
354

Inferring the Past: Phylogenetic
Trees (chapter 12)
p The biological problem
p Parsimony and distance methods
p Models for mutations and estimation of

distances
p Maximum likelihood methods

355

Parsimony method
p The parsimony method finds the tree that

explains the observed sequences with a
minimal number of substitutions

p Method has two steps
n Compute smallest number of substitutions for

a given tree with a parsimony algorithm
n Search for the tree with the minimal number of

substitutions

356

Parsimony: an example
p Consider the following short sequences

1 ACTTT
2 ACATT
3 AACGT
4 AATGT
5 AATTT

p There are 105 possible rooted trees for 5
sequences

p Example: which of the following trees
explains the sequences with least number
of substitutions?

357

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 AATGT

7 AATTT

8 ACTTT

9 AATTT

T->C

T->G

T->A

A->C

This tree explains the sequences
with 4 substitutions

358

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 AATGT

7 AATTT

8 ACTTT

9 AATTT

T->C

T->G

T->A

A->C

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 ACCTTC->T

7 AACGT
8 AATGT

9 AATTT

G->T
T->C

T->G

A->C

C->A

6
substitutions…

First tree is
more
parsimonious!

4
substitutions…

359

Computing parsimony
p Parsimony treats each site (position in a

sequence) independently
p Total parsimony cost is the sum of parsimony

costs (=required substitutions) of each site
p We can compute the minimal parsimony cost for

a given tree by
n First finding out possible assignments at each node,

starting from leaves and proceeding towards the root
n Then, starting from the root, assign a letter at each

node, proceeding towards leaves

360

Labelling tree nodes
p An unrooted tree with n leaves contains 2n-1

nodes altogether
p Assign the following labels to nodes in a rooted

tree
n leaf nodes: 1, 2, …, n
n internal nodes: n+1, n+2, …, 2n-1
n root node: 2n-1

p The label of a child node is always
smaller than the label of the
parent node

2 3 4 51

6

8

7

9

361

Parsimony algorithm: first phase
p Find out possible assignments at every node for each

site u independently. Denote site u in sequence i by
si,u.

For i := 1, …, n do
Fi := {si,u} % possible assignments at node i
Li := 0 % number of substitutions up to node i

For i := n+1, …, 2n-1 do
Let j and k be the children of node i
If Fj Fk =

then Li := Lj + Lk + 1, Fi := Fj Fk
else Li := Lj + Lk, Fi := Fj Fk

362

Parsimony algorithm: first phase

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

Choose u = 3 (for example, in general we do this for all sites)
F1 := {T}
L1 := 0
F2 := {A}
L2 := 0

F3 := {C}, L3 := 0

F4 := {T}, L4 := 0

F5 := {T}, L5 := 0

6

7

8

9

363

Parsimony algorithm: first phase

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 {C,T}

7 T

8 {A, T}

9 T

F8 := F1 F2 = {A, T}
L8 := L1 + L2 + 1 = 1

F6 := F3 F4 = {C, T}

L6 := L3 + L4 + 1 = 1

F7 := F5 F6 = {T}
L7 := L5 + L6 = 1

F9 := F7 F8 = {T}
L9 := L7 + L8 = 2 Parsimony cost for site 3 is 2

364

Parsimony algorithm: second phase
p Backtrack from the root and assign x Fi

at each node
p If we assigned y at parent of node i and y

Fi, then assign y
p Else assign x Fi by random

365

Parsimony algorithm: second phase

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 {C,T}

7 T

8 {A,T}

9 T

At node 6, the
algorithm assigns T
because T was
assigned to parent
node 7 and T F6.

T is assigned to node 8
for the same reason.

The other nodes have
only one possible letter
to assign

366

Parsimony algorithm

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 T

7 T

8 T

9 T

First and second phase are
repeated for each site in
the sequences,
summing the parsimony
costs at each site

367

Properties of parsimony algorithm
p Parsimony algorithm requires that the sequences

are of same length
n First align the sequences against each other and,

optionally, remove indels
n Then compute parsimony for the resulting sequences
n Indels (if present) considered as characters

p Is the most parsimonious tree the correct tree?
n Not necessarily but it explains the sequences with least

number of substitutions
n We can assume that the probability of having fewer

mutations is higher than having many mutations

368

Finding the most parsimonious tree
p Parsimony algorithm calculates the

parsimony cost for a given tree…
p …but we still have the problem of finding

the tree with the lowest cost
p Exhaustive search (enumerating all trees)

is in general impossible
p More efficient methods exist, for example
n Probabilistic search
n Branch and bound

369

Branch and bound in parsimony
p We can exploit the fact that adding edges

to a tree can only increase the parsimony
cost

1

AATGT

2

AATTT

3

AACGT

1

AATGT

2

AATTT

{T}
{T}

{C, T}

cost 0 cost 1

370

Branch and bound in parsimony
Branch and bound is
a general search
strategy where

p Each solution is
potentially generated

p Track is kept of the
best solution found

p If a partial solution
cannot achieve better
score, we abandon
the current search
path

