point condition holds for every 4
distinct elements 1 <1, J, k, | =n
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Finding an additive phylogenetic tree

p Additive trees can be found with, for example,
the neighbor joining method (Saitou & Nei, 1987)

p The neighbor joining method produces unrooted
trees, which have to be rooted by other means
n A common way to root the tree is to use an outgroup

n Outgroup is a species that is known to be more distantly
related to every other species than they are to each
other

n Root node candidate: position where the outgroup would
join the phylogenetic tree

p However, In real-world data, even additivity
usually does not hold very well
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Neighbor joining algorithm

p Neighbor joining works in a similar fashion
to UPGMA

n Find clusters C, and C, that minimise a
function f(C,, C,)

n Join the two clusters C; and C, into a new
cluster C

n Add a node to the tree corresponding to C
n Assign distances to the new branches

p Differences In

n The choice of function f(C,, C,)
n How to assign the distances
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Neighbor joining algorithm

p Recall that the distance d;; for clusters C; and C;
was 1

Gl 2

pel;.gel

d’f’j — ’ip-ir

p Let u(C;) be the separation of cluster C; from
other clusters defined by

— ml - .
u(C'I») T =92 ZC;} dzJ
where n is the number of clusters.
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Neighbor joining algorithm

p Instead of trying to choose the clusters C,
and C; closest to each other, neighbor
joining at the same time

n Minimises the distance between clusters C, and
C; and

n Maximises the separation of both C; and C;
from other clusters
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Neighbor joining algorithm

p Initialisation as in UPGMA
p lteration
n Find clusters 1 and j for which d;; - u(C;) - u(C;) is minimal
n Define new cluster k by C, = C; u C;, and define d,, for all |
n Define a node k with edges to i1 and jJ. Remove clusters i and j
n Assign length 72 d;; + % (u(C;) - u(C;)) to the edge i —> k
n Assign length 2 d;; + % (u(C;) - u(C))) to the edge | -> k
p Termination:
n When only one cluster remains
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Neighbor joining algorithm: example

402

a b c d | ju(i)
a0 6 7 5 a |(6+7+5)/2 =9
b 011 9 b [ (6+11+9)/2 = 13
C 0O 6 c [(7+11+6)/2 = 12
d 0 d | (5+9+6)/2 = 10
L) [ dy - u(G) - u(G) ...
a, b I6I - Q 13 =.-16.-
a,c| 7 - 9 .12 = -14
2 2 1? _ 12 _ 1(2) ; 12 Ch_opse either pair
b, d 9 - 13 - 10 = -14 to join
c,d| 6 - 12 - 10 = -16.

Sggnt



Neighbor joining algorithm: example
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a b c d | lu(l)

al0 6 7 5 a |(6+7+5)/2 = 9

b 011 9 b | (6+11+9)/2 = 13

C O 6 c | (7+11+6)/2 = 12

d 0 d [ (5+9+6)/2 = 10
L dy - u(G) - u(G) ... :
a, c [/ - 9 - 12 = -14
a,d| 5 - 9 - 10 = -14 a b c d
b,c| 11 - 13 - 12 = -14 d_=%6+%(9-13)=1
b, d 9 - 13 - 10 =-14 d . =%6+%(13-9)=5
c,d 6 - 12 - 10 = -16

This is the first step only...



Inferring the Past. Phylogenetic
Trees (chapter 12)

p The biological problem
p Parsimony and distance methods

p Models for mutations and estimation of
distances
p Maximum likelihood methods

n These parts of the book is skipped on this

course (see slides of 2007 course for material
on these topics)

n NO questions in exams on these topics!
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Problems with tree-building

p Assumptions
n Sites evolve independently of one other

n (Sites evolve according to the same stochastic
model; not really covered this year)

n The tree iIs rooted
n The sequences are aligned
n Vertical inheritance
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Additional material on phylogenetic
trees

p Durbin, Eddy, Krogh, Mitchison: Biological
seguence analysis

p Jones, Pevzner: An introduction to
bioinformatics algorithms

p Gusfield: Algorithms on strings, trees, and
sequences

p Course on phylogenetic analyses in Spring
2009
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