In parsimony…
p Start from a tree with 1

sequence
p Add a sequence to the tree

and calculate parsimony
cost

p If the tree is complete,
check if found the best tree
so far

p If tree is not complete and
cost exceeds best tree
cost, do not continue
adding edges to this tree

371

Branch and bound example

1 1 2 31 2 31 2 4

…

Complete tree:
compute parsimony
cost

Example with 4 sequences

Partial tree:
Compute parsimony cost
and compare against best
so far;
Do not continue expansion
if above cost of the best tree

31 2 4
21 3 4

21 3 4

1 3
21 3

372

Distance methods
p The parsimony method works on sequence

(character string) data
p We can also build phylogenetic trees in a

more general setting
p Distance methods work on a set of

pairwise distances dij for the data
p Distances can be obtained from

phenotypes as well as from genotypes
(sequences)

373

Distances in a phylogenetic tree
p Distance matrix D = (dij)

gives pairwise distances
for leaves of the
phylogenetic tree

p In addition, the
phylogenetic tree will
now specify distances
between leaves and
internal nodes
n Denote these with dij as

well

2 3 4 51

6

7

8

Distance dij states how
far apart species i and j
are evolutionary (e.g.,
number of mismatches in
aligned sequences)

374

Distances in evolutionary context
p Distances dij in evolutionary context

satisfy the following conditions
n Symmetry: dij = dji for each i, j
n Distinguishability: dij 0 if and only if i j
n Triangle inequality: dij dik + dkj for each i, j, k

p Distances satisfying these conditions are called
metric

p In addition, evolutionary mechanisms may
impose additional constraints on the distances

additive and ultrametric distances

375

Additive trees
p A tree is called additive, if the distance

between any pair of leaves (i, j) is the
sum of the distances between the leaves
and a node k on the shortest path from i
to j in the tree

dij = dik + djk

p ”Follow the path from the leaf i to the leaf
j to find the exact distance dij between the
leaves.”

376

Additive trees: example

0244D

2044C

4402B

4420A

DCBA
A

B

C

D

1

1

2 1

1

377

Ultrametric trees
p A rooted additive tree is called an ultrametric

tree, if the distances between any two leaves i
and j, and their common ancestor k are equal

dik = djk

p Edge length dij corresponds to the time elapsed
since divergence of i and j from the common
parent

p In other words, edge lengths are measured by a
molecular clock with a constant rate

378

Identifying ultrametric data
p We can identify distances to be ultrametric

by the three-point condition:
D corresponds to an ultrametric tree if
and only if for any three species i, j and
k, the distances satisfy dij max(dik, dkj)

p If we find out that the data is ultrametric, we can
utilise a simple algorithm to find the
corresponding tree

379

Ultrametric trees
9

8

7

5 4 3 2 1

6

Observation time

Ti
m

e

380

Ultrametric trees
9

8

7

5 4 3 2 1

6

Observation time

Ti
m

e

Only vertical segments of the
tree have correspondence to
some distance dij:

Horizontal segments act as
connectors.

d8,9

381

Ultrametric trees
9

8

7

5 4 3 2 1

6

Observation time

Ti
m

e

dik = djk for any two leaves
i, j and any ancestor k of
i and j

382

Ultrametric trees
9

8

7

5 4 3 2 1

6

Observation time

Ti
m

e

Three-point condition: there are
no leafs i, j for which dij > max(dik, djk)
for some leaf k.

383

UPGMA algorithm
p UPGMA (unweighted pair group method

using arithmetic averages) constructs a
phylogenetic tree via clustering

p The algorithm works by at the same time
n Merging two clusters
n Creating a new node on the tree

p The tree is built from leaves towards the
root

p UPGMA produces a ultrametric tree

384

Cluster distances
p Let distance dij between clusters Ci and Cj

be

that is, the average distance between
points (species) in the cluster.

385

UPGMA algorithm
p Initialisation

n Assign each point i to its own cluster Ci

n Define one leaf for each sequence, and place it at height
zero

p Iteration
n Find clusters i and j for which dij is minimal
n Define new cluster k by Ck = Ci Cj, and define dkl for all l
n Define a node k with children i and j. Place k at height dij/2
n Remove clusters i and j

p Termination:
n When only two clusters i and j remain, place root at height dij/2

386

1 2

3

4

5

387

1 2

3

4

5
1 2

6

388

1 2

3

4

5
1 2 4 5

6 7

389

1 2

3

4

5
1 2 4 5

6 7

8

3

390

1 2

3

4

5
1 2 4 5

6 7

8

3

9

391

UPGMA implementation
p In naive implementation, each iteration

takes O(n2) time with n sequences =>
algorithm takes O(n3) time

p The algorithm can be implemented to take
only O(n2) time (see Gronau & Moran,
2006, for a survey)

392

Problem solved?
p We now have a simple algorithm which finds a

ultrametric tree
n If the data is ultrametric, then there is exactly one

ultrametric tree corresponding to the data (we skip the
proof)

n The tree found is then the ”correct” solution to the
phylogeny problem, if the assumptions hold

p Unfortunately, the data is not ultrametric in
practice
n Measurement errors distort distances
n Basic assumption of a molecular clock does not hold

usually very well

393

Incorrect reconstruction of non-
ultrametric data by UPGMA

1

2 3

4
1 2 34

Tree which corresponds
to non-ultrametric
distances

Incorrect ultrametric reconstruction
by UPGMA algorithm

394

Checking for additivity
p How can we check if our data is additive?
p Let i, j, k and l be four distinct species

p Compute 3 sums: dij + dkl, dik + djl, dil
+ djk

395

Four-point condition
i

j l

k i

j l

k i

j l

kdik

djl

dil

djk

dij dkl

p The sums are represented by the three figures
n Left and middle sum cover all edges, right sum does not

p Four-point condition: i, j, k and l satisfy the four-
point condition if two of the sums dij + dkl, dik +
djl, dil + djk are the same, and the third one is
smaller than these two

396

Checking for additivity
p An n x n matrix D is additive if and only if

the four point condition holds for every 4
distinct elements 1 i, j, k, l n

397

Finding an additive phylogenetic tree
p Additive trees can be found with, for example,

the neighbor joining method (Saitou & Nei, 1987)
p The neighbor joining method produces unrooted

trees, which have to be rooted by other means
n A common way to root the tree is to use an outgroup
n Outgroup is a species that is known to be more distantly

related to every other species than they are to each
other

n Root node candidate: position where the outgroup would
join the phylogenetic tree

p However, in real-world data, even additivity
usually does not hold very well

398

Neighbor joining algorithm
p Neighbor joining works in a similar fashion

to UPGMA
n Find clusters C1 and C2 that minimise a

function f(C1, C2)
n Join the two clusters C1 and C2 into a new

cluster C
n Add a node to the tree corresponding to C
n Assign distances to the new branches

p Differences in
n The choice of function f(C1, C2)
n How to assign the distances

399

Neighbor joining algorithm
p Recall that the distance dij for clusters Ci and Cj

was

p Let u(Ci) be the separation of cluster Ci from
other clusters defined by

where n is the number of clusters.

400

Neighbor joining algorithm
p Instead of trying to choose the clusters Ci

and Cj closest to each other, neighbor
joining at the same time
n Minimises the distance between clusters Ci and

Cj and
n Maximises the separation of both Ci and Cj

from other clusters

401

Neighbor joining algorithm
p Initialisation as in UPGMA
p Iteration

n Find clusters i and j for which dij – u(Ci) – u(Cj) is minimal
n Define new cluster k by Ck = Ci Cj, and define dkl for all l
n Define a node k with edges to i and j. Remove clusters i and j
n Assign length ½ dij + ½ (u(Ci) – u(Cj)) to the edge i -> k
n Assign length ½ dij + ½ (u(Cj) – u(Ci)) to the edge j -> k

p Termination:
n When only one cluster remains

402

Neighbor joining algorithm: example
a b c d

a 0 6 7 5
b 0 11 9
c 0 6
d 0

i u(i)
a (6+7+5)/2 = 9
b (6+11+9)/2 = 13
c (7+11+6)/2 = 12
d (5+9+6)/2 = 10

i,j dij – u(Ci) – u(Cj)
a,b 6 - 9 - 13 = -16
a,c 7 - 9 - 12 = -14
a,d 5 - 9 - 10 = -14
b,c 11 - 13 - 12 = -14
b,d 9 - 13 - 10 = -14
c,d 6 - 12 - 10 = -16

Choose either pair
to join

403

Neighbor joining algorithm: example
a b c d

a 0 6 7 5
b 0 11 9
c 0 6
d 0

i u(i)
a (6+7+5)/2 = 9
b (6+11+9)/2 = 13
c (7+11+6)/2 = 12
d (5+9+6)/2 = 10

i,j dij – u(Ci) – u(Cj)
a,b 6 - 9 - 13 = -16
a,c 7 - 9 - 12 = -14
a,d 5 - 9 - 10 = -14
b,c 11 - 13 - 12 = -14
b,d 9 - 13 - 10 = -14
c,d 6 - 12 - 10 = -16

a b c d

e

dae = ½ 6 + ½ (9 – 13) = 1
dbe = ½ 6 + ½ (13 – 9) = 5

dbedae

This is the first step only…

404

Inferring the Past: Phylogenetic
Trees (chapter 12)
p The biological problem
p Parsimony and distance methods
p Models for mutations and estimation of

distances
p Maximum likelihood methods
n These parts of the book is skipped on this

course (see slides of 2007 course for material
on these topics)

n No questions in exams on these topics!

405

Problems with tree-building
p Assumptions
n Sites evolve independently of one other
n (Sites evolve according to the same stochastic

model; not really covered this year)
n The tree is rooted
n The sequences are aligned
n Vertical inheritance

406

Additional material on phylogenetic
trees
p Durbin, Eddy, Krogh, Mitchison: Biological

sequence analysis
p Jones, Pevzner: An introduction to

bioinformatics algorithms
p Gusfield: Algorithms on strings, trees, and

sequences

p Course on phylogenetic analyses in Spring
2009

